The Tidymodels Extension for Time Series Modeling


[Up] [Top]

Documentation for package ‘modeltime’ version 0.5.1

Help Pages

A B C D E G I J M N P R S T U W X misc

-- A --

add_modeltime_model Add a Model into a Modeltime Table
arima_boost General Interface for "Boosted" ARIMA Regression Models
Arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast
arima_params Tuning Parameters for ARIMA Models
Arima_predict_impl Bridge prediction function for ARIMA models
arima_reg General Interface for ARIMA Regression Models
arima_xgboost_fit_impl Bridge ARIMA-XGBoost Modeling function
arima_xgboost_predict_impl Bridge prediction Function for ARIMA-XGBoost Models
as_modeltime_table Scale forecast analysis with a Modeltime Table
auto_arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast
auto_arima_xgboost_fit_impl Bridge ARIMA-XGBoost Modeling function

-- B --

bake_xreg_recipe Developer Tools for processing XREGS (Regressors)

-- C --

changepoint_num Tuning Parameters for Prophet Models
changepoint_range Tuning Parameters for Prophet Models
combine_modeltime_tables Combine multiple Modeltime Tables into a single Modeltime Table
create_xreg_recipe Developer Tools for preparing XREGS (Regressors)

-- D --

damping Tuning Parameters for Exponential Smoothing Models
default_forecast_accuracy_metric_set Forecast Accuracy Metrics Sets

-- E --

error Tuning Parameters for Exponential Smoothing Models
ets_fit_impl Low-Level Exponential Smoothing function for translating modeltime to forecast
ets_predict_impl Bridge prediction function for Exponential Smoothing models
exp_smoothing General Interface for Exponential Smoothing State Space Models
exp_smoothing_params Tuning Parameters for Exponential Smoothing Models

-- G --

get_arima_description Get model descriptions for Arima objects
get_model_description Get model descriptions for parsnip, workflows & modeltime objects
get_tbats_description Get model descriptions for TBATS objects
growth Tuning Parameters for Prophet Models

-- I --

is_calibrated Test if a Modeltime Table has been calibrated
is_modeltime_model Test if object contains a fitted modeltime model
is_modeltime_table Test if object is a Modeltime Table
is_residuals Test if a table contains residuals.

-- J --

juice_xreg_recipe Developer Tools for processing XREGS (Regressors)

-- M --

m750 The 750th Monthly Time Series used in the M4 Competition
m750_models Three (3) Models trained on the M750 Data (Training Set)
m750_splits The results of train/test splitting the M750 Data
m750_training_resamples The Time Series Cross Validation Resamples the M750 Data (Training Set)
modeltime_accuracy Calculate Accuracy Metrics
modeltime_calibrate Preparation for forecasting
modeltime_forecast Forecast future data
modeltime_refit Refit one or more trained models to new data
modeltime_residuals Extract Residuals Information
modeltime_residuals_test Apply Statistical Tests to Residuals
modeltime_table Scale forecast analysis with a Modeltime Table

-- N --

naive_fit_impl Low-Level NAIVE Forecast
naive_predict_impl Bridge prediction function for NAIVE Models
naive_reg General Interface for NAIVE Forecast Models
new_modeltime_bridge Constructor for creating modeltime models
nnetar_fit_impl Low-Level NNETAR function for translating modeltime to forecast
nnetar_params Tuning Parameters for NNETAR Models
nnetar_predict_impl Bridge prediction function for ARIMA models
nnetar_reg General Interface for NNETAR Regression Models
non_seasonal_ar Tuning Parameters for ARIMA Models
non_seasonal_differences Tuning Parameters for ARIMA Models
non_seasonal_ma Tuning Parameters for ARIMA Models
num_networks Tuning Parameters for NNETAR Models

-- P --

panel_tail Filter the last N rows (Tail) for multiple time series
parse_index Developer Tools for parsing date and date-time information
parse_index_from_data Developer Tools for parsing date and date-time information
parse_period_from_index Developer Tools for parsing date and date-time information
plot_modeltime_forecast Interactive Forecast Visualization
plot_modeltime_residuals Interactive Residuals Visualization
pluck_modeltime_model Extract model by model id in a Modeltime Table
pluck_modeltime_model.mdl_time_tbl Extract model by model id in a Modeltime Table
predict.recursive Recursive Model Predictions
predict.recursive_panel Recursive Model Predictions
prior_scale_changepoints Tuning Parameters for Prophet Models
prior_scale_holidays Tuning Parameters for Prophet Models
prior_scale_seasonality Tuning Parameters for Prophet Models
prophet_boost General Interface for Boosted PROPHET Time Series Models
prophet_fit_impl Low-Level PROPHET function for translating modeltime to PROPHET
prophet_params Tuning Parameters for Prophet Models
prophet_predict_impl Bridge prediction function for PROPHET models
prophet_reg General Interface for PROPHET Time Series Models
prophet_xgboost_fit_impl Low-Level PROPHET function for translating modeltime to Boosted PROPHET
prophet_xgboost_predict_impl Bridge prediction function for Boosted PROPHET models
pull_modeltime_model Extract model by model id in a Modeltime Table
pull_modeltime_residuals Extracts modeltime residuals data from a Modeltime Model
pull_parsnip_preprocessor Pulls the Formula from a Fitted Parsnip Model Object

-- R --

recipe_helpers Developer Tools for processing XREGS (Regressors)
recursive Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model

-- S --

season Tuning Parameters for Exponential Smoothing Models
seasonality_daily Tuning Parameters for Prophet Models
seasonality_weekly Tuning Parameters for Prophet Models
seasonality_yearly Tuning Parameters for Prophet Models
seasonal_ar Tuning Parameters for ARIMA Models
seasonal_differences Tuning Parameters for ARIMA Models
seasonal_ma Tuning Parameters for ARIMA Models
seasonal_period Tuning Parameters for Time Series (ts-class) Models
seasonal_reg General Interface for Multiple Seasonality Regression Models (TBATS, STLM)
snaive_fit_impl Low-Level SNAIVE Forecast
snaive_predict_impl Bridge prediction function for SNAIVE Models
stlm_arima_fit_impl Low-Level stlm function for translating modeltime to forecast
stlm_arima_predict_impl Bridge prediction function for ARIMA models
stlm_ets_fit_impl Low-Level stlm function for translating modeltime to forecast
stlm_ets_predict_impl Bridge prediction function for ARIMA models
summarize_accuracy_metrics Summarize Accuracy Metrics

-- T --

table_modeltime_accuracy Interactive Accuracy Tables
tbats_fit_impl Low-Level tbats function for translating modeltime to forecast
tbats_predict_impl Bridge prediction function for ARIMA models
time_series_params Tuning Parameters for Time Series (ts-class) Models
trend Tuning Parameters for Exponential Smoothing Models
type_sum.mdl_time_tbl Succinct summary of Modeltime Tables

-- U --

update_modeltime_description Update the model description by model id in a Modeltime Table
update_modeltime_model Update the model by model id in a Modeltime Table
update_model_description Update the model description by model id in a Modeltime Table

-- W --

window_function_fit_impl Low-Level Window Forecast
window_function_predict_impl Bridge prediction function for window Models
window_reg General Interface for Window Forecast Models

-- X --

xgboost_impl Wrapper for parsnip::xgb_train
xgboost_predict Wrapper for xgboost::predict

-- misc --

.prepare_panel_transform Prepare Recursive Transformations
.prepare_transform Prepare Recursive Transformations