anova.wle.glm.root | Robust Analysis of Deviance for Generalized Linear Model Fits |
anova.wleglmlist | Robust Analysis of Deviance for Generalized Linear Model Fits |
artificial | Hawkins, Bradu, Kass's Artificial Data |
binary | Convert decimal base number to binary base |
cavendish | Cavendish's determinations of the mean density of the earth Data |
coef.wle.lm | Accessing Linear Model Fits for wle.lm |
extractRoot | Extract a Root from a result of a wle function |
extractRoot.wle.glm | Extract a Root from a result of a wle function |
family.wle.glm | Accessing Generalized Linear Model Robust Fits |
fitted.wle.lm | Accessing Linear Model Fits for wle.lm |
formula.wle.lm | Accessing Linear Model Fits for wle.lm |
hald | Hald Data |
mde.vonmises | von Mises Minimum Distance Estimates |
mde.wrappednormal | Wrapped Normal Minimum Distance Estimates |
mle.aic | Akaike Information Criterion |
mle.cp | Mallows Cp |
mle.cv | Cross Validation Selection Method |
mle.stepwise | Stepwise, Backward and Forward selection methods |
model.frame.wle.lm | Accessing Linear Model Fits for wle.lm |
plot.mle.cp | Plot the Mallows Cp |
plot.wle.cp | Plot the Weighted Mallows Cp |
plot.wle.lm | Plots for the Linear Model |
print.mde.vonmises | von Mises Minimum Distance Estimates |
print.mde.wrappednormal | Wrapped Normal Minimum Distance Estimates |
print.mle.aic | Summaries and methods for mle.aic |
print.mle.cp | Summaries and methods for mle.cp |
print.mle.cv | Summaries and methods for mle.cv |
print.mle.stepwise | Accessing summaries for mle.stepwise |
print.summary.mle.aic | Summaries and methods for mle.aic |
print.summary.mle.cp | Summaries and methods for mle.cp |
print.summary.mle.cv | Summaries and methods for mle.cv |
print.summary.mle.stepwise | Accessing summaries for mle.stepwise |
print.summary.wle.aic | Summaries and methods for wle.aic |
print.summary.wle.aic.ar | Summaries and methods for wle.aic.ar |
print.summary.wle.cp | Summaries and methods for wle.cp |
print.summary.wle.cv | Summaries and methods for wle.cv |
print.summary.wle.glm | Summarizing Generalized Linear Model Robust Fits |
print.summary.wle.lm | Accessing Linear Model Fits for wle.lm |
print.summary.wle.lm.root | Accessing Linear Model Fits for wle.lm |
print.summary.wle.stepwise | Accessing summaries for wle.stepwise |
print.wle.aic | Summaries and methods for wle.aic |
print.wle.aic.ar | Summaries and methods for wle.aic.ar |
print.wle.binomial | Robust Estimation in the Binomial Model |
print.wle.cp | Summaries and methods for wle.cp |
print.wle.cv | Summaries and methods for wle.cv |
print.wle.gamma | Robust Estimation in the Gamma model |
print.wle.glm | Robust Fitting Generalized Linear Models using Weighted Likelihood |
print.wle.lm | Accessing Linear Model Fits for wle.lm |
print.wle.negativebinomial | Robust Estimation in the Negative Binomial Model |
print.wle.normal | Summaries and methods for wle.normal |
print.wle.normal.mixture | Robust Estimation in the Normal Mixture Model |
print.wle.normal.multi | Summaries and methods for wle.normal.multi |
print.wle.onestep | Summaries and methods for wle.onestep |
print.wle.poisson | Robust Estimation in the Poisson Model |
print.wle.smooth | Bandwidth selection for the normal kernel and normal model. |
print.wle.stepwise | Accessing summaries for wle.stepwise |
print.wle.t.test | Weighted Likelihood Student's t-Test |
print.wle.vonmises | von Mises Weighted Likelihood Estimates |
print.wle.wrappednormal | Wrapped Normal Weighted Likelihood Estimates |
residuals.wle.glm | Accessing Generalized Linear Model Robust Fits |
residualsAnscombe | Anscombe residuals |
rocky | Rockwell hardness, 100 coils produced in sequence at a Chicago Steel Mill Data |
selection | Selection's Data |
summary.mle.aic | Summaries and methods for mle.aic |
summary.mle.cp | Summaries and methods for mle.cp |
summary.mle.cv | Summaries and methods for mle.cv |
summary.mle.stepwise | Accessing summaries for mle.stepwise |
summary.wle.aic | Summaries and methods for wle.aic |
summary.wle.aic.ar | Summaries and methods for wle.aic.ar |
summary.wle.cp | Summaries and methods for wle.cp |
summary.wle.cv | Summaries and methods for wle.cv |
summary.wle.glm | Summarizing Generalized Linear Model Robust Fits |
summary.wle.lm | Accessing Linear Model Fits for wle.lm |
summary.wle.lm.root | Accessing Linear Model Fits for wle.lm |
summary.wle.stepwise | Accessing summaries for wle.stepwise |
weights.wle.glm | Robust Fitting Generalized Linear Models using Weighted Likelihood |
weights.wle.lm | Accessing Linear Model Fits for wle.lm |
wle.aic | Weighted Akaike Information Criterion |
wle.aic.ar | Weighted Akaike Information Criterion for AR models |
wle.ar | Fit Autoregressive Models to Time Series - Preliminary Version |
wle.ar.ao | Fit Autoregressive Models to Time Series - Preliminary Version |
wle.ar.matrix | Fit Autoregressive Models to Time Series - Preliminary Version |
wle.ar.start | Fit Autoregressive Models to Time Series - Preliminary Version |
wle.ar.step | Fit Autoregressive Models to Time Series - Preliminary Version |
wle.ar.wls | Weighted Akaike Information Criterion for AR models |
wle.binomial | Robust Estimation in the Binomial Model |
wle.cp | Weighted Mallows Cp |
wle.cv | Model Selection by Weighted Cross-Validation |
wle.fracdiff | Fit Fractional Models to Time Series - Preliminary Version |
wle.gamma | Robust Estimation in the Gamma model |
wle.glm | Robust Fitting Generalized Linear Models using Weighted Likelihood |
wle.glm.control | Auxiliary for Controlling GLM Robust Fitting |
wle.glm.fit | Robust Fitting Generalized Linear Models using Weighted Likelihood |
wle.glm.weights | Weights based on Weighted Likelihood for the GLM model |
wle.lm | Fitting Linear Models using Weighted Likelihood |
wle.negativebinomial | Robust Estimation in the Negative Binomial Model |
wle.normal | Robust Estimation in the Normal Model |
wle.normal.mixture | Robust Estimation in the Normal Mixture Model |
wle.normal.mixture.start | Robust Estimation in the Normal Mixture Model |
wle.normal.multi | Robust Estimation in the Normal Multivariate Model |
wle.onestep | A One-Step Weighted Likelihood Estimator for Linear model |
wle.poisson | Robust Estimation in the Poisson Model |
wle.smooth | Bandwidth selection for the normal kernel and normal model. |
wle.stepwise | Weighted Stepwise, Backward and Forward selection methods |
wle.t.test | Weighted Likelihood Student's t-Test |
wle.var.test | Weighted F Test to Compare Two Variances |
wle.vonmises | von Mises Weighted Likelihood Estimates |
wle.weights | Weights based on Weighted Likelihood for the normal model |
wle.wrappednormal | Wrapped Normal Weighted Likelihood Estimates |
x.artificial | Hawkins, Bradu, Kass's Artificial Data |
x.hald | Hald Data |
xdata | Selection's Data |
y.artificial | Hawkins, Bradu, Kass's Artificial Data |
y.hald | Hald Data |
ydata | Selection's Data |