OpenML

The OpenML R Team
2016-11-11

Introduction

The R package OpenML is an interface to make interactions with the OpenML server as comfortable as
possible. For example, the users can download and upload files, run their implementations on specific tasks
and get predictions in the correct form directly via R commands. In this tutorial, we will show the most
important functions of this package and give examples on standard workflows.

For general information on what OpenML is, please have a look at the README file or visit the official
OpenML website.

After installation and before making practical use of the package, in most cases it is desirable to setup
a configuration file to simplify further steps. Afterwards, there are different basic stages when using this
package or OpenML, respectively:

o Listing
— lists which data is available w.r.t. a specific object (DataSets, Tasks, Flows, Runs,
RunEvaluations, EvaluationMeasures, and TaskTypes)
— function names begin with 1istOML
— result is always a data.frame
e Downloading
— downloads the specific objects (for DataSets, Tasks, Runs, Predictions, and Flows)
— function names begin with getOML
— result is an object of a specific OpenML class
e Running models on tasks
— function runTaskMlr
— input: OMLTask and Learner
— output: OMLM1rRun, OMLRun
o Uploading
— function uploadOMLRun

Installation instructions

Installation works as in any other package using

install.packages("OpenML")

To install the current development version use the devtools package and run

devtools: :install_github("openml/openml-r")

Using the OpenML package also requires a reader for the ARFF file format. By default farff is used.
Alternatively, the RWeka package can be used. You can install the packages with the following calls.

install.packages(c("farff", "RWeka"))

Private key notification

All examples in this tutorial are given with a READ-ONLY API key.

http://openml.org/
https://github.com/openml/OpenML/blob/master/README.md
http://openml.org/
http://openml.org/
https://mlr-org.github.io/mlr-tutorial/release/html/learner/index.html
https://cran.r-project.org/web/packages/devtools/index.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
https://cran.r-project.org/web/packages/farff/index.html
https://cran.r-project.org/web/packages/RWeka/index.html

With this key you can read all the information from the server but not write data sets, tasks, flows, and
runs to the server. This key allows to emulate uploading to the server but doesn’t allow to really store data.
If one wants to write data to a server, one has to get a personal API key. The process of how to obtain a
key is shown in the configuration section.

Important: Please do not write meaningless data to the server such as copies of already existing
data sets, tasks, or runs (such as the ones from this tutorial)! One instance of the Iris data
set should be enough for everyone. :D

Basic example

In this paragraph you can find an example on how to download a task from the server, print some information

about it to the console, and produce a run which is then uploaded to the server. For detailed information on

OpenML terminology (task, run, etc.) see the OpenML guide.

library("OpenML")

temporarily set API key to read only key

setOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f", server = "http://test.openml.org/api/vi")

OpenML configuration:

server : http://test.openml.org/api/vi

cachedir : L:\GitRepository\openml-r/tests/cache
verbosity : 0

arff.reader : RWeka

confirm.upload : FALSE

apikey D oksksksksksk kKK kR Rk koK sk kok ok k kR4 T £ 1 f

download a task (whose ID 4is 1L)
task = getOMLTask(task.id = 1L)
task

##
OpenML Task 1 :: (Data ID = 1)
Task Type : Supervised Classification

Data Set : anneal :: (Version = 2, OpenML ID = 1)
Target Feature(s) : class
Tags : basic, study_1, study_7, under100k, underim

Estimation Procedure : Stratified crossvalidation (1 x 10 folds)
Evaluation Measure(s): predictive_accuracy

The task contains information on the following:

o task type: defines the type of the task (regression, classification, clustering, etc.)

« data set: which data set belongs to the given task (one task can always only be connected to a single
data set)

o target feature(s): optional field for all kinds of classification and regression tasks

o tags: tags / labels, which might be helpful for further sub-selections

¢ estimation procedure: which estimation procedure has been used when computing the performance

In the next line, randomForest is used as a classifier and run with the help of the mlr package. Note that
one needs to run the algorithm locally and that mlr will automatically download the package that is needed
to run the specified classifier.

define the classifier (usually called "flow" within OpenML)
library ("mlr")
lrn = makeLearner('"classif.randomForest")

http://www.openml.org/guide
https://github.com/mlr-org/mlr

upload the new flow (with information about the algorithm and settings);
1f this algorithm already exists on the server, one will receive a message
with the ID of the exzisting flow

flow.id = uploadOMLFlow(lrn)

the last step is to perform a Tun and upload the results
run.mlr = runTaskMlr(task, lrn)
run.id = uploadOMLRun(run.mlr)

Following this very brief example, we will explain the single steps of the OpenML package in more detail in
the next sections.

Configuration
Generating your own personal API key

The first step of working with OpenML should be to register yourself at the OpenML website. Most of the
package’s functions require an API authentication key, which is only accessible with a (free) account. In
order to receive your own API key

e go to the OpenML website and log into your account
 then go to http://www.openml.org/u#t!api.

For demonstration purposes, we have created a public read-only API key ("c1994bdb7ecb3c6f3c8f3b35f4b4TE1£"),
which will be used in the following to make the examples executable.

Permanently setting configuration

After registering, you can create a configuration file. The config file may contain the following information:

e server:
— default: http://www.openml.org/api/vl
e cachedir:
— directory where the current content of the cache is stored
— the default cache directory can be obtained by the R command file.path(tempdir(), "cache").
e verbosity:
— 0: normal output
— 1: info output (default)
— 2: debug output
e arff.reader:
— RWeka: this is the standard Java parser used in Weka
— farff: the farff package provides a newer, faster parser without any Java requirements
e confirm.upload:
— default decision w.r.t. confirming uploads
— per default (FALSE) one does not need to confirm the upload decision
e apikey:
— required to access the server
The configuration file is not mandatory. Yet, permanently setting your API key via a config file is
recommended, as this key is required to access the OpenML server. However, it is noteworthy that basically

everybody who has access to your computer can read the configuration file and thus see your API key. With
your API key other users have full access to your account via the API, so please handle it with care!

The configuration file and some related things are also explained in the OpenML Wiki.

http://www.openml.org
http://www.openml.org
http://www.openml.org/u#!api
http://www.github.com/mlr-org/farff
https://github.com/openml/OpenML/wiki/Client-API

Creating the configuration file in R

To set up your OpenML configuration, you can either use setOMLConfig or saveOMLConfig. The difference
between those two commands is that setOMLConfig sets your configuration temporarily for the current
R session, whereas saveOMLConfig saves the configuration permanently. In order to create a permanent
configuration file using default values and at the same time setting your personal API key, run

saveOMLConfig(apikey = "c1994bdb7ecb3c6£3c8f3b35f4b47E1f")

where "c1994bdb7ecb3c6f3c8f3b35f4b47f1f" should be replaced with your personal API key.

Manually creating the configuration file

It is also possible to manually create a file ~/.openml/config in your home directory — one can use the R
command path.expand("~/.openml/config") to get the full path to the configuration file on the operating
system. The config file consists of key = value pairs. An exemplary minimal config file might look as
follows:

apikey=c1994bdb7ecb3c6£3c8f£3b35£4b47L1f

Note that the values are not quoted.

If one manually modifies the config file, one needs to reload the modified config file to the current R session
using loadOMLConfig(). You can query the current configuration using

getOMLConfig()

OpenML configuration:

server : http://test.openml.org/api/vi

cachedir : L:\GitRepository\openml-r/tests/cache
verbosity : 0

arff.reader : RWeka

confirm.upload : FALSE

apikey Tokksokskokokskokk ok kokokkokk ok kokokkokk k4T 1 f

As you can see, the configuration file lists the five items server, cachedir, verbosity, arff.reader and
apikey that were listed in the beginning of this paragraph.

Once the config file is set up, you are ready to go!

Listing

In this stage, we want to list basic information about the various OpenML objects:

e data sets

e tasks

o flows

e Iruns

e run results

¢ evaluation measures
o task types

For each of these objects, we have a function to query the information, beginning with 1istOML. All of these
functions return a data.frame, even in case the result consists of a single column or has zero observations
(i.e., rows).

http://openml.org/guide

One should be aware of the fact that the 1istOML* functions only list information on the corresponding
objects — they do not download the respective objects. Information on actually downloading specific objects

is covered in the next section.

List data sets

To browse the OpenML data base for appropriate data sets, you can use listOMLDataSets () in order to get
basic data characteristics (number of features, instances, classes, missing values, etc.) for each data set. By
default, 1istOMLDataSets () returns only data sets that have an active status on OpenML:

datasets = listOMLDataSets() # returns active data sets

The resulting data.frame contains the following information for each of the listed data sets:

o the data set ID data.id

o the status ("active", "in_preparation" or "deactivated") of the data set

e the name of the data set

o the size of the majority / biggest class (majority.class.size)

e ctc.
str(datasets)
'data.frame': 2417 obs. of 17 variables:
$ data.id :
$ name
$ version
$ status
¢ format
$ tags
$ majority.class.size
$ max.nominal.att.distinct.values
$ minority.class.size
$ num.binary.atts
$ number.of.classes
$ number.of.features
$ number.of.instances :
§ number.of.instances.with.missing.values:
$ number.of .missing.values :
$ number.of.numeric.features
$ number.of.symbolic.features
head(datasets[, 1:5])
data.id name version status format
1 1 anneal 2 active ARFF
##t 2 2 anneal 1 active ARFF
3 3 kr-vs-kp 1 active ARFF
4 4 labor 1 active ARFF
5 5 arrhythmia 1 active ARFF
6 6 letter 1 active ARFF

int

: chr

int

: chr
: chr
: chr

int
int
int
int
int
int
int
int
int
int
int

12345678910 ...
"anneal" "anneal" "kr-vs-kp" "labor"
2111111111 ...

"active active active active"

"ARFF" "ARFF" "ARFF" "ARFF"

"1, capacapa, hallo, hallol, joaquin, new_test, stu
684 684 1669 37 245 813 57 NA 67 81 ...

109 332-16-1228 ...

0 0 1627 20 0 734 1 NA O 2 ...

147 343730610409 ...

6622 16 26 24 NA 7 4 ...

39 39 37 17 280 17 70 7 26 19 ...

898 898 3196 57 452 20000 226 345 205 148 ...
0 898 0 56 384 0 222 0 46 0 ...

0 22175 0 326 408 0 317 0 59 0 ...

6 6 08206 16 0 6 153 ...

323236 873069110 15 ...

To find a specific data set, you can now query the resulting datasets object. Suppose we want to find the

iris data set.

subset(datasets, name == "iris"
#i# data.id name version status format tags
55 61 iris 1 active ARFF study_1, study_4, study_7, uci

821 969 iris 3 active ARFF study_1, study_7

#it majority.class.size max.nominal.att.distinct.values

55 50 -1

821 100 -1

minority.class.size num.binary.atts number.of.classes

55 50 0 3

821 50 0 2

#i# number.of .features number.of.instances

55 5 150

821 5 150

number.of .instances.with.missing.values number.of .missing.values
55 0 0
821 0 0
#i# number.of .numeric.features number.of.symbolic.features

55 4 0

821 4 0

As you can see, there are two data sets called iris. We want to use the original data set with three classes,
which is stored under the data set ID (data.id) 61. You can also have a closer look at the data set on the
corresponding OpenML web page (http://openml.org/d/61).

List tasks

Each OpenML task is a bundle that encapsulates information on various objects:

 a specific type, e.g., "Supervised Classification" or "Supervised Regression"

e a data set

o a target feature (which might differ from the data set’s default target)

« an estimation/resampling procedure, e.g., a 10-fold cross-validation

o data splits for this estimation procedure

« one or more (performance) evaluation measures, e.g., "predictive accuracy" for a classification task

Listing the tasks can be done via

tasks = 1listOMLTasks()

The resulting data.frame contains for each of the listed tasks information on:

o the task ID task.id

o the type of the task task.type

« information on the data set (analogously to the list data set area), such as the number of features,
classes and instances

e the name of the target variable target.feature

e tags which can be used for labelling the task

o the estimation.procedure (aka resampling strategy)

o the evaluation.measures used for measuring the performance of the learner / flow on the task

str(tasks)

'data.frame': 5000 obs. of 26 variables:

§ task.id :int 12345678910 ...

$ task.type : chr "Supervised Classification" "Supervised Classificat
§ data.id :int 12345678910 ...

$ name : chr "anneal" "anneal" "kr-vs-kp" "labor"

$ status : chr "active" "active" "active" "active"

¢ format : chr "ARFF" "ARFF" "ARFF" "ARFF"

$ estimation.procedure : chr "10-fold Crossvalidation" "10-fold Crossvalidation"

http://openml.org/d/61
http://www.openml.org/search?type=task_type

$ evaluation.measures : chr ‘'"predictive_accuracy" "predictive_accuracy" "predic
$ target.feature : chr '"class" "class" "class" "class"

$ cost.matrix : chr NA NA NA NA ...

$ source.data.labeled : chr NA NA NA NA ...

$ target.feature.event : chr NA NA NA NA ...

$ target.feature.left : chr NA NA NA NA ...

§ target.feature.right : chr NA NA NA NA ...

$ tags : chr "basic, study_1, study_7, under100k, underim" "at2,
$ majority.class.size : int 684 684 1669 37 245 813 57 NA 67 81 ...

$ max.nominal.att.distinct.values :int 10933 2-16-1228 ..

$ minority.class.size :int 0 0 1527 20 0 734 1 NA O 2 ...

$ num.binary.atts :int 14 7 34 3730610409 ...

$ number.of.classes :int 66 22 16 26 24 NA 7 4 ...

$ number.of.features : int 39 39 37 17 280 17 70 7 26 19 ...

$ number.of.instances : int 898 898 3196 57 452 20000 226 345 205 148 ...

$ number.of.instances.with.missing.values: int 0 898 0 56 384 0 222 0 46 0 ...

$ number.of .missing.values : int 0 22175 0 326 408 0 317 0 59 0 ...

$ number.of.numeric.features :int 6 6 0 8 206 16 0 6 15 3 ...

$ number.of.symbolic.features :int 3232 36 8 73 0 69 1 10 15 ...

For some data sets, there may be more than one task available on the OpenML server. For example, one can
look for "Supervised Classification" tasks that are available for data set 61 via

head (subset (tasks, task.type == "Supervised Classification" & data.id == 61L)[, 1:5])
#i# task.id task.type data.id name status

53 59 Supervised Classification 61 iris active

271 289 Supervised Classification 61 iris active

442 1823 Supervised Classification 61 iris active

5561 1939 Supervised Classification 61 iris active

598 1992 Supervised Classification 61 iris active

4445 7306 Supervised Classification 61 iris active

List flows

A flow is the definition and implementation of a specific algorithm workflow or script, i.e., a flow is essentially
the code / implementation of the algorithm.

flows = listOMLFlows ()

str(flows)

'data.frame': 4235 obs. of 7 variables:

¢ flow.id :int 12345678910 ...

$ full.name : chr "openml.evaluation.EuclideanDistance(1.0)" "openml.evaluation.PolynomialKe:
$ name : chr '"openml.evaluation.EuclideanDistance" "openml.evaluation.PolynomialKernel"
§$ version pint 1111111111 ...

§ external.version: chr "" "n mwowwo

$ uploader :int 1111111111 ...

§ tags : chr ‘'"weka, weka_3.7.12" "m nmnonn

flows[56:63, 1:4]

flow.id full .name name version
56 56 weka.ZeroR(1) weka.ZeroR 1
57 57 weka.OneR (1) weka.OneR 1
58 58 weka.NaiveBayes (1) weka.NaiveBayes 1

59 59 weka.JRip(1) weka.JRip 1
60 60 weka.J48(1) weka.J48 1
61 61 weka.REPTree (1) weka.REPTree 1
62 62 weka.DecisionStump(1l) weka.DecisionStump 1
63 63 weka.HoeffdingTree(l) weka.HoeffdingTree 1

List runs and run results

A run is an experiment, which is executed on a given combination of task, flow and setup (i.e., the explicit
parameter configuration of a flow). The corresponding results are stored as a run result. Both objects,
i.e., runs and run results, can be listed via 1istOMLRuns or listOMLRunEvaluations, respectively. As each
of those objects is defined with a task, setup and flow, you can extract runs and run results with specific
combinations of task.id, setup.id and/or flow.id. For instance, listing all runs for task 59 (supervised
classification on iris) can be done with

runs = listOMLRuns(task.id = 59L) # must be specified with the task, setup and/or implementation ID
head (runs)

run.id task.id setup.id flow.id uploader error.message tags

1 81 59 12 67 1 <NA>
#it 2 161 59 13 70 1 <NA>
3 234 59 1 56 1 <NA>
4 447 59 6 61 1 <NA>
5 473 59 18 7 1 <NA>
6 491 59 7 62 1 <NA>

one of the IDs (here: task.id) must be supplied
run.results = listOMLRunEvaluations(task.id = 59L)
str(run.results)

'data.frame': 2511 obs. of 36 variables:

§ run.id : int 81 161 234 447 473 491 550 6088 6157 6158 ...

§ task.id : int 59 59 59 59 59 59 59 59 59 59 ...

§ setup.id :int 12 1316 18 7 16 11 12 3 ...

¢ flow.id : int 67 70 56 61 77 62 75 66 67 58 ...

$ flow.name : chr "weka.BayesNet_K2(1)" "weka.SMO_PolyKernel(1)" "weka.ZeroR(1)
$ data.name : chr "iris" "iris" "iris" "iris"

§ upload.time : chr "2014-04-07 00:05:11" "2014-04-07 00:55:32" "2014-04-07 01:33
§ area.under.roc.curve :num 0.983 0.977 0.5 0.967 0.978 ...

$ average.cost :num 00 0O00000O0O0 ...

$ f.measure :num 0.94 0.96 0.167 0.927 0.947 ...

§ kappa :num 0.91 0.94 0 0.89 0.92 0.5 0.95 0.93 0.91 0.93 ...
$ kb.relative.information.score: num 1.39e+02 9.09e+01 -6.80e-05 1.31e+02 1.38e+02 ...
§$ mean.absolute.error : num 0.0384 0.2311 0.4444 0.0671 0.0392 ..

$ mean.prior.absolute.error : num 0.444 0.444 0.444 0.444 0.444 .

$ number.of.instances : num 150 150 150 150 150 150 150 150 150 150 ..

§ precision :num 0.94 0.96 0.111 0.927 0.947 ...

$ predictive.accuracy :num 0.94 0.96 0.333 0.927 0.947 ...

$ prior.entropy :num 1.58 1.58 1.58 1.58 1.58 ...

§ recall :num 0.94 0.96 0.333 0.927 0.947 ...

$ relative.absolute.error : num 0.0863 0.52 1 0.151 0.0881

§$ root.mean.prior.squared.error: num 0.471 0.471 0.471 0.471 0.471 ...

§ root.mean.squared.error :num 0.16 0.288 0.471 0.211 0.178 ...

$ root.relative.squared.error : num 0.339 0.611 1 0.447 0.377 ...

$ scimark.benchmark : num NA NA NA NA NA NA NA NA NA NA ...

http://www.openml.org/t/59

§ total.cost :num 0000000000 ...

§ usercpu.time.millis : num NA NA NA NA NA NA NA NA NA NA ...

§ usercpu.time.millis.testing : num NA NA NA NA NA NA NA NA NA NA ...

$ usercpu.time.millis.training : num NA NA NA NA NA NA NA NA NA NA ...

§ area.under.roc.curve.array : chr "1,0.975,0.9744" "1,0.96,0.9704" "0.5,0.5,0.5" "1,0.9481,0.95
$ confusion.matrix.array : ¢chr "50,0,0,0,46,4,0,5,45" "50,0,0,0,48,2,0,4,46" "50,0,0,50,0,0,
$ f.measure.array : chr "1,0.910891,0.909091" "1,0.941176,0.938776" "0.5,0,0" "1,0.88
$ number.of.instances.array : chr "50,50,50" "50,50,50" "50,50,50" "50,50,50"

$ os.information.array : chr NA NA NA NA ...

§ precision.array : chr "1,0.901961,0.918367" "1,0.923077,0.958333" "0.333333,0,0" "1
§ recall.array : ¢chr "1,0.92,0.9" "1,0.96,0.92" "1,0,0" "1,0.88,0.9"

$ scimark.benchmark.array : chr NA NA NA NA ...

List evaluation measures and task types

Analogously to the previous listings, one can list further objects simply by calling the respective functions.

listOMLDataSetQualities()
listOMLEstimationProcedures()
listOMLEvaluationMeasures()
listOMLTaskTypes ()

Downloading

Users can download data sets, tasks, flows and runs from the OpenML server. The package provides special
representations for each object, which will be discussed here.

Download an OpenML data set

To directly download a data set, e.g., when you want to run a few preliminary experiments, one can use
the function getOMLDataSet. The function accepts a data set ID as input and returns the corresponding
OMLDataSet:

iris.data = getOMLDataSet(data.id = 61L) # the iris data set has the data set ID 61

Download an OpenML task

The following call returns an OpenML task object for a supervised classification task on the iris data:

task = getOMLTask(task.id = 59L)
task

##
OpenML Task 59 :: (Data ID = 61)
Task Type : Supervised Classification

Data Set : iris :: (Version = 1, OpenML ID = 61)
Target Feature(s) : class
Tags : basic, study_1, study_7, under100k, underim

Estimation Procedure : Stratified crossvalidation (1 x 10 folds)
Evaluation Measure(s): predictive_accuracy

The corresponding "OMLDataSet" object can be accessed by

task$input$data.set

##

Data Set "iris" :: (Version = 1, OpenML ID = 61)
Collection Date : 1936

Creator(s) : R.A. Fisher

Default Target Attribute: class

and the class of the task can be shown with the next line

task$task.type

[1] "Supervised Classification"

Also, it is possible to extract the data set itself via

iris.data = task$input$data.set$data
head(iris.data)

sepallength sepalwidth petallength petalwidth class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa

Download an OpenML flow

Aside from tasks and data sets, one can also download flows — by calling getOMLFlow with the specific
flow.id

flow = getOMLFlow(flow.id = 2700L)

flow

#

Flow "classif.randomForest" :: (Version = 47, Flow ID = 2700)
External Version : R_3.1.2-734b029d

Dependencies : mlr_ 2.9, randomForest_4.6.12

Number of Flow Parameters: 16
Number of Flow Components: O

Download an OpenML run

To download the results of one run, including all server and user computed metrics, you have to define the
corresponding run ID. For all runs that are actually related to the task, the corresponding ID can be extracted
from the runs object, which was created in the previous section. Here we use a run of task 59, which has the
run.id 525534. Single OpenML runs can be downloaded with the function getOMLRun:

task.list = listOMLRuns(task.id = 59L)
task.list[281:285,]

run.id task.id setup.id flow.id uploader error.message tags
281 14926 59 271 185 17 <NA>
282 14927 59 272 185 17 <NA>
283 14928 59 273 185 17 <NA>
284 14929 59 274 185 17 <NA>

10

285 14930 59 275 185 17 <NA>

run = getOMLRun(run.id = 524027L)
run

##

OpenML Run 524027 :: (Task ID = 59, Flow ID = 2393)
User ID : 970

Learner : classif.randomForest(43)

Task type: Supervised Classification

Each OMLRun object is a list object, which stores additional information on the run. For instance, the flow of
the previously downloaded run has some non-default settings for hyperparameters, which can be obtained by:

run$parameter.setting # retrieve the list of parameter settings

$seed

seed =1

##

$kind

kind = Mersenne-Twister
##

$normal.kind
mnormal.kind = Inversion

If the underlying flow has hyperparameters that are different from the default values of the corresponding
learner, they are also shown, otherwise the default hyperparameters are used (but not explicitly listed).

All the data that served as input for the run, including data set IDs and the URL to the data, is stored in
input.data:

run$input.data

##

**x Data Sets *x

data.id name url
1 61 iris http://www.openml.org/data/download/61/dataset_61_iris.arff
##

x*x Files *x

data frame with O columns and O rows
##

x*x Evaluations *x

data frame with O columns and O rows

Predictions made by an uploaded run are stored within the predictions element and can be retrieved via

head (run$predictions, 10)

repeat fold row_id prediction truth
1 0 0 43 Iris—-setosa Iris—-setosa
2 0 0 14 Iris—-setosa Iris—-setosa
3 0 0 37 Iris—-setosa Iris—-setosa
##t 4 0 0 23 Iris—-setosa Iris—-setosa
5 0 0 10 Iris—-setosa Iris—-setosa
6 0 0 99 Iris-versicolor Iris-versicolor
7 0 0 87 Iris-versicolor Iris-versicolor
8 0 0 97 Iris-versicolor Iris-versicolor
9 0 0 62 Iris-versicolor Iris-versicolor
10 0 0 92 Iris-versicolor Iris-versicolor

11

confidence.Iris-setosa confidence.Iris-versicolor
1
##
##
##
##
#i#
#it
##
##
0

confidence.Iris-virginica
#it
##
##
##
##
##
##
##
##
##

© 0 NO O WN -

O O O O B = =
P PP PP OOOOO0O

-
o

© 00 N O O W N -
O OO O OO OO oo

-
o

The output above shows predictions, ground truth information about classes and task-specific information,
e.g., about the confidence of a classifier (for every observation) or in which fold a data point has been placed.

Running

The modularized structure of OpenML allows to apply the implementation of an algorithm to a specific task
and there exist multiple possibilities to do this.

Run a task with a specified mlr learner

If one is working with mlr, one can specify an RLearner object and use the function runTaskMlr to create
the desired "OMLM1lrRun" object. The task is created the same way as in the previous sections:

task = getOMLTask(task.id = 59L)

library("mlr")

lrn = makeLearner('"classif.rpart")
run.mlr = runTaskMlr(task, lrn)
run.mlr

$run

#i#

OpenML Run NA :: (Task ID = 59, Flow ID = NA)

#it

$bmr

task.id learner.id acc.test.join timetrain.test.sum
1 iris classif.rpart 0.94 0.07
timepredict.test.sum

1 0

#i#

$flow

12

https://github.com/mlr-org/mlr

##

Flow "mlr.classif.rpart" :: (Version = NA, Flow ID = NA)
External Version : R_3.3.2-v2.2b256c3
Dependencies : R_3.3.2, OpenML_1.0, mlr_2.10, rpart_4.1.10

Number of Flow Parameters: 13
Number of Flow Components: O
#i#

attr(,"class")

[1] "OMLM1lrRun"

Note that locally created runs don’t have a run ID or flow ID yet. These are assigned by the OpenML server
after uploading the run.

Run a task without using mlr

If you are not using mlr, you will have to invest some more time and effort to get things done since this is
not supported yet. So, unless you have good reasons to do otherwise, we strongly encourage to use mlr. If
the algorithm you want to use is not integrated in mlr yet, you can integrate it yourself (see the tutorial) or
open an issue on mlr GitHub repository and hope someone else will do it for you.

Uploading

The following section gives an overview on how one can contribute building blocks (i.e. data sets, flows and
runs) to the OpenML server.

Upload a data set

A data set contains information that can be stored on OpenML and used by OpenML tasks and runs. In this
example, a very simple data set is taken from R, converted to an OpenML data set and afterwards uploaded
to the server. The corresponding workflow of uploading a data set consists of the following three steps:

1. makeOMLDataSetDescription: create the description object of an OpenML data set
2. makeOMLDataSet: convert the data set into an OpenML data set
3. uploadOMLDataSet: upload the data set to the server

This is simple data set, which is generally already available in R.

Please DO NOT upload it to the server!

data("airquality")

dsc = "Daily air quality measurements in New York, May to September 1973.
This data is taken from R."

cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)
Graphical Methods for Data Analysis. Belmont, CA: Wadsworth."

(1) Create the description object

desc = makeOMLDataSetDescription(name = "airquality",
description = dsc,
creator = "New York State Department of Conservation (ozone data) and the National

Weather Service (meteorological data)',
collection.date = "May 1, 1973 to September 30, 1973",
language = "English",
licence = "GPL-2",
url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html",
default.target.attribute = "Ozone",

13

http://mlr-org.github.io/mlr-tutorial/devel/html/create_learner/index.html
https://github.com/mlr-org/mlr/issues

citation = cit,
tags = "R")

(2) Create the OpenlML data set
air.data = makeOMLDataSet(desc = desc,
data = airquality,
colnames.old = colnames(airquality),
colnames.new = colnames(airquality),
target.features = "Ozone")

(3) Upload the OpenML data set to the server
dataset.id = uploadOMLDataSet(air.data)
dataset.id

Alternatively you can enter data directly on the OpenML website.

Upload a flow

A flow is an implementation of a single algorithm or a script. FEach mlr learner can be considered an
implementation of a flow, which can be uploaded to the server with the function uploadOMLFlow. If the flow
has already been uploaded to the server (either by you or someone else), one receives a message that the flow
already exists and the flow.id is returned from the function. Otherwise, the flow will be uploaded, receive
its own flow.id and return that ID.

library("mlr")

1lrn = makeLearner("classif.randomForest")
flow.id = uploadOMLFlow(lrn)

flow.id

Upload a run

In addition to uploading data sets or flows, one can also upload runs (which a priori have to be created, e.g.,
using mlr):
choose 2 flows (i.e., mlr-learners)
learners = list(
makeLearner("classif.kknn"),
makeLearner("classif.randomForest")

)

pick 3 random tasks
task.ids = c(57, 59, 2382)

for (lrn in learmers) {
for (id in task.ids) {
task = getOMLTask(id)
res = runTaskMlr(task, lrn)$run
run.id = uploadOMLRun(res) # upload results

X
3

Before your run will be uploaded to the server, uploadOMLRun checks whether the flow that created this run
is already available on the server. If the flow does not exist on the server, it will (automatically) be uploaded
as well.

14

http://www.openml.org/new/data
http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/

Feedback
Now, you should have gotten an idea on how to use our package. However, as there is always room for
improvement, we are more than happy to receive your feedback. So, in case

e there is anything not well documented
e you encounter a bug
 are missing functionality

please open an issue in the issue tracker of our GitHub repository.

15

https://github.com/openml/openml-r/issues

	Introduction
	Installation instructions
	Private key notification
	Basic example

	Configuration
	Generating your own personal API key
	Permanently setting configuration
	Creating the configuration file in R
	Manually creating the configuration file

	Listing
	List data sets
	List tasks
	List flows
	List runs and run results
	List evaluation measures and task types

	Downloading
	Download an OpenML data set
	Download an OpenML task
	Download an OpenML flow
	Download an OpenML run

	Running
	Run a task with a specified mlr learner
	Run a task without using mlr

	Uploading
	Upload a data set
	Upload a flow
	Upload a run

	Feedback

