The (European) Pareto distribution is probably the most popular distribution for modeling large losses in reinsurance pricing. There are good reasons for this popularity, which are discussed in detail in Fackler (2013). We recommend Philbrick (1985) and Schmutz et.al. (1998) for an impression of how the (European) Pareto distribution is applied in practice.
In cases where the Pareto distribution is not flexible enough, pricing actuaries sometimes use piecewise Pareto distributions. For instance, a Pareto alpha of 1.5 is used to model claim sizes between USD 1M and USD 5M and an alpha of 2.5 is used above USD 5M. A particularly useful and non-trivial application of the piecewise Pareto distribution is that it can be used to match a tower of expected layer losses with a layer independent collective loss model. Details are described in Riegel (2018), who also provides a matching algorithm that works for an arbitrary number of reinsurance layers.
The package provides a tool kit for the Pareto, the piecewise Pareto and the generalized Pareto distribution, which is useful for pricing of reinsurance treaties. In particular, the package provides the matching algorithm for layer losses.
Definition: Let \(t>0\) and \(\alpha>0\). The Pareto distribution \(\text{Pareto}(t,\alpha)\) is defined by the distribution function \[ F_{t,\alpha}(x):=\begin{cases} 0 & \text{ for $x\le t$} \\ \displaystyle 1-\left(\frac{t}{x}\right)^{\alpha} & \text{ for $x>t$.} \end{cases} \] This version of the Pareto distribution is also known as Pareto type I, European Pareto or single-parameter Pareto.
The functions pPareto
and dPareto
provide the distribution function and the density function of the Pareto distribution:
library(Pareto)
c(1:10) * 1000
x <-pPareto(x, 1000, 2)
## [1] 0.0000000 0.7500000 0.8888889 0.9375000 0.9600000 0.9722222 0.9795918
## [8] 0.9843750 0.9876543 0.9900000
plot(pPareto(1:5000, 1000, 2), xlab = "x", ylab = "CDF(x)")
dPareto(x, 1000, 2)
## [1] 0.000000e+00 2.500000e-04 7.407407e-05 3.125000e-05 1.600000e-05
## [6] 9.259259e-06 5.830904e-06 3.906250e-06 2.743484e-06 2.000000e-06
plot(dPareto(1:5000, 1000, 2), xlab = "x", ylab = "PDF(x)")
The package also provides the quantile function:
qPareto(0:10 / 10, 1000, 2)
## [1] 1000.000 1054.093 1118.034 1195.229 1290.994 1414.214 1581.139 1825.742
## [9] 2236.068 3162.278 Inf
rPareto(20, 1000, 2)
## [1] 1654.889 1085.900 2744.620 1187.006 1182.065 1059.066 2351.858 2064.052
## [9] 1508.931 1570.593 1378.006 1300.140 2427.143 1152.232 1178.847 1103.534
## [17] 1017.910 1014.315 1257.845 3889.188
Let \(X\sim \text{Pareto}(t,\alpha)\) and \(a, c\ge 0\). Then \[ E(\min[c,\max(X-a,0)]) = \int_a^{c+a}(1-F_{t,\alpha}(x))\, dx =: I_{t,\alpha}^{\text{$c$ xs $a$}} \] is the layer mean of \(c\) xs \(a\), i.e. the expected loss to the layer given a single loss \(X\).
Example: \(t=500\), \(\alpha = 2\), Layer 4000 xs 1000
Pareto_Layer_Mean(4000, 1000, 2, t = 500)
## [1] 200
Let \(X\sim \text{Pareto}(t,\alpha)\) and \(a, c\ge 0\). Then the variance of the layer loss \(\min[c,\max(X-a,0)]\) can be calculated with the function Pareto_Layer_Var
.
Example: \(t=500\), \(\alpha = 2\), Layer 4000 xs 1000
Pareto_Layer_Var(4000, 1000, 2, t = 500)
## [1] 364719
Lemma:
Consequences:
Consider two layers \(c_i\) xs \(a_i\) and a \(\text{Pareto}(t,\alpha)\) distributed severity with sufficiently small \(t\). What is the expected loss of \(c_2\) xs \(a_2\) given the expected loss of \(c_1\) xs \(a_1\)?
Example: Assume \(\alpha = 2\) and the expected loss of 4000 xs 1000 is 500. Calculate the expected loss of the layer 5000 xs 5000.
Pareto_Extrapolation(4000, 1000, 5000, 5000, 2) * 500
## [1] 62.5
Pareto_Extrapolation(4000, 1000, 5000, 5000, 2, ExpLoss_1 = 500)
## [1] 62.5
Given the expected losses of two layers, there is typically a unique Pareto alpha \(\alpha\) which is consistent with the ratio of the expected layer losses.
Example: Expected loss of 4000 xs 1000 is 500. Expected loss of 5000 xs 5000 is 62.5. Alpha between the two layers:
Pareto_Find_Alpha_btw_Layers(4000, 1000, 500, 5000, 5000, 62.5)
## [1] 2
Check: see previous example
Given the expected excess frequency at a threshold and the expected loss of a layer, then there is typically a unique Pareto alpha \(\alpha\) which is consistent with this data.
Example: Expected frequency in excess of 500 is 2.5. Expected loss of 4000 xs 1000 is 500. Alpha between the frequency and the layer:
Pareto_Find_Alpha_btw_FQ_Layer(500, 2.5, 4000, 1000, 500)
## [1] 2
Check:
Pareto_Layer_Mean(4000, 1000, 2, t = 500) * 2.5
## [1] 500
Given the expected losses of two layers, we can use these techniques to obtain a Poisson-Pareto model which matches the expected loss of both layers.
Example: Expected loss of 30 xs 10 is 26.66 (Burning Cost). Expected loss of 60 xs 40 is 15.95 (Exposure model).
Pareto_Find_Alpha_btw_Layers(30, 10, 26.66, 60, 40, 15.95)
## [1] 1.086263
Frequency @ 10:
26.66 / Pareto_Layer_Mean(30, 10, 1.086263)
## [1] 2.040392
A collective model \(\sum_{n=1}^NX_n\) with \(X_N\sim \text{Pareto}(10, 1.09)\) and \(N\sim \text{Poisson}(2.04)\) matches both expected layer losses.
Given the frequency \(f_1\) in excess of \(t_1\) the frequency \(f_2\) in excess of \(t_2\) can directly be calculated as follows: \[ f_2 = f_1 \cdot \left(\frac{t_1}{t_2}\right)^\alpha \] Vice versa, we can calculate the Pareto alpha, if the two excess frequencies \(f_1\) and \(f_2\) are given: \[ \alpha = \frac{\log(f_2/f_1)}{\log(t_1/t_2)}. \]
Example:
Expected frequency excess 1000 is 2. What is the expected frequency excess 4000 if we have a Pareto alpha of 2.5?
1 <- 1000
t_1 <- 2
f_2 <- 4000
t_2 <- f_1 * (t_1 / t_2)^2.5) (f_
## [1] 0.0625
Vice versa:
Pareto_Find_Alpha_btw_FQs(t_1, f_1, t_2, f_2)
## [1] 2.5
For \(i=1,\dots,n\) let \(X_i\sim \text{Pareto}(t_i,\alpha)\) be Pareto distributed observations. Then we have the ML estimator \[ \hat{\alpha}^{ML}=\frac{n}{\sum_{i=1}^n\log(X_i/t_i)}. \] Example:
Pareto distributed losses with a reporting threshold of \(t=100\) and \(\alpha = 2\):
rPareto(1000, t = 100, alpha = 2)
losses <-Pareto_ML_Estimator_Alpha(losses, t = 100)
## [1] 2.148611
Let \(X\sim \text{Pareto}(t,\alpha)\) and \(T>t\). Then \(X|(X>T)\) has a truncated Pareto distribution. The Pareto functions mentioned above are also available for the truncated Pareto distribution.
Definition: Let \(\mathbf{t}:=(t_1,\dots,t_n)\) be a vector of thresholds with \(0<t_1<\dots<t_n<t_{n+1}:=+\infty\) and let \(\boldsymbol\alpha:=(\alpha_1,\dots,\alpha_n)\) be a vector of Pareto alphas with \(\alpha_i\ge 0\) and \(\alpha_n>0\). The piecewise Pareto distribution} \(\text{PPareto}(\mathbf{t},\boldsymbol\alpha)\) is defined by the distribution function \[ F_{\mathbf{t},\boldsymbol\alpha}(x):=\begin{cases} 0 & \text{ for $x<t_1$} \\ \displaystyle 1-\left(\frac{t_{k}}{x}\right)^{\alpha_k}\prod_{i=1}^{k-1}\left(\frac{t_i}{t_{i+1}}\right)^{\alpha_i} & \text{ for $x\in [t_k,t_{k+1}).$} \end{cases} \]
The family of piecewise Pareto distributions is very flexible:
Proposition: The set of Piecewise Pareto distributions is dense in the space of all positive-valued distributions (with respect to the Lévy metric).
This means that we can approximate any positive valued distribution as good as we want with piecewise Pareto. A very good approximation typically comes at the cost of many Pareto pieces. Piecewise Pareto is often a good alternative to a discrete distribution, since it is much better to handle!
The Pareto package also provides functions for the piecewise Pareto distribution. For instance:
c(1:10) * 1000
x <- c(1000, 2000, 3000, 4000)
t <- c(2, 1, 3, 20)
alpha <-pPiecewisePareto(x, t, alpha)
## [1] 0.0000000 0.7500000 0.8333333 0.9296875 0.9991894 0.9999789 0.9999990
## [8] 0.9999999 1.0000000 1.0000000
plot(pPiecewisePareto(1:5000, t, alpha), xlab = "x", ylab = "CDF(x)")
dPiecewisePareto(x, t, alpha)
## [1] 0.000000e+00 1.250000e-04 1.666667e-04 3.515625e-04 3.242592e-06
## [6] 7.048328e-08 2.768239e-09 1.676381e-10 1.413089e-11 1.546188e-12
plot(dPiecewisePareto(1:5000, t, alpha), xlab = "x", ylab = "PDF(x)")
rPiecewisePareto(20, t, alpha)
## [1] 1050.151 1563.553 1141.249 1224.594 4778.881 1342.449 1754.432 3196.481
## [9] 1839.153 4053.845 1282.080 1487.291 1004.828 1005.997 1131.615 1546.431
## [17] 3113.328 1152.811 2206.934 1064.971
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha)
## [1] 826.6969
PiecewisePareto_Layer_Var(4000, 1000, t, alpha)
## [1] 922221.2
Let \(\mathbf{t}:=(t_1,\dots,t_n)\) be a vector of thresholds and let \(\boldsymbol\alpha:=(\alpha_1,\dots,\alpha_n)\) be a vector of Pareto alphas. For \(i=1,\dots,n\) let \(X_i\sim \text{PPareto}(\mathbf{t},\boldsymbol\alpha)\). If the vector \(\mathbf{t}\) is known, then the parameter vector \(\boldsymbol\alpha\) can be estimated with maximum likelihood.
Example:
Piecewise Pareto distributed losses with \(\mathbf{t}:=(100,\,200,\, 300)\) and \(\boldsymbol\alpha:=(1,\, 2,\, 3)\):
rPiecewisePareto(10000, t = c(100,200,300), alpha = c(1,2,3))
losses <-PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300))
## [1] 0.9958987 1.9843585 3.0802189
The package also provides truncated versions of the piecewise Pareto distribution. There are two options available:
truncation_type = 'lp'
: Below the largest threshold \(t_n\), the distribution function equals the distribution of the piecewise Pareto distribution without truncation. The last Pareto piece, however, is truncated at truncation
truncation_type = 'wd'
: The whole piecewise Pareto distribution is truncated at `truncation’The Pareto distribution can be used to build a collective model which matches the expected loss of two layers. We can use piecewise Pareto if we want to match the expected loss of more than two layers.
Consider a sequence of attachment points \(0 < a_1 <\dots < a_n<a_{n+1}:=+\infty\). Let \(c_i:=a_{i+1}-a_i\) and let \(e_i\) be the expected loss of the layer \(c_i\) xs \(a_i\). Moreover, let \(f_1\) be the expected frequency in excess of \(a_1\).
The following matching algorithm uses one Pareto piece per layer and is straight forward:
This approach always works for three layers, but it often does not work if we have three or more layers. For instance, Riegel (2018) shows that it does not work for the following example:
\(i\) | Cover \(c_i\) | Att. Pt. \(a_i\) | Exp. Loss \(e_i\) | Rate on Line \(e_i/c_i\) |
---|---|---|---|---|
1 | 500 | 1000 | 100 | 0.20 |
2 | 500 | 1500 | 90 | 0.18 |
3 | 500 | 2000 | 50 | 0.10 |
4 | 500 | 2500 | 40 | 0.08 |
The Pareto package provides a more complex matching approach that uses two Pareto pieces per layer. Riegel (2018) shows that this approach works for an arbitrary number of layers with consistent expected losses.
Example:
c(1000, 1500, 2000, 2500, 3000)
attachment_points <- c(100, 90, 50, 40, 100)
exp_losses <- PiecewisePareto_Match_Layer_Losses(attachment_points, exp_losses)
fit <- fit
##
## Panjer & Piecewise Pareto model
##
## Collective model with a Poisson distribution for the claim count and a Piecewise Pareto distributed severity.
##
## Poisson Distribution:
## Expected Frequency: 0.2136971
##
## Piecewise Pareto Distribution:
## Thresholds: 1000 1500 1932.059 2000 2147.531 2500 2847.756 3000
## Alphas: 0.3091209 0.1753613 9.685189 3.538534 0.817398 0.7663698 5.086828 2.845488
## The distribution is not truncated.
##
## Status: 0
## Comments: OK
The function PiecewisePareto_Match_Layer_Losses
returns a PPP_Model
object (PPP stands for Panjer & Piecewise Pareto) which contains the information required to specify a collective model with a Panjer distributed claim count and a piecewise Pareto distributed severity. The results can be checked using the attributes FQ
, t
and alpha
of the object:
c(PiecewisePareto_Layer_Mean(500, 1000, fit$t, fit$alpha) * fit$FQ,
PiecewisePareto_Layer_Mean(500, 1500, fit$t, fit$alpha) * fit$FQ,
PiecewisePareto_Layer_Mean(500, 2000, fit$t, fit$alpha) * fit$FQ,
PiecewisePareto_Layer_Mean(500, 2500, fit$t, fit$alpha) * fit$FQ,
PiecewisePareto_Layer_Mean(Inf, 3000, fit$t, fit$alpha) * fit$FQ)
## [1] 100 90 50 40 100
There are, however, functions which can directly use PPP_Models:
c(diff(attachment_points), Inf)
covers <-Layer_Mean(fit, covers, attachment_points)
## [1] 100 90 50 40 100
The function PiecewisePareto_Match_Layer_Losses
can be used to match the expected losses of a complete tower of layers. If we want to match the expected losses of some reference layers which do not form a complete tower then it is more convenient to use the function Fit_References
. Also excess frequencies can be provided as reference information. The function can be seen as a user interface for PiecewisePareto_Match_Layer_Losses
:
c(1000, 1000, 1000)
covers <- c(1000, 2000, 5000)
att_points <- c(100, 50, 10)
exp_losses <- c(4000, 10000)
thresholds <- c(0.04, 0.005)
fqs <- Fit_References(covers, att_points, exp_losses, thresholds, fqs)
fit <-Layer_Mean(fit, covers, att_points)
## [1] 100 50 10
Excess_Frequency(fit, thresholds)
## [1] 0.040 0.005
If the package lpSolve
is installed then the funcion Fit_References
can handle ovelapping layers.
The function Fit_PML_Curve
can be used fit a PPP_Model
that reproduces and interpolates the information provided in the PML curve. A PML curve is a table containing return periods and the corresponding loss amounts:
\(i\) | Return Period \(r_i\) | Amount \(x_i\) |
---|---|---|
1 | 1 | 1000 |
2 | 5 | 4000 |
3 | 10 | 7000 |
4 | 20 | 10000 |
5 | 50 | 13000 |
6 | 100 | 14000 |
The information contained in such a PML curve can be used to create a PPP_Model
that has the expected excess frequency \(1/r_i\) at \(x_i\).
Example:
c(1, 5, 10, 20, 50, 100)
return_periods <- c(1000, 4000, 7000, 10000, 13000, 14000)
amounts <- Fit_PML_Curve(return_periods, amounts)
fit <-1 / Excess_Frequency(fit, amounts)
## [1] 1 5 10 20 50 100
A PPP_Model
object contains the information required to specify a collective model with a Panjer distributed claim count and a piecewise Pareto distributed severity.
Claim count distribution: The Panjer class contains the binomial distribution, the Poisson distribution and the negative binomial distribution. The distribution of the claim count \(N\) is specified by the expected frequency \(E(N)\) (attribute FQ
of the object) and the dispersion \(D(N):=Var(N)/E(N)\) (attribute dispersion
of the object). We have the following cases:
dispersion < 1
: binomial distributiondispersion = 1
: Poisson distributiondispersion > 1
: negative binomial distribution.Severity distribution: The piecewise Pareto distribution is specified by the vectors t
, alpha
, truncation
and truncation_type
.
The function PiecewisePareto_Match_Layer_Losses
returns PPP_Model
object. Such an object can also be directly created using the constructor function:
PPP_Model(FQ = 2, t = c(1000, 2000), alpha = c(1, 2),
PPPM <-truncation = 10000, truncation_type = "wd", dispersion = 1.5)
PPPM
##
## Panjer & Piecewise Pareto model
##
## Collective model with a Negative Binomial distribution for the claim count and a Piecewise Pareto distributed severity.
##
## Negative Binomial Distribution:
## Expected Frequency: 2
## Dispersion: 1.5 (i.e. contagion = 0.25)
##
## Piecewise Pareto Distribution:
## Thresholds: 1000 2000
## Alphas: 1 2
## Truncation: 10000
## Truncation Type: 'wd'
##
## Status: 0
## Comments: OK
A PPP_Model
can directly be used to calculate the expected loss, the standard deviation or the variance of a reinsurance layer: function:
PPP_Model(FQ = 2, t = c(1000, 2000), alpha = c(1, 2),
PPPM <-truncation = 10000, truncation_type = "wd", dispersion = 1.5)
Layer_Mean(PPPM, 4000, 1000)
## [1] 2475.811
Layer_Sd(PPPM, 4000, 1000)
## [1] 2676.332
Layer_Var(PPPM, 4000, 1000)
## [1] 7162754
A PPP_Model
can directly be used to calculate the expected frequency in excess of a threshold:
PPP_Model(FQ = 2, t = c(1000, 2000), alpha = c(1, 2),
PPPM <-truncation = 10000, truncation_type = "wd", dispersion = 1.5)
c(0, 1000, 2000, 5000, 10000, Inf)
thresholds <-Excess_Frequency(PPPM, thresholds)
## [1] 2.0000000 2.0000000 0.9795918 0.1224490 0.0000000 0.0000000
A PPP_Model
can directly be used to simulate losses with the corresponding collective model:
PPP_Model(FQ = 2, t = c(1000, 2000), alpha = c(1, 2),
PPPM <-truncation = 10000, truncation_type = "wd", dispersion = 1.5)
Simulate_Losses(PPPM, 10)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1289.327 2117.243 1565.601 NaN NaN NaN NaN NaN
## [2,] 1614.029 1428.647 2841.120 2177.968 NaN NaN NaN NaN
## [3,] NaN NaN NaN NaN NaN NaN NaN NaN
## [4,] 1236.474 1632.773 1190.122 NaN NaN NaN NaN NaN
## [5,] NaN NaN NaN NaN NaN NaN NaN NaN
## [6,] 1421.237 1909.665 2937.301 1322.178 NaN NaN NaN NaN
## [7,] 1879.906 1075.045 NaN NaN NaN NaN NaN NaN
## [8,] 1749.592 2259.713 3052.222 NaN NaN NaN NaN NaN
## [9,] 3367.493 1040.407 2302.508 2632.145 1747.241 2452.454 1389.108 2608.59
## [10,] 1324.387 2655.506 NaN NaN NaN NaN NaN NaN
## [,9]
## [1,] NaN
## [2,] NaN
## [3,] NaN
## [4,] NaN
## [5,] NaN
## [6,] NaN
## [7,] NaN
## [8,] NaN
## [9,] 1105.933
## [10,] NaN
The function Simulate_Losses
returns a matrix where each row contains the losses from one simulation.
Note that for a given expected frequency FQ
not every dispersion dispersion < 1
is possible for the binomial distribution. In this case a binomial distribution with the smallest dispersion larger than or equal to dispersion
is used for the simulation.
Definition: Let \(t>0\) and \(\alpha_\text{ini}, \alpha_\text{tail}>0\). The generalized Pareto distribution \(\text{GenPareto}(t,\alpha_\text{ini}, \alpha_\text{tail})\) is defined by the distribution function \[ F_{t,\alpha_\text{ini}, \alpha_\text{tail}}(x):=\begin{cases} 0 & \text{ for $x\le t$} \\ \displaystyle 1-\left(1+\frac{\alpha_\text{ini}}{\alpha_\text{tail}} \left(\frac{x}{t}-1\right)\right)^{-\alpha_\text{tail}} & \text{ for $x>t$.} \end{cases} \] We do not the standard parameterization from extreme value theory but the parameterization from Riegel (2008) which is useful in a reinsurance context.
The functions pGenPareto
and dGenPareto
provide the distribution function and the density function of the Pareto distribution:
c(1:10) * 1000
x <-pGenPareto(x, t = 1000, alpha_ini = 1, alpha_tail = 2)
## [1] 0.0000000 0.5555556 0.7500000 0.8400000 0.8888889 0.9183673 0.9375000
## [8] 0.9506173 0.9600000 0.9669421
plot(pGenPareto(1:5000, 1000, 1, 2), xlab = "x", ylab = "CDF(x)")
dGenPareto(x, t = 1000, alpha_ini = 1, alpha_tail = 2)
## [1] 0.000000e+00 2.962963e-04 1.250000e-04 6.400000e-05 3.703704e-05
## [6] 2.332362e-05 1.562500e-05 1.097394e-05 8.000000e-06 6.010518e-06
plot(dGenPareto(1:5000, 1000, 1, 2), xlab = "x", ylab = "PDF(x)")
The package also provides the quantile function:
qGenPareto(0:10 / 10, 1000, 1, 2)
## [1] 1000.000 1108.185 1236.068 1390.457 1581.989 1828.427 2162.278 2651.484
## [9] 3472.136 5324.555 Inf
rGenPareto(20, 1000, 1, 2)
## [1] 1377.533 1200.523 1269.488 4931.308 6176.104 1205.115 4959.958 2035.034
## [9] 1072.104 7253.030 1259.186 1350.253 1272.204 1593.791 2606.884 2339.140
## [17] 1916.021 1149.198 1739.902 3175.325
GenPareto_Layer_Mean(4000, 1000, t = 500, alpha_ini = 1, alpha_tail = 2)
## [1] 484.8485
GenPareto_Layer_Var(4000, 1000, t = 500, alpha_ini = 1, alpha_tail = 2)
## [1] 908942.5
A PGP_Model
object contains the information required to specify a collective model with a Panjer distributed claim count and a generalized Pareto distributed severity.
Claim count distribution: Like in a PPP_Model
the claim count distribution from the Panjer class is specified by the expected frequency \(E(N)\) (attribute FQ
of the object) and the dispersion \(D(N):=Var(N)/E(N)\) (attribute dispersion
of the object).
Severity distribution: The generalized Pareto distribution is specified by the parameters t
, alpha_ini
, alpha_tail
and truncation
.
A PPP_Model
object can be created using the constructor function:
PGP_Model(FQ = 2, t = 1000, alpha_ini = 1, alpha_tail = 2,
PGPM <-truncation = 10000, dispersion = 1.5)
PGPM
##
## Panjer & Generalized Pareto model
##
## Collective model with a Negative Binomial distribution for the claim count and a generalized Pareto distributed severity.
##
## Negative Binomial Distribution:
## Expected Frequency: 2
## Dispersion: 1.5 (i.e. contagion = 0.25)
## Generalized Pareto Distribution:
## Threshold: 1000
## alpha_ini: 1
## alpha_tail: 2
## Truncation: 10000
##
## Status: 0
## Comments: OK
For PGP_Models the same methods are available as for PPP_Models:
PGP_Model(FQ = 2, t = 1000, alpha_ini = 1, alpha_tail = 2,
PGPM <-truncation = 10000, dispersion = 1.5)
Layer_Mean(PGPM, 4000, 1000)
## [1] 2484.33
Layer_Sd(PGPM, 4000, 1000)
## [1] 2756.15
Layer_Var(PGPM, 4000, 1000)
## [1] 7596365
c(0, 1000, 2000, 5000, 10000, Inf)
thresholds <-Excess_Frequency(PGPM, thresholds)
## [1] 2.0000000 2.0000000 0.8509022 0.1614435 0.0000000 0.0000000
Simulate_Losses(PGPM, 10)
## [,1] [,2] [,3]
## [1,] 4939.041 1410.250 NaN
## [2,] 1338.197 NaN NaN
## [3,] 5859.590 NaN NaN
## [4,] 4896.606 2355.713 NaN
## [5,] 1675.341 2623.148 NaN
## [6,] NaN NaN NaN
## [7,] 1151.753 1099.483 NaN
## [8,] 1141.713 NaN NaN
## [9,] 2035.779 2067.425 2029.101
## [10,] 1806.422 1999.878 NaN
Fackler, M. (2013) Reinventing Pareto: Fits for both small and large losses. ASTIN Colloquium Den Haag
Johnson, N.L., and Kotz, S. (1970) Continuous Univariate Distributions-I. Houghton Mifflin Co
Philbrick, S.W. (1985) A Practical Guide to the Single Parameter Pareto Distribution. PCAS LXXII: 44–84
Riegel, U. (2008) Generalizations of common ILF models. Bl"{a}tter der DGVFM 29: 45–71
Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460
Schmutz, M., and Doerr, R.R. (1998) Das Pareto-Modell in der Sach-Rueckversicherung. Formeln und Anwendungen. Swiss Re Publications, Zuerich