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Abstract

Example computations via the PDQutils package are illustrated.

The PDQutils package provides tools for approximating the density, distri-
bution, and quantile functions, and for generation of random variates of distribu-
tions whose cumulants and moments can be computed. The PDF and CDF are
computed approximately via the Gram Charlier A series, while the quantile is
computed via the Cornish Fisher approximation. [2, 5] The random generation
function uses the quantile function and draws from the uniform distribution.

1 Gram Charlier Expansion

Given the raw moments of a probability distribution, we can approximate
the probability density function, or the cumulative distribution function, via
a Gram-Charlier A expansion on the standardized distribution.

Suppose f(z) is the probability density of some random variable, and let
F(z) be the cumulative distribution function. Let He;(x) be the jth proba-
bilist’s Hermite polynomial. These polynomials form an orthogonal basis, with
respect to the function w(z) = e~/ = V27¢(x), of the Hilbert space of
functions which are square integrable with w-weighting. [1, 22.2.15] The or-
thogonality relationship is

/_Oo He;(z)He;(x)w(z)dzr = V21184,

where 0;; is the Kronecker delta.
Expanding the density f(x) in terms of these polynomials in the usual way
(abusing orthogonality) one has

f<x>=ZH€J / F(2) Hey(2)d

0<j

The cumulative distribution function is ’simply’ the integral of this expansion.
Abusing certain facts regarding the PDF and CDF of the normal distribution
and the probabilist’s Hermite polynomials, the CDF has the representation

F<x>=¢><x>—2H€J i / f(2)He;(2)dz

1<j
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These series contain coefficients defined by the probability distribution under
consideration. They take the form

¢ = jll/oo f(z)He;(z)dz.

Using linearity of the integral, these coefficients are easily computed in terms of
the coeflicients of the Hermite polynomials and the raw, uncentered moments of
the probability distribution under consideration. Note that it may be the case
that the computation of these coefficients suffers from bad numerical cancella-
tion for some distributions, and that an alternative formulation may be more
numerically robust.

2 Edgeworth Expansion

Another approximation of the probability density and cumulative distribution
functions is the Edgeworth Expansions. These are expressed in terms of the cu-
mulants of the distribution, and also include the Hermite polynomials. However,
the derivation of the Edgeworth expansion is rather more complicated than of
the Gram Charlier expansion. [2] The Edgeworth series for a zero-mean unit
distribution is

km
f@) =50 (2) |14 0 5 e o) T1 2 (22) |-

1<s {km} 1<m<s

where the second sum is over partitions {k, } such that ky +2ks+...+sks = s,
where 7 = k; + k2 + ... + k,, and where S,, = —z is a semi-normalized
cumulant.

3 Cornish Fisher Approximation

The Cornish Fisher approximation is the Legendre inversion of the Edgeworth
expansion of a distribution, but ordered in a way that is convenient when used
on the mean of a number of independent draws of a random variable.

Suppose x1,Z2,...,T, are n independent draws from some probability dis-
tribution. Letting

the Central Limit Theorem assures us that, assuming finite variance,
X = N(Vnp, o),

with convergence in n

The Cornish Fisher approximation gives a more detailed picture of the quan-
tiles of X, one that is arranged in decreasing powers of y/n. The quantile func-
tion is the function ¢(p) such that P (X < ¢(p)) = ¢(p). The Cornish Fisher
expansion is

q(p) = Vnp+o Z+chfj(z) )

3<g



where z = ®~!(p) is the normal p-quantile, and ¢; involves standardized cu-
mulants of the distribution of z; of order up to j. Moreover, the c; include
decreasing powers of y/n, giving some justification for truncation. When n = 1,
however, the ordering is somewhat arbitrary.

4 An Example: Sum of Nakagamis

The Gram Charlier and Cornish Fisher approximations are most convenient
when the random variable can be decomposed as the sum of a small number of
independent random variables whose cumulants can be computed. For example,
suppose Y =3, ., \/Xi/v; where the X; are independent central chi-square
random variables with degrees of freedom vy, v, ..., ;. 1 will call this a ‘snak’
distribution, since each summand follows a Nakagami distribution. We can
easily write code that generates variates from this distribution given a vector of
the degrees of freedom:

rsnak <- function(n, dfs) {
samples <- Reduce("+", lapply(dfs, function(k) {
sqrt(rchisq(n, df = k)/k)
12D,

Let’s take one hundred thousand draws from this distribution. A g-q plot of
this sample against normality is shown in Figure 1. The normal model is fairly
decent, although possibly unacceptable in the tails. Using a Cornish Fisher
approximation, we can do better.

n.samp <- 1le+05
dfs <- c(8, 15, 4000, 10000)
set.seed(18181)

rvs <- rsnak(n.samp, dfs)
qqnorm(rvs)
qqline(rvs, col = "red")

Using the additivity property of cumulants, we can compute the cumulants
of Y easily if we have the cumulants of the X;. These in turn can be computed
from the raw moments. The jth moment of a chi distribution with v degrees of

freedom has form )
2j/2F (v +4)/2)
INC72

The following function computes the cumulants of the ‘snak’ distribution:

library(PDQutils)

snak_cumulants <- function(dfs, ord.max = 10) {

moms <- lapply(dfs, function(nu) {
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Figure 1: A g-q plot of 1le4+05 draws from a sum of Nakagamis distribution is
shown against normality.



ords <- 1:ord.max
moms <- 2" (ords/2) * exp(lgamma((nu + ords)/2) -
lgamma(nu/2))
# we are dividing the chi by sqrt the d.f.
moms <- moms/(nu” (ords/2))
moms
b
# turn moments into cumulants
cumuls <- lapply(moms, moment2cumulant)
# sum the cumulants
tot.cumul <- Reduce("+", cumuls)
return(tot.cumul)

We can now trivially implement the ‘dpq’ functions trivially using the Gram-
Charlier and Cornish-Fisher approximations, via PDQutils, as follows:

library(PDQutils)
dsnak <- function(x, dfs, ord.max = 10, ...) {
raw.moment <- cumulant2moment (snak_cumulants(dfs,
ord.max))
retval <- dapx_gca(x, raw.moment, support = c(0,
Inf), ...)
return(retval)
}
psnak <- function(q, dfs, ord.max = 10, ...) {
raw.moment <- cumulant2moment (snak_cumulants(dfs,
ord.max))
retval <- papx_gca(q, raw.moment, support = c(O,
Inf), ...)
return(retval)
}
gsnak <- function(p, dfs, ord.max = 10, ...) {

raw.cumul <- snak_cumulants(dfs, ord.max)

retval <- qapx_cf(p, raw.cumul, support = c(O0,
Inf), ...)

return(retval)

An alternative version of the PDF and CDF functions using the Edeworth
expanion would look as follows:

dsnak_2 <- function(x, dfs, ord.max = 10, ...) {
raw.cumul <- snak_cumulants(dfs, ord.max)

retval <- dapx_edgeworth(x, raw.cumul, support = c(O,
Inf), ...)
return(retval)
}
psnak_2 <- function(q, dfs, ord.max = 10, ...) {
raw.cumul <- snak_cumulants(dfs, ord.max)
retval <- papx_edgeworth(q, raw.cumul, support = c(O,

Inf), ...)
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Figure 2: A g-q plot of 1le4+05 draws from a sum of Nakagamis distribution is
shown against quantiles from the ‘gsnak’ function.

return(retval)

Using this approximate quantile function, the q-q plot looks straighter, as
shown in Figure 2.

qgplot (gsnak(ppoints(n.samp), dfs = dfs), rvs, main = "Q-Q against gsnak (C-F appx.)")
qqline(rvs, distribution = function(p) gsnak(p, dfs),
col = "red")

Note that the g-q plot uses the approximate quantile function, computed
via the Cornish-Fisher expansion. We can test the Gram Charlier expansion by
computing the approximate CDF of the random draws and checking that it is
nearly uniform, as shown in Figure 3.

apx.p <- psnak(rvs, dfs = dfs)

require(ggplot2)

ph <- gplot(apx.p, stat = "ecdf", geom = "step")
print (ph)
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Figure 3: The empirical CDF of the approximate CDF of a sum of Nakagamis
distribution on le+05 draws is shown.



5 A warning on convergence

Blinnikov and Moessner note that the the Gram Charlier expansion will actually
diverge for some distributions when more terms in the expansion are considered,
behaviour which is not seen for the Edgeworth expansion. [2] Here, we will
replicate their example of the chi-square distribution with 5 degrees of freedom.
Blinnikov and Moessner actually transform the chi-square to have zero mean and
unit variance. They plot the true PDF of this normalized distribution, along
with the 2- and 6-term Gram Charlier approximations, as shown in Figure 4.

# compute moments and cumulants:

df <- 5

max.ord <- 20

subords <- 0:(max.ord - 1)

raw.cumulants <- df * (2°subords) * factorial (subords)
raw.moments <- cumulant2moment(raw.cumulants)

# compute the PDF of the rescaled wvariable:

xvals <- seq(-sqrt(df/2) * 0.99, 6, length.out = 1001)
chivals <- sqrt(2 * df) * xvals + df

pdf.true <- sqrt(2 * df) * dchisq(chivals, df = df)

pdf.gca2 <- sqrt(2 * df) * dapx_gca(chivals, raw.moments = raw.moments[1:2],
support = c(0, Inf))

pdf.gca6 <- sqrt(2 * df) * dapx_gca(chivals, raw.moments = raw.moments[1:6],
support = c(0, Inf))

all.pdf <- data.frame(x = xvals, true = pdf.true, gca2 = pdf.gca2,
gcab = pdf.gca6)

# plot 2t by reshaping and ggplot'ing
require(reshape2)

arr.data <- melt(all.pdf, id.vars = "x", variable.name = "pdf",
value.name = "density")
require(ggplot2)

ph <- ggplot(arr.data, aes(x = x, y = density, group = pdf,
colour = pdf)) + geom_line()
print (ph)

Compare this with the 2 and 4 term Edgeworth expansions, shown in Fig-
ure 5.

# compute the PDF of the rescaled wvariable:

xvals <- seq(-sqrt(df/2) * 0.99, 6, length.out = 1001)
chivals <- sqrt(2 * df) * xvals + df

pdf.true <- sqrt(2 * df) * dchisq(chivals, df = df)

pdf .edgeworth2 <- sqrt(2 * df) * dapx_edgeworth(chivals,
raw.cumulants = raw.cumulants[1:4], support = c(O,
Inf))
pdf.edgeworth4 <- sqrt(2 * df) * dapx_edgeworth(chivals,
ravw.cumulants = raw.cumulants[1:6], support = c(O,
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Figure 4: The true PDF of a normalized xZ distribution is shown, along with
the 2- and 6-term Gram Charlier approximations. This replicates Figure 1 of
Blinnikov and Moessner. [2]
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Figure 5: The true PDF of a normalized x2 distribution is shown, along with
the 2- and 4-term Edgeworth expansions. This replicates Figure 6 of Blinnikov
and Moessner. [2]

Inf))

all.pdf <- data.frame(x = xvals, true = pdf.true, edgeworth2 = pdf.edgeworth2,
edgeworth4 = pdf.edgeworth4)

# plot 2t by reshaping and ggplot'ing
require(reshape2)

arr.data <- melt(all.pdf, id.vars = "x", variable.name = "pdf",
value.name = "density")
require(ggplot2)

ph <- ggplot(arr.data, aes(x = x, y = density, group = pdf,
colour = pdf)) + geom_line()
print (ph)
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