Fast Wild Cluster Bootstrap Inference for Linear Regression Models


[Up] [Top]

Documentation for package ‘fwildclusterboot’ version 0.3.4

Help Pages

.onLoad setting options for nthreads when package is loaded
boottest Fast wild cluster bootstrap inference
boottest.felm Fast wild cluster bootstrap inference for object of class felm
boottest.fixest Fast wild cluster bootstrap inference for object of class fixest
boottest.lm Fast wild cluster bootstrap inference for object of class lm
boot_algo2 Fast wild cluster bootstrap algorithm
check_set_nthreads Simple function that checks that the nber of threads is valid
cpp_get_nb_threads Get maximum number of threads on hardware for open mp support
create_data Simulate Data
crosstab optimized collapse way to calculate crosstabs
crosstab3 collapse way to calculate crosstabs
crosstab4 Function 4 to calculate crosstabs
eigenMapMatMult Matrix Multiplication via Eigen
eigenMatMult Matrix Multiplication via Eigen
getBoottest_nthreads get the number of threads for use with open mp
glance.boottest S3 method to glance at objects of class boottest
invert_p_val2 Calculation of Confidence Sets
plot.boottest Plot the bootstrap distribution of t-statistics
preprocess2 function that pre-processes regression objects of type lm, fixest and feols
p_val_null2 Calculate p-values based on A, B, CC, CD, DD and other inputs
setBoottest_nthreads Set the number of threads for use with open mp via options By default, only one thread is used
summary.boottest S3 method to summarize objects of class boottest
tidy.boottest S3 method to summarize objects of class boottest into tidy data.frame
voters Random example data set