The GHap Package (Version 2.0.0)

Yuri Tani Utsunomiya, Marco Milanesi and Mario Barbato

11 Sep 2020
Contents
Abstract L 2
Tutorial 1 - Importing phased data 3
Tutorial 2 - Subsetting phased objects L 4
Tutorial 3 - Haplotyping e 5
Tutorial 4 - Importing and manipulating haplotypedata 6
Tutorial 5 - Haplotype statistics. o e 7
Tutorial 6 - Relationship matrix and PCA 8
Tutorial 7 - Haplotype divergence analysis o 9
Tutorial 8 - Haplotype ancestry e 10
Tutorial 9 - Linear mixed model analysis 13
Tutorial 10 - Association analysis 14
Tutorial 11 - BLUP of haplotypes« . . e 15
Tutorial 12 - Haplotype profiling e 16
Methods 1 - Format e 17
Methods 2 - Haplotyping algorithm 18
Methods 3 - Haplotype statistics 20
Methods 4 - Haplotype coding for regression and relationship matrix 21
Methods 5 - Regression treating haplotypes as fixed effects 23
Methods 6 - Regression treating haplotypes as random effects 24
Methods 7 - Fixation index e 25
Appendix 1 - Using GHap outputs in third-party software 26
Appendix 2 - Diagram of functions L L 27
References o L e 28

Abstract

The GHap R package was designed to call haplotypes from phased SNP data. Given user-defined haplotype
blocks (HapBlock), the package identifies the different haplotype alleles (HapAllele) present in the data
and scores sample haplotype allele genotypes (HapGenotype) based on copy number (i.e., 0, 1 or 2 copies).
GHap is an acronym for Genome-wide Haplotyping, and is pronounced G-Hap, not gap (although it is
intended to fill the gap of haplotype analyses). Apart from its core functionality, the package also supports
phenotype-haplotype association analyses as well as machine learning-based predictions of local and global
ancestry.

Tutorial 1 - Importing phased data

Example input files can be created using the command:

Copy the example data in the current working directory

library(GHap)
exfiles <- ghap.makefile()
file.copy(from = exfiles, to = "./")

The dataset comprises genotypes from the International HapMap Project Phase 3 (The International
HapMap 3 Consortium, 2010), which includes 1,011 subjects (from 11 populations) and 20,000 SNPs
(randomly sampled from chromosome 2) mapped to the NCBI build 36 (hgl8) assembly.

Since version 2.0.0, GHap adopted binary input files for both improved performance and economic data
storage. In order to compress the data into a binary file, the user can run:

Compress phase data
ghap.compress(input.file = "human", out.file = "human")

The ghap.loadphase() function is responsible for loading phased chromosomes from an input file and
converting them into a native GHap.phase object. A detailed describtion of this object can be found in
the documentation of the function. To load the example data in the package we can run:

#Load phase object

phase <- ghap.loadphase("human")

Reading in marker map information... Done.

A total of 20000 markers were found in 1 chromosomes.

Reading in sample information... Done.

A total of 1011 individuals were found in 11 populations.

Checking integrity of phased genotypes... Done.

Your GHap.phase object was successfully created without apparent errors.

H OH OH OH

Although the example data contains data for a single chromosome, the current version of the package
supports multiple chromosomes.

Tutorial 2 - Subsetting phased objects

The ghap.subsetphase() function can take any combination of markers and individuals and subset the
GHap.phase object. This is achieved by setting undesired markers and individuals to FALSE. Inactivated
individuals and markers are then ignored by all other functions taking a GHap.phase object as input.

For instance, we know that markers with low polymorphic information content may result in rare HapAl-
leles. If downstream analyses do not benefit from rare HapAlleles (e.g., haplotype association), it may be
advantageous to prune these markers out prior to haplotyping. The code below shows how to subset markers
with a minor allele frequency of at least 5%:

Subset data - markers with maf > 0.05

maf <- ghap.freq(phase, type="maf", ncores = 1)

markers <- names(maf) [which(maf > 0.05)]

phase <- ghap.subsetphase(phase, unique(phase$id), markers)
Subsetting 1011 individuals and 17267 markers... Done.

Final data contains 1011 individuals and 17267 markers.

Tutorial 3 - Haplotyping

In principle, the user can provide the coordinates of any arbitrary haplotype block (HapBlock). In GHap,
we provide means to generate coordinates for HapBlocks based on sliding windows of markers. This strategy
is particularly useful in genome-wide scans.

Generate blocks of 5 markers sliding 5 markers at a time
blocks.mkr <- ghap.blockgen(phase, windowsize = 5, slide = 5, unit = "marker")

Generate blocks of 100 kb sliding 100 kb at a time
blocks.kb <- ghap.blockgen(phase, windowsize = 100, slide = 100, unit = "kbp")

By default all blocks are constrained to a minimum of two markers. This behaviour can be adjusted by
setting the nsnp argument to a different value. The extent of overlap between consecutive blocks can be
controlled via the slide argument, depending on how fine the user wishes the genome-wide scan to be. Once
HapBlocks have been defined, haplotype genotypes (HapGenotypes) can be determined:

Generate matrix of haplotype genotypes

ghap.haplotyping(phase, blocks.mkr, outfile = "human", binary = TRUE, ncores = 1)
Processing 3453 blocks in:

1 batches of 339

9 batches of 346

3453 blocks written to file

By default all HapAlleles are included in the output. If intended, the user can exclude the minor HapAllele
by setting the drop.minor argument to TRUE. Additionally, the freq argument allows for exclusion of
HapAlleles outside of a specified frequency range. Control of memory usage and process parallelization is
achieved through the arguments batchsize and ncores.

Tutorial 4 - Importing and manipulating haplotype data

After HapAlleles have been scored, the data can be loaded into R using the ghap.loadhaplo function:

Load haplotype genotypes
haplo <- ghap.loadhaplo("human")

Reading in haplotype allele information... Done.
A total of 60002 haplotype alleles were found.
Reading in sample information... Done.

A total of 1011 individuals were found in 11 populations.
Checking integrity of haplotype genotypes... Done.
Your GHap.haplo object was successfully loaded without apparent errors.

H OH OH O H H

Similar to the GHap.phase object, the user can also subset GHap.haplo objects. For instance:

Randomly select 500 individuals
ids <- sample(x = haplo$id, size = 500, replace = FALSE)

Subset data

haplo.sub <- ghap.subsethaplo(haplo,ids,haplo$allele.in)

Subsetting 500 individuals and 60002 haplotype alleles... Done.
Final data contains 500 individuals and 60002 haplotype alleles.

Restore selection of the entire data

haplo.sub <- ghap.subsethaplo(haplo,unique(haplo$id) ,rep(TRUE,times=haplo$nalleles))
Subsetting 1011 individuals and 60002 haplotype alleles... Done.

Final data contains 1011 individuals and 60002 haplotype alleles.

Tutorial 5 - Haplotype statistics

For each HapAllele, the ghap.hapstats function retrieves absolute and relative frequencies, expected and
observed number of homozygotes, and different tests for deficit of homozygotes in comparison to Hardy-
Weinberg Equilibrium (HWE) expectations.

hapstats <- ghap.hapstats(haplo, ncores = 1)

Processing 60002 HapAlleles in 10 batches.
Inactive alleles will be ignored.

60002 alleles processed

str (hapstats)

'data.frame': 60002 obs. of 14 variables:

$ BLOCK : chr "CHR2_B1" "CHR2_B1" "CHR2_B1" "CHR2_B1"

$ CHR : chr "2m n2m wgn ngn

$ BP1 : num 18228 18228 18228 18228 18228 ...

$ BP2 : num 75360 75360 75360 75360 75360 ...

$ ALLELE : chr "ATAGT" "ATAAC" "ATGGC" "GGAAC"

$ N :num 2 4 5 10 42 ...

$ FREQ : num 0.000989 0.001978 0.002473 0.004946 0.020772 ...
$ 0.HOM :num 0 00001 14 17 14 524 ...

$ 0.HET :num 2 4 5 10 42 56 123 142 170 328 ...

$ E.HOM : num 0.000989 0.003956 0.006182 0.024728 0.436202
$ RATIO :num 1 1 1.01 1.02 1.44 ...

$ BIN.logP: num 0.00043 0.00172 0.00268 0.01074 0.18948 ...
$ POI.logP: num 0.00043 0.00172 0.00268 0.01074 0.18944 ...
$ TYPE : chr "MINOR" "REGULAR" "REGULAR" "REGULAR"

The function also assigns a TYPE category to each HapAllele:

“ABSENT” = the frequency of the allele is 0;

“SINGLETON” = unique haplotype of its block with frequency 1 (i.e., monomorphic block);

“MINOR” = the least frequent haplotype of its block (in the case of ties, only the first haplotype is marked);
“MAJOR” = the most frequent hapotype of its block (ties are also resolved by marking the first haplotype);
“REGULAR” = the haplotype does not fall into any of the previous categories.

Categories “SINGLETON”, “MINOR” and “MAJOR” only apply to blocks where frequencies sum to 1.

The ghap.blockstats function summarizes HapAllele statistics per block and retrieves the expected het-
erozygosity and the number of alleles per HapBlock. For instance:

blockstats <- ghap.blockstats(hapstats, ncores = 1)
head(blockstats,n=2)

BLOCK CHR BP1 BP2 EXP.H N.ALLELES
1 CHR2_B1 2 18228 75360 0.5128683 10
11 CHR2_B2 2 90190 109437 0.7139595 15

Notice that calculation of expected heterozygosity will not be reliable when HapAlleles are prunned out by
frequency during haplotyping. Therefore, the function will return NA for blocks where HapAllele frequencies
do not sum to unity. Also, when the dataset contains multiple populations the expected heterozygosity and
the number of alleles will be very high.

Tutorial 6 - Relationship matrix and PCA

The example below computes a kinship matrix from HapGenotypes and plots the first two eigenvectors of
a principal components analysis of this matrix. Notice that absent, singleton and minor alleles should be
excluded from computations.

Exclude minor alleles and singletons

haplo <- ghap.subsethaplo(haplo,haplo$id, hapstats$TYPE %in% c("REGULAR","MAJOR"))
Subsetting 1011 individuals and 56572 haplotype alleles... Done.

Final data contains 1011 individuals and 56572 haplotype alleles.

Compute Kinship matrix

K <- ghap.kinship(haplo, ncores = 1)
Processing 56572 HapAlleles in 10 batches.
Inactive alleles will be ignored.
Preparing 1011 x 1011 kinship matrix.
56572 HapAlleles processed.

H H H

PCA analysis
pca <- ghap.pca(haplo,K)

Plot

plot (x=pca$eigenvec$PCl, y=pca$eigenvec$PC2, xlab="PC1", ylab="PC2", pch="")

pop <- pca$eigenvec$POP

pop.col <- as.numeric(as.factor(pop))

pop <- sort(unique(pop))

legend("bottomleft", legend = pop, col = 1:length(pop), pch = 1:length(pop), ncol = 3)
points(x=pca$eigenvec$PCl, y=pca$eigenvec$PC2, pch = pop.col, col = pop.col, cex = 1.2)

Tutorial 7 - Haplotype divergence analysis

The example below compares the CEU and CHB populations for HapBlocks on chromosome 2:

Compute haplotype allele statistics for each group

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE, times=haplo$nalleles))
CHB.ids <- haplo$id[which(haplo$pop=="CHB")]

CEU.ids <- haplo$id[which(haplo$pop=="CEU")]

haplo <- ghap.subsethaplo(haplo,CHB.ids,haplo$allele.in)

CHB.hapstats <- ghap.hapstats(haplo,ncores = 1)

haplo <- ghap.subsethaplo(haplo,CEU.ids,haplo$allele.in)

CEU.hapstats <- ghap.hapstats(haplo,ncores = 1)

haplo <- ghap.subsethaplo(haplo,c(CHB.ids,CEU.ids) ,haplo$allele.in)

TOT .hapstats <- ghap.hapstats(haplo,ncores = 1)

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE,times=haplo$nalleles))

Compute haplotype block statistics for each group

CHB.blockstats <- ghap.blockstats(CHB.hapstats, ncores = 1)
CEU.blockstats <- ghap.blockstats(CEU.hapstats, ncores = 1)
TOT.blockstats <- ghap.blockstats(TOT.hapstats, ncores = 1)

Calculate Fst
fst <- ghap.fst(CHB.blockstats, CEU.blockstats, TOT.blockstats)

Plot results
top.fst <~ fst[fst$FST == max(fst$FST, na.rm=TRUE),]

plot(
x = (fst$BP1+fst$BP2)/2e+6,
y = £st$FST, pch = "",

ylab = expression(paste("Haplotype ", F[ST])),

xlab "Chromosome 2 (in Mb)",

ylim=c(0,1)

)

abline(v=108.7, col="gray")

points(x = (fst$BP1+fst$BP2)/2e+6, y = f£st$FST, pch = 20, col="#471FAA99")
points(x = (top.fst$BPl+top.fst$BP2)/2e+6, y = top.fst$FST, pch = 20, col="red")
text(x = 125, y = max(fst$FST, na.rm=TRUE), "EDAR", col="red")

Ideally, similar to the case of HapAllele and HapBlock statistics, the Fgr analysis should be carried out on
the full set of HapAlleles, rather than a frequency-prunned subset.

Tutorial 8 - Haplotype ancestry

The package provides three methods for the prediction of haplotype ancestry:

GHap Unsupervised. This method does not require a reference sample. It is based on a combination of
K-means and heuristics, and is divided into three steps. In the first one, a random sample of seeding markers
(default value of nmarkers = 5000) is used to group all 2*nsamples haplotypes in a user-specified number
of clusters (default value of K = 2). Then, for each interrogated block, prototype alleles (i.e., centroids) are
built for every cluster using the mean of observed haplotypes initially assigned to that cluster. Finally, each
tested haplotype is assigned to the nearest centroid (i.e., with the smallest Euclidean distance). K-means is
internally ran through the kmeans function in the stats package.

GHap Supervised. This method is similar to the ‘unsupervised’ method, only replacing the K-means
clutering step by user-defined clusters of reference samples.

Support Vector Machines (SVM). This method performs predictions using Support Vector Machines
(SVM) together with a Gaussian Radial Basis Function (RBF) kernel. The user is required to specify a
reference sample of individuals with known ancestry labels. The reference sample is then used to train the
SVM model, which is parameterized by the C constant of the regularization term in the Lagrange formulation
(default cost = 1) and the gamma parameter (default gamma = 1/blocksize) of the RBF kernel. Fitting of
SVM is performed internally by the svm function from the e1071 package. Test samples have the ancestries
of their HapAlleles predicted using the fitted SVM.

In all three methods, the classifiers assume exactly one ancestry per HapBlock, such that segments encom-
passing breakpoints are miss-classified as pertaining to a single ancestral origin, as opposed to a recombinant
mixture of hybrid ancestries. When any of the three methods is ran with overlapping HapBlocks, the user
should use the ghap.ancsmooth function to convert HapAllele classifications into ancestry tracks. In this
case, the smoothing function interrogates the ancestry of each overlapped segment by majority voting of
all blocks containing it. After the ancestry of all segments have been resolved, contiguous sites sharing the
same classification are converted into runs or segments of ancestry, which comprise the final output of an
ancestry analysis. The following lines of code show an analysis of the HapMap3 data considering the three
major ancestry components in human populations: the continental blocks of Africa, Europe and Asia.

Calculate marker density

mrkdist <- diff (phase$bp)

mrkdist <- mrkdist[which(mrkdist > 0)]
density <- mean(mrkdist)

Generate blocks for admixture events up to g = 10 generations in the past
Assuming mean block size in Morgans of 1/(2xg)

Approximating 1 Morgan ~ 100 Mbp

g <- 10

window <- (100e+6)/(2*g)

window <- ceiling(window/density)

step <- ceiling(window/4)

blocks <- ghap.blockgen(phase, windowsize = window, slide = step, unit = "marker")
Unsupervised analysis
prototypesl <- ghap.anctrain(phase = phase, K = 3, ncores = 1)

hapadmixl <- ghap.anctest(phase = phase, blocks = blocks, prototypes = prototypesl,
test = unique(phase$id), ncores = 1)
anctracksl <- ghap.ancsmooth(phase = phase, admix = hapadmixl, ncores = 1)

User-defined labels

pops <- phase$pop
labels <- pops

10

labels[which(labels %inJ% c("CEU","TSI"))] <- "Europe"
labels[which(labels %in’% c("CHB","JPT","CHD"))] <- "Asia"
labels[which(labels %in% c("YRI","LWK"))] <- "Africa"
labels[which(labels %in% c("MKK","GIH","ASW","MEX"))] <- "Test"
phase$pop <- labels

train <- unique(phase$id[which(phase$pop !'= "Test")])

test <- unique(phase$id)

Supervised analysis with default parameters
prototypes2 <- ghap.anctrain(phase = phase, train = train,
method = "supervised", ncores = 1)
hapadmix2 <- ghap.anctest(phase = phase, blocks = blocks, prototypes = prototypes2,
test = unique(phase$id), ncores = 1)
phase$pop <- pops

anctracks2 <- ghap.ancsmooth(phase = phase, admix = hapadmix2, ncores 1)

SVM analysis with default parameters

phase$pop <- labels

hapadmix3 <- ghap.ancsvm(phase phase, blocks
train = train, ncores

blocks, test = test,
1)

phase$pop <- pops
anctracks3 <- ghap.ancsmooth(phase = phase, admix = hapadmix3, ncores = 1)

List of population orders to plot

pop.order <- vector("list",5)

names (pop.order) <- c("Africa","Europe","East Asia","S. Asia","America")
pop.order[[1]] <- c("YRI","LWK","MKK")

pop.order[[2]] <- c("CEU","TSI")

pop.order[[3]] <- c("CHB","JPT","CHD")

pop.order[[4]] <- "GIH"

pop.order[[5]] <- c("ASW","MEX")

Plot results

ghap.ancplot (ancsmooth = anctracksl, pop.order = pop.order, use.unk = FALSE)
ghap.ancplot (ancsmooth = anctracks2, pop.order = pop.order, use.unk = FALSE)
ghap.ancplot (ancsmooth = anctracks3, pop.order = pop.order, use.unk = FALSE)

It is also possible to summarize average ancestries per marker for a given group of individuals using the
ghap.ancmark function. This is useful to screen chromosomes for loci that substantially deviate from the
average ancestry across the genome.

Plot figures side by side
par (mfrow=c(3,1))

Plot unsupervised results
ancmarkl <- ghap.ancmark(phase = phase, ancsmooth = anctracksl,
ids = unique(phase$id[which(phase$pop == "MKK")]))

plot(ancmark1$BP/le+6, ancmarki1$Kl, ylim = c(0,100), las=1, type="1", col="blue",

xlab = "Chromosome 2 (Mbp)", ylab = "Ancestry (%)", main = "GHap unsupervised")
points(ancmark1$BP/1le+6, ancmark1$K2, type="1", col="red")
points(ancmark1$BP/1e+6, ancmarki1$K3, type="1", col="green")
points(ancmark1$BP/le+6, ancmarki1$UNK, type="1", col='"grey")

Plot unsupervised results

11

ancmark? <- ghap.ancmark(phase = phase, ancsmooth = anctracks2,
ids = unique(phase$id[which(phase$pop == "MKK")]))
plot (ancmark2$BP/le+6, ancmark2$Africa, ylim = c(0,100), las=1, type="1", col="blue",
xlab = "Chromosome 2 (Mbp)", ylab = "Ancestry (%)", main = "GHap supervised")
points(ancmark2$BP/1e+6, ancmark2$Asia, type="1", col='"red")
points(ancmark2$BP/1e+6, ancmark2$Europe, type="1", col="green")
points(ancmark2$BP/le+6, ancmark2$UNK, type="1", col='grey")

Plot SVM results
ancmark3 <- ghap.ancmark(phase = phase, ancsmooth = anctracks3,
ids = unique(phase$id[which(phase$pop == "MKK")]))

plot(ancmark3$BP/le+6, ancmark3$Africa, ylim = c(0,100), las=1, type="l1l", col="blue",

xlab = "Chromosome 2 (Mbp)", ylab = "Ancestry (%)", main = "SVM")
points(ancmark3$BP/le+6, ancmark3$Asia, type="1", col="red")
points(ancmark3$BP/1le+6, ancmark3$Europe, type="1", col="green")
points(ancmark3$BP/1e+6, ancmark3$UNK, type="1", col="grey")

Individual ancestry tracks can be visualized with ghap.karyoplot to check carrier status of segments of
interest.

Plot ancestry tracks

ghap.karyoplot (ancsmooth = anctracksl, ids = "NA19835",
chr.line = 11, plot.line = 50, las=1)

ghap.karyoplot (ancsmooth = anctracks2, ids = "NA19835",
chr.line = 11, plot.line = 50, las=1)

ghap.karyoplot (ancsmooth = anctracks3, ids = "NA19835",
chr.line = 11, plot.line = 50, las=1)

Another useful feature is the possibility of exporting ancestry track data to PLINK for admixture mapping.
The ghap.anc2plink function allows the user to count the number of alleles of a given ancestry at each
marker and export a genome-wide matrix in either plain text or PLINK binary format (Purcell et al., 2007;
Chang et al., 2015). In the latter case, bed/bim/fam files are generated, where ancestry counts 0, 1 and 2
are recoded as NN, NH and HH genotypes (N = NULL and H = haplotype allele), as if ancestry statuses
were bi-alelic markers. This coding scheme is acceptable for any given analysis relying on genotype counts,
as long as the user specifies that the analysis should be done using character H as the reference for counts.

Output ancestry counts
phase <- ghap.subsetphase(phase = phase,

ids = unique(phase$id[which(phase$pop == "MEX")]),
markers = phase$marker)
ghap.anc2plink(phase = phase, ancsmooth = anctracks2, ancestry = "Africa",
outfile = "mex_africa", ncores = 1, batchsize = 1000)

12

Tutorial 9 - Linear mixed model analysis

GHap implements a wrapper of the Ime4 package (Bates et al., 2015) to fit generalized linear mixed models
of the form:

g(uy‘u) =Xb +Zu

where g(.) is a link function, py, is the expectation of phenotypes conditional on random effects, b is a
vector of unobserved fixed effects, X is a matrix relating phenotypes to b, u is a vector of random effects
~ N(0,Ko?), and Z is an incidence matrix relating phenotypes to u. Random effects can be partitioned into
subgroups with different covariance matrices. For instance, if we let K be the HapAllele relationship matrix,
then u becomes the HapAllele-based polygenic effects/breeding values, and o2 becomes the variance due
to HapAlleles. Importantly, any arbitrary K matrix is admitted, such that one may fit models combining
pedigree and haplotype relationships (e.g., single-step GWAS analysis, see Wang et al., 2012).

In the example below we simulate a quantitative trait in Europeans with 50% heritability, where two major
HapAlleles account for 50% of the genetic variance. Repeated records are taken for each individual. However,
the dataset is unbalanced, such that subjects can have between 0 and 30 measurements.

Subset common haplotypes in Europeans

EUR.ids <- haplo$id[which(haplo$pop %in% c("TSI","CEU"))]
haplo <- ghap.subsethaplo(haplo,EUR.ids,haplo$allele.in)
hapstats <- ghap.hapstats(haplo, ncores = 1)

common <- hapstats$TYPE %in% c("REGULAR","MAJOR") &
hapstats$FREQ > 0.05 &

hapstats$FREQ < 0.95

haplo <- ghap.subsethaplo(haplo,EUR.ids,common)

#Compute relationship matrix
K <- ghap.kinship(haplo, ncores = 1)

Quantitative trait with 507% heritability

Unbalanced repeated measurements (0 to 30)

Two major haplotypes accounting for 50% of the genetic variance

myseed <- 123456789

set.seed(myseed)

major <- sample(which(haplo$allele.in == TRUE), size = 2)

g2 <- runif(n = 2, min = 0, max = 1)

g2 <- (g2/sum(g2))*0.5

sim <- ghap.simpheno(haplo, kinship = K, h2 = 0.5, g2 = g2, nrep = 30,
balanced = FALSE, major = major, seed = myseed)

#Fit model using REML
model <- ghap.lmm(fixed = phenotype ~ 1, random = ~ individual,
covmat = list(individual = K), data = sim$data)

#Estimated heritability and repeatability
model$vcp/sum(model$vep)

#True versus estimated breeding values

plot(model$random$individual ,,sim$u,xlab="Estimated BV",ylab="True BV"); abline(0,1)
summary (Im(sim$u ~ as.numeric(model$random$individual)))

13

Tutorial 10 - Association analysis

The ghap.assoc() function regresses a response variable on one HapAllele at a time, treating HapAlleles as
fixed effects. The example below takes the simulated data from the previous tutorial and regresses residuals
and genomic estimated breeding values onto HapAlleles.

#HapAllele GWAS using GEBVs as response
pheno <- model$random$individual
gwasl <- ghap.assoc(response = pheno, haplo = haplo, ncores

i)

#HapAllele GWAS using GEBVs as response

#Weight observations by number of repeated measurements
pheno <- model$random$individual

w <- table(sim$data$individual)

w <- w + mean(w)

w <- w[names(pheno)]

gwas2 <- ghap.assoc(response = pheno, haplo = haplo, ncores

1, weights = w)

#HapAllele GWAS using residuals as response
pheno <- model$residuals
names (pheno) <- sim$data$individual

gwas3 <- ghap.assoc(response = pheno, haplo = haplo, ncores 1)

#Plot results
plot(gwas1$BP1/1e+6,gwas1$logP,pch=20,col="darkgreen",ylim=c(0,20),
xlab="Position (in Mb)",ylab=expression(-log[10](p)))
points(gwas2$BP1/1e+6,gwas2$logP,pch=20,col="gray")
points(gwas3$BP1/1e+6,gwas3$logP,pch=20,col="blue")
abline(v=haplo$bpl[major]/le+6,1ty=3)
abline(h=-10g10(0.05/nrow(gwasl)),1ty=3)
legend("topleft",legend = c("GEBVs","weighted GEBVs",'"residuals"),
pch = 20,col=c("darkgreen","gray","blue"))

14

Tutorial 11 - BLUP of haplotypes

HapAlleles can also be treated as random effects with the ghap.blup() function. Random effects can be
iteratively updated through the haploweights argument following the single-step GWAS approach (Wang et
al., 2012):

#BLUP GWAS

gebvs <- model$random$individual

gebvsw <- table(sim$data$individual)

gebvsw <- gebvsw + mean(gebvsw)

gebvsw <- gebvsw[names(gebvs)]

Kinv <- ghap.kinv(K)

gwas.blup <- ghap.blup(gebvs = gebvs, haplo = haplo, gebvsweights = gebvsw,
ncores = 1, invcov = Kinv)

plot(gwas.blup$BP1/1e+6,gwas.blup$pVAR*100,pch=20,

xlab="Position (in Mb)",ylab="Variance explained (%)")
abline(v=haplo$bpl[major]/le+6)

#BLUP with one update
w <- gwas.blup$VAR*nrow(gwas.blup)
K2 <- ghap.kinship(haplo=haplo,weights = w)
Kinv2 <- ghap.kinv(K2)
gwas.blup2 <- ghap.blup(gebvs = gebvs, haplo = haplo, invcov = Kinv2, ncores = 1,
gebvsweights = gebvsw, haploweights = w)
plot(gwas.blup2$BP1/1e+6,gwas.blup2$pVAR*100,pch=20,
xlab="Position (in Mb)",ylab="Variance explained (%)")
abline(v=haplo$bpl[major]/le+6)

15

Tutorial 12 - Haplotype profiling

The profile for each individual is calculated as:

m

> (hiay)

i=1

where relative to HapAllele ¢, h; is the number of copies and a; is a user-defined score. By default, if scores
are provided for only a subset of the HapAlleles, the missing alleles scores will be set to zero. This function
has the same spirit as the profiling routine implemented in the score option in PLINK (Purcell et al., 2007;
Chang et al., 2015). This function can be useful for analyses involving cross-validation of genomic predictions
based on BLUP solutions of HapAllele effects. Below is an example using simulated scores from a normal
distribution:

Create a score data.frame

score <- NULL

score$BLOCK <- haplo$block

score$CHR <- haplo$chr

score$BP1 <- haplo$bpl

score$BP2 <- haplo$bp2

score$ALLELE <- haplo$allele
set.seed(1988)

score$SCORE <- rnorm(length(score$ALLELE))
score <- data.frame(score,stringsAsFactors = FALSE)
score$CENTER <- 0

score$SCALE <- 1

Compute profiles
profile <- ghap.profile(score, haplo, ncores = 1)

head(profile)

POP ID PROFILE
1 ASW NA19904 -38.410381
2 ASW NA20340 -12.250027
3 ASW NA20297 -45.473774
4 ASW NA20281 -7.360974
5 ASW NA20348 -36.271198
6 ASW NA20300 40.912226

16

Methods 1 - Format

The supported format is composed of three files with suffix:

.samples = space-delimited file without header containing two columns: Population and ID. Please notice
that the Population column serves solely for the purpose of grouping samples, so the user can define any
arbitrary family/cluster /subgroup and use as a “population” tag.

.markers = space-delimited file without header containing five columns: Chromosome, Marker, Position
(in bp), Reference Allele (A0) and Alternative Allele (A1). Markers should be on a single chromosome and
sorted by position.

.phase = space-delimited file without header containing the phased genotype matrix. The dimension of the
matrix is expected to be m x 2n, where m is the number of markers and n is the number of individuals.
Alleles must be coded as 0 and 1. No missing values are allowed.

See below an example of five individuals from the ASW population with phased genotypes for five markers
on chromosome 2:

.samples file	.markers file	.phase file
ASW NA19904	2 rs13383216 18228 A G	1111111111
ASW NA20340	2 rs13386087 24503 GT	0000000000
ASW NA20297	2 rs10179984 33092 A G	1010000011
ASW NA20281	2 rs300761 60074 AG	0100110101
ASW NA20348	2 rs6749571 72820 C G	0000000100

This format can be obtained from Oxford HAPS/SAMPLE files with the ghap.oxford2phase function, from
fastPHASE v1.4.0 files with the ghap.fast2phase function, or from VCF files with the ghap.vcf2phase
function. Importantly, since version 2.0.0, GHap requires the .phase file to be converted into a binary file
with suffix .phaseb with the ghap.compress function prior to loading in R. Each allele is stored as a bit in
that file. Bits for any given marker are arranged in a sequence of bytes. Since each marker requires storage of
2*nsamples bits, the number of bytes consumed by a single marker in the output file is ceiling(2*nsamples).
If the number of alleles is not a multiple of 8, bits in the remainder of the last byte are filled with 0. All
functions in GHap were carefully designed to decode the bytes of a marker in such a way that trailing bits
are ignored if present.

17

Methods 2 - Haplotyping algorithm

Let a haplotype library (HapLibrary) be the collection of observed HapAlleles for a given HapBlock. The
haplotyping procedure implemented in GHap is straightforward: each HapAllele in the library is treated as
a pseudo-marker, and HapGenotypes are scored as 0, 1 or 2 HapAllele copies. Take the example:

.samples file	.markers file	.phase file
ASW NA19904	2 rs13383216 18228 A G	1111111111
ASW NA20340	2 rs13386087 24503 GT	0000000000
ASW NA20297	2 rs10179984 33092 A G	1010000011
ASW NA20281	2 rs300761 60074 AG	0100110101
ASW NA20348	2 rs6749571 72820 C G	0000000100

Let’s assume the user wishes to call haplotypes for the first three markers. The algorithm works as follows:
First, we crop the matrix at the selected markers (for the sake of clarity, we will transpose the matrix and
represent subjects in rows and markers in columns):

POP ID rs13383216 rs13386087 rs10179984
ASW NA19904 1 0 1
ASW NA19904 1 0 0
ASW NA20340 1 0 1
ASW NA20340 1 0 0
ASW NA20297 1 0 0
ASW NA20297 1 0 0
ASW NA20281 1 0 0
ASW NA20281 1 0 0
ASW NA20348 1 0 1
ASW NA20348 1 0 1

The HapLibrary is created based on the unique HapAlleles:

HapAllelel: 101 (GGG)
HapAllele2: 100 (GGA)

Then, for each HapAllele, individual HapGenotypes are scored based on the number of copies:

POP ID GGG GGA
ASW NA19904
ASW NA20340
ASW NA20297
ASW NA20281
ASW NA20348

N O O = =
O NN = =

The procedure is then repeated for each HapBlock. The haplotyping function outputs three files with suffix:
.hapsamples = space-delimited file without header containing two columns: Population and Individual ID.

.hapalleles = space-delimited file without header containing five columns: Block Name, Chromosome, Start
and End Position (in bp), and Haplotype Allele.

18

.hapgenotypes = space-delimited file without header containing the haplotype genotype matrix (coded as
0, 1 or 2 copies of the haplotype allele). The dimension of the matrix is m x n, where m is the number of
haplotype alleles and n is the number of subjects.

The example below was extracted from the first two HapBlocks for the HapMap data, using a random draw
of 3,000 markers:

| .hapsamples file | .hapalleles file | .hapgenotypes file

ASW NA19904
ASW NA20340
ASW NA20297
ASW NA20281
ASW NA20348

CHR2_B4 2 1009753 2462617 CCAATGTGGG
CHR2_B6 2 2511429 3071611 CCACACCAAT
CHR2_B6 2 2511429 3071611 CCACACCGAT
CHR2_B6 2 2511429 3071611 CTACACCAAT
CHR2_B6 2 2511429 3071611 CTACACCGAT

O O O O O
O O O O O
= = O O O
O O O O O
O O O O O

Since version 2.0.0, GHap requires the .hapgenotypes file to be converted into a binary file with suffix
.hapgenotypesb. This is achieved by running the haplotyping procedure with the option binary = TRUE.
The .hapgenotypesb file is essentially the same matrix as described above compressed into bits. For
seamless compatibility with softwares that use PLINK binary files, the compression is performed using the
SNP-major bed format.

19

Methods 3 - Haplotype statistics

Relative to HapAllele 4, let p;, h; and n represent the relative frequency, the number of homozygotes, and the
number of subjects, respectively. Also, let S; be some test statistic or score for the HapAllele, representing
the goodness-of-fit of h; to HWE expectations. The ghap.hapstats() function computes three candidate
methods for S;:

Method 1. The number of homozygotes for haplotype i is expected to be E[h;] = np? under HWE. Pro-
vided we observed Olh;] homozygotes, deviations from HWE expectations can be expressed in terms of the
expected-to-observed ratio:

E[hi] —+ (651

S = ———
O[hi] + as

where a7 and as are shrinkage parameters. The purpose of the shrinkage parameters is to regularize the
scores towards a ratio of ¢, being particularly useful in cases where the number of observed homozygotes
is close to zero. As the null ratio value is 1 (i.e., expected and observed counts are equal), a reasonable
choice of shrinkage parameters is a; = ay = 1 (the default in GHap), which in practice introduces a bias
equivalent to that of one additional expected and one additional observed homozygote. For a more detailed
review on shrinkage expected-to-observed (or observed-to-expected) ratio, see Norén et al. (2013).

Method 2. Under the null hypothesis of HWE, h; ~ Binomial(n,p?), with E[h;] = np? and VAR[h;] =
np?(1 — p?). Therefore, the probability of observing h; or less homozygotes given the haplotype is in HWE
is:

n\ 2j 2\n—j
Pr(X < h) = (.)pﬂam j
J;i J

where X is a random draw from the Binomial distribution.

Method 3. Provided n is large, h; ~ Poisson()\;), where \; = E[h;] = VAR[h;] = np?. This leads to
probability:

Pr(X <h)=e™)
j<h 7’

Note that the variance in the Binomial model is smaller than in the Poisson model, which in practice results
in more conservative probabilities in the latter case.

20

Methods 4 - Haplotype coding for regression and relationship matrix

Consider a multi-allelic locus and let alleles 1, 2, ..., h be ordered with frequencies p = [pl P2 ... ph]/
(from lowest to highest). Following Falconer and Mackay (1996), the genotypic value associated with geno-
type ij can be decomposed into:

gij = K+ i + 0y
where i, u;; and d;; are the genotypic mean, the breeding value (BV) and the dominance deviation, respec-
tively. Here we will focus only on the BV, such that the dominance deviation will be treated as a residual

effect. Assuming Hardy-Weinberg Equilibrium (HWE), the BV can be partitioned into allelic effects (Da,
2015):

Ui = ij Qi
J#i
where «;; is the average effect of substituting allele ¢ by allele j. It follows that a; = 0 and a;; = —ayy,
such that there are only h — 1 independent substitution effects to consider, which can be expressed as the
effects of replacing a reference allele by any other in the same locus. Da (2015) proposed setting the most
frequent allele as the reference. However, since the choice is arbitrary and do not affect the resulting BV,
we will consider at first the least frequent allele (i.e., allele 1) as the reference instead for later convenience.
In this setting, the BV can be expressed as:

h
U5 = Zmij,kalk
k=2
where m;; 1, is a scalar taking values:
—(0 —2py), fori,j £k
—(1—2pg), fori#jbuti=korj==k
—(2—2py), fori=j=k

So far all substitution effects ay; are expressed in the direction of allele 1. However, we wish to derive
substitution effects in the direction of each allele by treating them as the reference, and use allele 1 as the
basis for contrasts. Since we established that a1, = —ag1, we can re-write the BV as:

h
Uij = g —Myj5,kCk1
k=2

where —m;; 1, is a scalar taking values:
0 — 2pyg, for O copies of allele k
1 — 2pg, for 0 copies of allele k
2 — 2py, for O copies of allele k

Since the 2p; term represents the mean allele count when HWE is assumed, an alternative coding not
requiring HWE is obtained from replacing 2p; by the sample mean. This is the approach we adopted in
GHap. If the locus is bi-allelic, the allele coding collapses to the genotype coding used for SNP markers. In
fact, SNP-based regression is revealed here as a special case of haplotype-based regression, where HapBlocks
are bi-allelic and of size 1 bp. This coding also reveals that regression on HapAlleles is in fact equivalent
to fitting haplotypes as pseudo bi-allelic markers, provided that an arbitrary HapAllele (in this case the
minor HapAllele) has been discarded (i.e., set as the basis for contrasts). Without loss of generality, rare

21

and nearly fixed HapAlleles can also be discarded in order to reduce the number of predictors, procedure
that is analogous to exclusion of SNPs by minor allele frequency in SNP-based regression.

The coding presented above is also used to compute the haplotype-based relationship matrix. Briefly, let
M be the centered N x H matrix of HapGenotypes, where N is the number of observations and H is the
number of HapAlleles. The HapAllele correlations among individuals can be computed as:

K = ¢qMDM"

where D = diag(d;), d; is the weight of HapAllele i (default d; = 1) and ¢ = tr(MDMT)~!N. Notice that
this is a generalization of the SNP-based genomic relationship matrix (VanRaden, 2008).

22

Methods 5 - Regression treating haplotypes as fixed effects

The least squares regression procedure in GHap tests each HapAllele at a time for association with pheno-
types. The fixed effect, error variance and test statistic of a given HapAllele are estimated as:

&= (me)_lmTy
VAR(&) = (mTm) 152

A2
(6%
2= —

VAR(Q)

Under the null hypothesis that the regression coefficient is zero t? ~ x?(v = 1). Although nothing prevents
the user to fit raw phenotypes, the use of adjusted records accounting for covariates, polygenic effects and
other potential random effects is advisible. For instance, residuals from the mixed model analysis could be
used as the response variable for regression on HapAlleles. The user must be aware of two known caveats
associated with this approach:

1 - By pre-adjusting records instead of estimating HapAllele effects based on generalized least squares equa-
tions we ignore covariance structure and therefore bias the estimates downwards (Svishcheva et al., 2012).

2 - Each HapAllele being tested is also included in the kinship matrix, such that the HapAllele is included
twice in the model: as fixed and random effect. This problem is known as proximal contamination (Listgarten
et al., 2012).

In the first case, we can use genomic control to recover p-values to an unbiased scale (Devlin and Roeder,
1999; Amin et al., 2007). However, not much can be done regarding the estimates of the effects. As a general
recommendation, if the user is only interested in p-values, the regression analysis discussed here should be
sufficient. When effect estimates are of interest, the user can select genome-wide significant HapAlleles and
include them as fixed effects in the full mixed model. For the second case, a leave-one-chromosome-out
(LOCO analysis) procedure can mitigate proximal contamination (Yang et al., 2014). An alternative to
these methods is to use polygenic effects as response instead of residuals. However, this can lead to a higher
false-positive rate (Ekine et al., 2014). Finally, if the analysis is intended to screen the genome for recovering
effects that are not captured by single markers, a more traditional kinship based on single markers instead
of HapAlleles could be used to fit the linear mixed model.

23

Methods 6 - Regression treating haplotypes as random effects

Recall that the generalized linear mixed model assumes:

u | O’i ~ N(O,KUZ)

If we let K = ¢qMDMT, it follows that u = Ma. This means that we can convert between individual
breeding values and HapAllele effects (Strandén and Garrick, 2009):

a=¢DMTK ta

24

Methods 7 - Fixation index

Haplotype-based Fsr analyses are supported by the ghap.fst() function. Calculations are based on the
multi-allelic formula (Nei, 1973):

Fsr = (Hr — Hg)/Hr

where Hrp is the total gene diversity (i.e., expected heterozygosity in the population) and Hg is the sub-
population gene diversity (i.e., the average expected heterozygosity in the sub-populations).

25

Appendix 1 - Using GHap outputs in third-party software

When the haplotyping procedure is performed using very large datasets, post hoc analyses may be too
computationally demanding to be performed in R. Also, existing pipelines designed to analyze bi-allelic
SNP data can be extended to the analysis of haplotypes by simply incorporating the output generated by
the ghap.hap2plink () function in GHap. This function creates a set of files that mimic a standard PLINK
(Purcell et al., 2007; Chang et al., 2015) binary file (bed/bim/fam), where HapAllele counts 0, 1 and 2 are
recoded as NN, NH and HH genotypes (N = NULL and H = haplotype allele), as if HapAlleles were bi-alelic
markers. This coding scheme is acceptable for any given analysis relying on genotype counts, as long as
the user specifies that the analysis should be done using character H as the reference for counts. The name
for each pseudo-marker is composed by a concatenation (separated by “_“) of block name, start, end, and
haplotype allele identity. Pseudo-marker positions are computed as (start+end)/2. Of note, for applications
such as GWAS it is advisible to output only MAJOR and REGULAR HapAlleles, since SINGLETONS and
MINOR HapAlleles will not contribute to the analysis.

The following lines of code show one example of how the output from GHap can be articulated with analyses
that are routinely applied to unphased SNP marker data. First, we can export the GHap.haplo object to
use in PLINK:

Convert file to plink
ghap.hap2plink(haplo, outfile = "human")

Then, we can use PLINK to perform a principal components analysis on our data:

#Performing PCA analysis in PLINK
#Correlations and scale with the GHap package are almost perfect (r = 0.999)
plink --bfile human --pca 2 --out human

26

Appendix 2 - Diagram of functions

The diagram below ilustrates the overall organization of the functions within the GHap package. Arrows

indicate analysis flow and colors encode analysis cont

association

ext.

analyses

general
purpose

kinship

1

simpheno

> Imm

kinv

pca

e

Figure 1: Diagram of functions within the package

blup

[

profile

27

References

N. Amin et al. A Genomic Background Based Method for Association Analysis in Related Individuals. PLoS
ONE. 2007. 2:e1274.

D. Bates et al. Fitting Linear Mixed-Effects Models Using Ime4. J. Stat. Soft., 67:1-48.

S. Bolormaa et al. Detection of chromosome segments of zebu and taurine origin and their effect on beef
production and growth. J. Anim. Sci. 2011. 89:2050-2060.

C. C. Chang et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Giga-
science. 2015. 4, 7.

Y. Da. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance com-
ponent estimation using SNP markers. BMC Genet. 2015. 16:144.

B. Devlin and K. Roeder. Genomic control for association studies. Biometrics. 1999. 55:997-1004.

C. C. Ekine et al. Why breeding values estimated using familial data should not be used for genome-wide
association studies. G3. 2014. 4:341-347.

R. J. Haasl et al. Genetic ancestry inference using support vector machines, and the active emergence of a
unique American population. Eur J Hum Genet. 2013. 21(5):554-62.

J. Listgarten et al. Improved linear mixed models for genome-wide association studies. Nat. Methods. 2012.
9:525-526.

R-R. Loh P-R et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet.
2016. 48(11):1443-1448.

D. Meyer et al. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (el071).
TU Wien. 2019 R Package Version 1.7-0.1. http://cran.r-project.org/web/packages/e1071/index.html.

M. Nei. Analysis of Gene Diversity in Subdivided Populations. PNAS. 1973. 70, 3321-3323.

G. N. Norén et al. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern
discovery. Stat Methods Med Res. 2013. 22,57-69.

J. O’Connell et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLOS
Genetics. PLOS Genet. 2014. 10:€1004234.

S. Purcell et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.
Am. J. Hum. Genet. 2007. 81, 559-575.

I. Strandén and D.J. Garrick. Technical note: derivation of equivalent computing algorithms for genomic
predictions and reliabilities of animal merit. J Dairy Sci. 2009. 92:2971-2975.

G. R. Svishcheva et al. Rapid variance components-based method for whole-genome association analysis.
Nat Genet. 2012. 44:1166-1170.

The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human
populations. Nature. 2010. 467, 52-58.

P. M. VanRaden. Efficient methods to compute genomic predictions. J. Dairy. Sci. 2008. 91:4414-4423.

W. M. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. 2002. Springer, New
York. ISBN 0-387-95457-0.

H. Wang et al. Genome-wide association mapping including phenotypes from relatives without genotypes.
Genet Res. 2012. 94:73-83.

J. Yang et al. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet.
2014. 46: 100-106.

28

http://cran.r-project.org/web/packages/e1071/index.html

	Abstract
	Tutorial 1 - Importing phased data
	Tutorial 2 - Subsetting phased objects
	Tutorial 3 - Haplotyping
	Tutorial 4 - Importing and manipulating haplotype data
	Tutorial 5 - Haplotype statistics
	Tutorial 6 - Relationship matrix and PCA
	Tutorial 7 - Haplotype divergence analysis
	Tutorial 8 - Haplotype ancestry
	Tutorial 9 - Linear mixed model analysis
	Tutorial 10 - Association analysis
	Tutorial 11 - BLUP of haplotypes
	Tutorial 12 - Haplotype profiling
	Methods 1 - Format
	Methods 2 - Haplotyping algorithm
	Methods 3 - Haplotype statistics
	Methods 4 - Haplotype coding for regression and relationship matrix
	Methods 5 - Regression treating haplotypes as fixed effects
	Methods 6 - Regression treating haplotypes as random effects
	Methods 7 - Fixation index
	Appendix 1 - Using GHap outputs in third-party software
	Appendix 2 - Diagram of functions
	References

