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Changes to Version 1.0.0
Added epsilon argument for convergence control.

1 Citing NHMMfdr

If you have used NHMMfdr in your work, please cite the package using the following:

Kuan, P. and Chiang, D. (2012), “Integrating Prior Knowledge in Multiple Testing Under
Dependence with Applications in Detecting Differential DNA Methylation,” Biometrics, 68
(3): 774-783.

2 Introduction

This is an example of using the NHMMfdr package in R. The NHMMfdr package implements
False Discovery Rate (FDR) control for multiple comparisons under dependence. It allows
for informative exogeneous variables to be incorporated in the model to improve detection
of significant tests. The proposed model is based on Kuan and Chiang| (2012). This vignette
aims to demonstrate the usage of NHMMfdr through an example using the simulated data.

3 Description and Usage

The main function in NHMMfdr package is fdr.nhmm which computes the local index of sig-
nificance (LIS). LIS can be interpreted as an analog of p-values which incorporates the
dependence structure among the hypothesis tests.

fdr.nhmm(x, Z = NULL, dist = NULL, log.transform.dist = TRUE, alttype = "kernel",
L = 2, maxiter = 1000, nulltype = 0, modeltype = "NHMM", symmetric = FALSE, epsilon=le-4



4 Arguments

4.1 x

x is a vector of summary statistics. In our motivating DNA methylation dataset described
in Kuan and Chiang| (2012)), x is z-score values of differential methylation/expression. For
most genomics data where test statistics such as student’s t-statistic are available, x can be
obtained from normal transformation, i.e., z; = ®*(P;), where P; is the p-value for probe
J (e.g., student’s t-test, Mann-Whitney test, etc) and @ is the standard Gaussian cdf.

4.2 7Z

Z is a matrix containing covariates or variables; EXCLUDING probe spacing/inter-probe
distance that could potentially improve detection of significant probes. In microarray studies,
Z could be genomic annotations. For instance, [Kuan and Chiang (2012) used the CpG
Island, Shore and Shelf definition or GC content as Z to improve detection of differentially
methylated CpG loci. Note that Z is not required, i.e., Z = NULL if modeltype = "Indep"
or modeltype = "HMM". Note that probe spacing/inter-probe distance will be defined by
dist below.

4.3 dist

A vector of probe spacing/inter-probe distance, since this covariate requires a different as-
sumption on the transition matrix, i.e., probability of self transition decreases with distance
between probes.

4.4 log.transform.dist

Logical value. If log.transform.dist = TRUE, the argument dist above will be applied
log,(dist + 2) transformation. This is recommended for numerical stability.

4.5 alttype

Type of distribution under alternative hypothesis. |Sun and Cai (2009) modeled the al-
ternative distribution f; as Gaussian mixtures. This option is available as alttype =
"mixnormal". If this option is selected, one will have to specify the number of mixture
components L. Since L is unknown, we recommend trying for L=1, 2 and 3 and choose the
best L using BIC.

Alternative, one can select alttype = "kernel" which approximates the non-null f;
using non-parametric Gaussian kernel density estimation with automatically selected band-
width. This can be much faster than Gaussian mixtures which requires tuning of L.



4.6 L

Number of mixture component for alttype = "mixnormal" as described above.

4.7 maxiter

Maximum iterations allowed in the EM algorithm to speed up computation. One can monitor
the convergence from the log likelihood from each iteration.

4.8 nulltype

Type of null hypothesis assumed in estimating f,. This option is imported from R package
locfdr (Efron| 2004) which implements the following options:

e 0: theoretical null, i.e. x is assumed to be N (0, 1) under Hy.
e 1: empirical null with parameters estimated by maximum likelihood.

e 2: empirical null with parameters estimated by central matching. Details in Efron
(2004}, 2007).

NOTE: We do not recommend the use of empirical null to avoid double adjusting of the
correlation structure.

4.9 modeltype
Type of dependence structure among the summary statistics x.

e Indep: This option assumes that x’s are independent. This is similar to locfdr except
that it estimates f; differently.

e HMM: This option assumes that the underlying dependence structure follows a homo-
geneous HMM. This is the model in Sun and Cai (2009)).

e NHMM: This option assumes that the underlying dependence structure follows a non-
homogeneous HMM (Kuan and Chiang, [2012)). Tt allows for prior knowledge which
could improve detection of significant probes to be incorporated in the model.

4.10 symmetric

Logical value. If symmetric = TRUE, it assumes that the non-null f; is a symmetric distri-
bution. See Kuan and Chiang] (2012) for motivation on why assuming a symmetric f; could
be advantageous. Currently, this option is only available for alttype = "kernel".

4.11 epsilon

Absolute difference between two successive EM algorithm iterations for convergence criteria.



5 Value

5.1 LIS

Local index of significance. This is an analog of p-values. It incorporates the dependence
structure if modeltype = "HMM" or modeltype = "NHMM". This quantity will be used to
declare statistically significant probes/tests.

5.2 BIC

Bayesian Information Criterion scores for the fitted model. This can be used to rank and
compare competing models and to select the number of mixture components for alttype =
"mixnormal".

5.3 Other returned values
e pii: Initial probabilities.

e A: Transition probability matrix.

f0: Null distribution fj.

f1: Alternative distribution f;.

logl:: Log likelihood of the final iteration.

trans.par2: Transition parameters for State 1.

logL.iter: Log likelihood from each iteration. Can be used to monitor convergence.

Note

Multiple runs of fdr.nhmm may lead to different results due to initialization and convergence
to local maximum. It is recommended to perform several runs of fdr.nhmm and choose the
run with the best BIC. The convergence criteria is controlled by the arguments maxiter and
epsilon in fdr.nhmm.

6 Simulation Example
To load the package

> library (NHMMfdr)

Loading required package: MASS
Loading required package: locfdr
Loading required package: splines



Let us simulate a NHMM model with 2000 observations, i.e., the length of the Markov
chain is 2000. We first simulate a covariate Z (other than inter-probe distance) from a
Gaussian distribution. The simulation which involves inter-probe distance is presented later.

### Set the random seed to reproduce the results presented here
set.seed(1234)

NUM1 <- 2000

Z <- rnorm(NUM1)

Z <- matrix(Z,ncol=1)

Z <- apply(Z,2,scale)

V V V V VvV V

NHMMfdr assumes that the non-stationary hidden state transition follows a logistic regres-
sion:

exp(As + pix)
> oo exp(As + pla)’

¢
ars(x) = P(0;=sl0j1=rX;=x) = fo(aTS + pix)
25:0 eXp(Urs + pga:)

ms(x) = PbL=s|X1=x)=

, for j > 2,

where \,, 0, € R and p, € R are the parameters in the transition probabilities and 0,
denote the hidden state r, s € {0,1}. Here X; denotes a matrix of D columns with candidate
covariates including probe spacing, assay type and genomic annotations. For identifiability,
we set \g = 0gg = 019 = p, = 0.

NOTE: When probe spacing/inter-probe distance is included as a covariate, the for-
mulation in the transition probability matrix is modified to ensure that probability of self
transition decreases with distance. See Kuan and Chiang (2012) for further details.

Now, in our simulation, let us set (A1, 001,011, p1)= ¢(0.3, -2, -1, 1) and compute the
transition probabilities given the transition parameters as follows:

\%

trans.parl.true <- ¢(0,0,0,0)
trans.par2.true <- ¢(0.3,-2,-1,1)

\4

TR R
# compute the transition probabilities
# given transition parameters

HHEH R

vV V V V

A.true <- compute.A.nhmm(Z, trans.parl.true, trans.par2.true,
dist.included = FALSE)$A

pii.true <- compute.A.nhmm(Z, trans.parl.true, trans.par2.true,
dist.included = FALSE)$pii

Now assume that under the null hypothesis, x ~ f; = N(0,1) and under the alterna-
tive hypothesis x ~ f; = N(3,1). We can now simulate the NHMM data with function
simdata.nhmm as follows.



>

### the null distribution
f0 <- c(0, 1)

### the alternative distribution
f1 <- c(3, 1)

### simulate NHMM data
simdat <- simdata.nhmm(NUM1, pii.true, A.true, fO, 1, f1)

### simulated observed values
x <- simdat$o

### simulated unobserved true states
thetal <- simdat$s

table(thetal)

thetal

0 1

1640 360

+ + VvV V. V Vv V

Note that we simulated 360 tests to be true positives. We can now apply our fdr.nhmm
function to this simulated data.

HHAHH R
# Model fitting
HHSHHH R

fit.nhmm <- fdr.nhmm(x, Z, dist = NULL, log.transform.dist = FALSE,

alttype =’mixnormal’, L=1, maxiter = 100, nulltype = O, modeltype
epsilon=1e-2)

NOTE: symmetric option is only available for alttype kernel
Running with alltype mixnormal , nulltype O , modeltype NHMM ...
Scaling covariates

’NHMM” ,

DONE!
> str(fit.nhmm)
List of 11
$ pii : num [1:2] 1.0 3.6e-08
$ A :num [1:2, 1:2, 1:1999] 0.848 0.751 0.152 0.249 0.712 ...
$ O :num [1:2] 0 1
$ f1 : num [1:2] 3.069 0.903



LIS : num [1:2000] 1 0.997 0.995 0.968 0.747 ...
logL : num -3409

BIC : num -3432

ni : num 9

trans.par2: num [1:4] -15.931 -2.001 -1.388 0.995
converged : logi TRUE
logL.iter : num [1:9] -4231 -3419 -3410 -3409 -3409 ...

€hH P P H P PH P

> fit.nhmm$f1
[1] 3.0688593 0.9034724

> fit.nhmm$trans.par?2
[1] -15.931395 -2.001475 -1.388179  0.994551

The estimated parameters are close to the true parameters. Note that the estimated
parameter for initial distribution Ao is off. This is usually the case because we only have one
Markov chain, and this has negligible effect on the inference.

Suppose we want to identify which observations are coming from the alternative hypoth-
esis at FDR level 0.1. This can be carried out using the function LIS.adjust. Note that
the adjusted LIS in LIS.adjust$aLIS is analogous to adjusted p-values and can be used to
identify statistically significant probes at other FDR level, by selecting the observations with
adjusted LIS < FDR level. In our simulation example, we declare 338 tests to be significant
at FDR level 0.1. Among these 338 tests, 29 of them are false positives which is equivalent
to empirical FDR of 0.086.

HURHHAH R

# Adjust LIS
BB

LIS.adjust <- LIS.adjust(fit.nhmm$LIS, fdr = 0.1, adjust = TRUE)

V V V V V V V

str(LIS.adjust)

List of 2

$ States: num [1:2000] 0O O 0O 0010000 ...

$ aLIS : num [1:2000] 0.831 0.598 0.575 0.386 0.162 ...

> ### tests which are statistically significant
> sig.test <- which(LIS.adjust$States == 1)

> length(sig.test)

[1] 338

>

> ### Number of true positive



> TP <- length(which(LIS.adjust$States == 1 & thetal == 1))
> TP
[1] 309

### Number of false positive

= 1 & thetal

FP <- length(which(LIS.adjust$States = 0))
FP

[1] 29

V V V V V

### Empirical FDR

emp.fdr <- FP/length(sig.test)
emp.fdr
[1] 0.08579882

>
>
>
>
>

Now, let us simulate inter-probe distance from a Uniform distribution. Set (A1, 001,011, p1)=
¢(0.3,-3,-1,2,-1). Note that the coefficient for inter-probe distance (=2 in this simulation)
has to be positive to ensure that probability of self transition decreases with inter-probe
distance.

> set.seed(1234)

> NUM1 <- 2000

> Z <- rnorm(NUM1)

> Z <- matrix(Z,ncol=1)

> Z <- apply(Z,2,scale)

> Dist <- runif (NUM1,min=0,max=1)

> log2Dist <- log2(Dist+2)

> covariate <- cbind(log2Dist,Z)

> trans.parl.true <- ¢(0,0,0,0,0)

> trans.par2.true <- c¢(0.3,-3,-1,2,-1)

HAEEE A
# compute the transition probabilities
# given transition parameters

it H R R R

vV V V V

A.true <- compute.A.nhmm(covariate, trans.parl.true, trans.par2.true,
dist.included=TRUE) $A

pii.true <- compute.A.nhmm(covariate, trans.parl.true, trans.par2.true,
dist.included=TRUE)$pii

+ Vv + V



> ### simulate NHMM data
> simdat <- simdata.nhmm(NUM1, pii.true, A.true, fO, 1, f1)

> ### simulated observed values
> x <- simdat$o

> ### simulated unobserved true states
> thetal <- simdat$s

> table(thetal)
thetal

0 1
1398 602

\4

HHHH R R
# Model fitting
HHHHH R R R

vV Vv

> fit.nhmm <- fdr.nhmm(x, Z, dist = Dist, log.transform.dist = TRUE,

+ alttype =’mixnormal’, L=1, maxiter = 100, nulltype = 0, modeltype = ’NHMM’,
+ epsilon=1e-2)

NOTE: symmetric option is only available for alttype kernel

Transforming distance

Running with alltype mixnormal , nulltype O , modeltype NHMM ...

Scaling covariates

DONE!

> fit.nhmm$f1
[1] 3.038126 1.019147

> fit.nhmm$trans.par?2
[1] 0.2144416 -3.0082774 -1.4076304 1.9348853 -1.0574905
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