Factorization of Sparse Counts Matrices Through Poisson Likelihood


[Up] [Top]

Documentation for package ‘poismf’ version 0.3.0-1

Help Pages

factors Determine latent factors for new rows/users
factors.single Get latent factors for a new user given her item counts
get.factor.matrices Extract Latent Factor Matrices
get.model.mappings Extract user/row and item/column mappings from Poisson model.
poismf Factorization of Sparse Counts Matrices through Poisson Likelihood
poismf_unsafe Poisson factorization with no input casting
poisson.llk Evaluate Poisson log-likelihood for counts matrix
predict.poismf Predict expected count for new row(user) and column(item) combinations
print.poismf Get information about poismf object
summary.poismf Get information about poismf object
topN Rank top-N highest-predicted items for an existing user
topN.new Rank top-N highest-predicted items for a new user