
0.1 logit.gee: Generalized Estimating Equation for

Logistic Regression

The GEE logit estimates the same model as the standard logistic regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables). Unlike
in logistic regression, GEE logit allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a“working”
correlation matrix for the clusters, which models the dependence of each observation with
other observations in the same cluster. The “working” correlation matrix is a T × T matrix
of correlations, where T is the size of the largest cluster and the elements of the matrix are
correlations between within-cluster observations. The appeal of GEE models is that it gives
consistent estimates of the parameters and consistent estimates of the standard errors can
be obtained using a robust “sandwich” estimator even if the “working” correlation matrix is
incorrectly specified. If the “working” correlation matrix is correctly specified, GEE models
will give more efficient estimates of the parameters.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard logistic regression. The “working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0

α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200), 10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster), ]

Estimating parameter values for the logistic regression:
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> z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep",

+ Mv = 3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest from the posterior distribution.

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)

Y = 0

Y = 1

Predicted Values: Y|X

Percentage of Simulations

0 20 40 60 80 100

0.72 0.74 0.76 0.78 0.80

0
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15
25

Expected Values: E(Y|X)

D
en

si
ty
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile)
and high education (75th percentile) while all the other variables held at their default
values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)

Y = 0

Y = 1

Predicted Values: Y|X

Percentage of Simulations

0 20 40 60 80 100

0.78 0.80 0.82 0.84 0.86

0
20

Expected Values: E(Y|X)
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en
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First Differences in Expected Values: E(Y|X1)−E(Y|X)
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0.80 0.82 0.84 0.86 0.88 0.90 0.92
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Risk Ratios: P(Y=1|X1)/P(Y=1|X)

D
en

si
ty

3. Example with Fixed Correlation Structure

User-defined correlation structure
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> corr.mat <- matrix(rep(0.5, 100), nrow = 10, ncol = 10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "fixed", R = corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i
at time t which takes the value of either 0 or 1. Yi is a vector or cluster of correlated data
where yit is correlated with yit′ for some or all t, t′. In the GEE model, we must specify a
mean function, a variance function, and the structure of the correlation matrix of the within-
cluster observations. Observations are assumed to be correlated within each cluster but not
across clusters.

� The stochastic component is given by the joint distribution

Yi ∼ f(yi | πi)

where f is an unspecified multivariate distribution. The marginal distributions of f ,
which characterize each nonindependent unit-time observation Yit, is given by

Yit ∼ Bernoulli(yit | πit)

= πyit

it (1− πit)
1−yit

where πit = Pr(Yit = 1) for t = 1, ..., T . The correlations within each unit i are modeled
by defining the structure of a T ×T “working” correlation matrix, which is specified by
the user a priori. Note that the model assumes correlations within i but independence
across i. The “working” correlation matrix then enters the variance term for each i,
given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with var(πit) = πit(1 − πit) as the tth diagonal
element, Ri(α) is the “working” correlation matrix, and φ is a scale parameter. The
parameters are then estimated via a quasi-likelihood approach.

6



� The systematic component is given by:

πit =
1

1 + exp(−xitβ)
.

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� GEE models require three specifications: a mean function (the systematic component
above), a variance function (given by the variance of the Bernoulli stochastic compo-
nent: var(πit) = πit(1 − πit)), and a correlation structure (the “working” correlation
matrix above). If the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.

� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ?) for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The expected values (qi$ev) for the logit model are simulations of the predicted prob-
ability of a success:

E(Y ) = πc =
1

1 + exp(−xcβ)
,

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πc.

� The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).
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� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{
Yit(trit = 1)− ̂Yit(trit = 0)

}
,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yit(trit = 0), the counterfactual predicted value of Yit for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "logit.gee", id, data, corstr),
then you may examine the available information in z.out by using names(z.out), see
the coefficients by using z.out$coefficients, and a default summary of information
through summary(z.out). Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.
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– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit.gee Zelig model:

Patrick Lam. 2007. “logit.gee: Generalized Estimating Equation for Logistic
Regression,” in Kosuke Imai, Gary King, and Olivia Lau, “Zelig: Everyone’s
Statistical Software,” http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.

edu/files/abs/z-abs.shtml.

See also

The logit function is part of the base packages by William N. Venable (Venables and Ripley
2002). Advanced users may wish to refer to help(glm) and help(family), as well as
McCullagh and Nelder (1989). Robust standard errors are implemented via sandwich package
by Achim Zeileis (Zeileis 2004).Sample data are a selection of 2, 000 observations from King
et al. (2000)
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