
Assessing baseline and treatment effect heterogeneity for survival

times between centers using a random effects accelerated failure

time model with flexible error distribution
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SUMMARY

In multicenter studies, often unknown sources of heterogeneity between centers are present. Moreover,

there is not only heterogeneity with respect to the baseline characteristics but also heterogeneity with

respect to the efficacy of the treatment. To account for such unknown sources of heterogeneity, we

extended the accelerated failure time model with a penalized normal mixture as an error distribution

suggested by Komárek and Lesaffre [1] by inclusion of multivariate random effects following a normal
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distribution. For computational convenience, we base the inference for the proposed model on the

Bayesian methodology with the use of Monte Carlo Markov chain techniques. The proposed method

will be illustrated on the disease free survival times of early breast cancer patients collected in the

EORTC trial 10854. Copyright c© 2007 John Wiley & Sons, Ltd.

key words: multicenter study; penalized normal mixture; regression; survival analysis

1. INTRODUCTION

The EORTC trial 10854 (Clahsen et al. [2]; van der Hage et al. [3]) is a large multicenter study

(n = 2 793 patients in N = 14 centers) aiming to compare perioperative polychemotherapy

(POP FAC arm) with no further treatment (control arm) on the disease free survival (DFS)

time in early breast cancer patients who underwent potentially curative surgery. The centers

are located in 5 geographical regions: the Netherlands, Poland, France, Southern Europe, and

South Africa. To improve the efficiency with which the treatment effect is evaluated, we want

to account for known sources of variability – known patient- and center-specific characteristics

(covariates) and use an appropriate regression model. Note that the observed DFS time is

often right-censored.

The proportional hazards (PH) model (Cox [4]) is a popular tool to quantify the effect of

covariates on the time to event. Let xi,l = (xi,l,1, . . . , xi,l,s)
′ (i = 1, . . . , N , l = 1, . . . , ni)

denote the covariate vector for the lth patient in the ith center. For the PH model, the hazard

function of the event for the (i, l)th patient is expressed by

}(t |xi,l) = }0(t) exp(ηi,l), t > 0, (1)

where }0 is an unspecified baseline hazard function, and ηi,l = β′xi,l a linear predictor with
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2 A. KOMÁREK ET AL.

β = (β1, . . . , βs)
′ being a vector of regression coefficients. A valuable, although less frequently

used, alternative is the accelerated failure time (AFT) model (e.g., Kalbfleisch and Prentice [5],

Chap. 7) in which the hazard function }(t |xi,l) is related to the baseline hazard }0 by

}(t |xi,l) = }0

{

t exp(−ηi,l)
}

exp(−ηi,l), t > 0. (2)

Let Ti,l (i = 1, . . . , N , l = 1, . . . , ni) denote the event time of the (i, l)th patient. The AFT

model (2) can be written in an intuitive way as a simple linear regression model with the

logarithmic link function, i.e.

log(Ti,l) = ηi,l + εi,l, (3)

where εi,l are i.i.d. error terms having the distribution of the baseline log-event time. We

will assume that the distribution of the error terms is continuous with a density gε. Most

often, a parametric density gε (normal, logistic, Gumbel, . . . ) is assumed (e.g., Kay and

Kinnersley [6]).

1.1. Heterogeneity

In multicenter studies, unknown sources of heterogeneity between centers are often present.

This can happen due to many reasons: geographical differences, different working habits of

the staff in different centers etc. Moreover, not only the heterogeneity with respect to the

baseline characteristics but also the heterogeneity with respect to the efficacy of the treatment

may exist. Figure 1 shows Kaplan-Meier estimates of the DFS distribution for the POP FAC

arm and the control arm, separately for each center. From these curves, there seems to be

heterogeneity among the centers. Not only the overall proportion of DFS patients differs at

each time point and in each treatment arm from center to center (baseline heterogeneity) but

also the effect of treatment on DFS, expressed by the relative position of the two curves in the
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control and treatment arm seems to vary across centra both quantitatively and qualitatively

(treatment effect heterogeneity).

<Figure 1 about here.>

The two classical tools which take into account the baseline heterogeneity are the stratified

model (e.g., Kalbfleisch and Prentice [5], Sec. 4.4) and a model with the center indicator

as one of the covariates (fixed effects model). Similarly, to account for the treatment effect

heterogeneity, one can (a) use stratification with respect to the center with treatment

interaction; (b) include the center with treatment interaction in the covariate vector xi,l.

A disadvantage of the first approach is that no direct estimate of the treatment effect is

produced. On the other hand, it is debatable whether the results of the fixed effects model

can be generalized to a wider population of patients. See also Glidden and Vittinghoff [7] for

a discussion to this point. The third, nowadays widely used approach to deal with heterogeneity

is the random effects model which is also preferred in the Ref. [7].

1.2. Random effects survival models

Random effects models constitute an alternative to the stratified model or to the fixed effects

model. To account for both baseline and treatment effect heterogeneity among centers, we

would specify, in either of models (1), (2), (3), the linear predictor ηi,l as

ηi,l = bi,1 + bi,2treati,l + β′xi,l, (4)

where treati,l is the treatment indicator for the (i, l)th patient and the vector xi,l contains

all covariates but the treatment. Further, the bivariate center specific random effects bi =

(bi,1, bi,2)
′ (i = 1, . . . , N) are assumed to be i.i.d. with a distribution having a (parametric)
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4 A. KOMÁREK ET AL.

density gb and first 2 moments

E(bi,1) = 0,

E(bi,2) = γ,

var(bi) = D =









d1,1 d1,2

d1,2 d2,2









, (5)

where γ is the mean treatment effect and d1,1, d2,2, d1,2 variance components of the random

effects distribution.

In the last decade, the PH model with a univariate random effect bi ≡ bi,1, known also

as a frailty PH model (e.g., Therneau and Grambsch [8], Hougaard [9], Duchateau and

Janssen [10]) became more widely used in practice. The distribution of the random effects

bi is usually specified as either normal for bi or gamma for exp(bi). For the EORTC trial

10854, the frailty PH model which can account only for the baseline heterogeneity among

centers, was used by Legrand et al. [11] and we return to it in the discussion.

Nevertheless, it is possible to extend the frailty PH model to include also multivariate

random effects. For example, Vaida and Xu [12] consider multivariate random effects having

a multivariate normal distribution. A Bayesian estimation of the model with bivariate random

effects is presented by Legrand et al. [13]. Other applications of the random effects PH model

in the context of the multicenter studies can be found in the literature, e.g., Glidden and

Vittinghoff [7], Gray [14], Matsuyama et al. [15], Yamaguchi and Ohashi [16], Yamaguchi et

al. [17].

However, the random effects PH model may show some deficiencies. Firstly, for most

distributions of random effects, the marginal hazard function obtained by integrating the

random effects out does not satisfy the PH assumption any more. That is, the regression

coefficients have a clear interpretation only conditionally. In the case the marginal effect of

covariates is of interest (typically in epidemiology), it is very difficult to get their correct
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marginal interpretation. Secondly and more importantly, the effect of the covariate depends

on the choice of the density gb of the random effects. Consequently, the estimates of the

regression parameters β or the treatment effect γ can be highly sensitive towards, a difficult

to check, choice of gb. See Hougaard [9], Chap. 7 for more details.

These drawbacks do not carry over to the random effects AFT model. Indeed, starting

from its linear mixed model representation (3), it is easily seen that the meaning of the

regression parameters β or the treatment effect γ is the same conditionally, given bi as well

as marginally over bi. Indeed, when the random effects are integrated out from the model (3)

with the linear predictor (4), we obtain again model (3) with the linear predictor changed

to ηi,l = γ treati,l + β
′
xi,l. The error distribution changes to an appropriate convolution of

the random effects distribution and the distribution of the error terms in the random effects

model. For this reason, we concentrate here on the random effects AFT model and use its

linear mixed model representation (3) in the remainder of the paper.

1.3. Baseline survival distribution

Any parametric assumption concerning the baseline survival distribution in the AFT model

(3) represented by the density gε is very difficult to check with censored data. For this reason,

it is our intention to leave gε either unspecified or specify it in a flexible way. Pan and Louis [18]

and Pan and Connett [19] consider the univariate random effects AFT model and estimate the

distribution of the error term by inclusion of a non-parametric Kaplan-Meier estimation step

in their estimation procedure.

An alternative route, namely by using of smoothing techniques, was recently taken by

Komárek et al. [20] and Komárek and Lesaffre [1]. In both papers, the error density gε is

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0

Prepared using simauth.cls
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expressed as a penalized normal mixture. The model of the former paper does not include

the random effects and cannot take heterogeneity into account, however. Univariate random

effects allowing to take into account the baseline heterogeneity, but not the treatment effect

heterogeneity, are included in the AFT model suggested in the later paper.

For the analysis of the EORTC trial 10854, we modified the method of Komárek and

Lesaffre [1] to include multivariate random effects for which a multivariate normal distribution

is assumed. This will allow us to consider both the baseline as well as the treatment effect

heterogeneity. The reasons why we assume a normal distribution for the random effects and do

not smooth it similarly as the distribution of the error term are the following: (i) The number

of centers in our application is quite low (14) providing only a low number of (moreover latent)

“observations” to estimate the shape of the distribution; (ii) It has been shown in the literature

(Keiding et al. [21], Lambert et al. [22]) that the regression parameters which are usually of

the primary interest are robust against misspecification of the random effects distribution;

(iii) When the interest lies in the marginal characteristics like the hazard or survival functions,

a possible misspecification of the random effects distribution is at least partly corrected by the

estimation of the error distribution.

The remainder of the paper is organized as follows. Section 2 describes in detail the proposed

random effects AFT model. In Section 3, we describe the inferential procedure for suggested

model based on the Monte Carlo Markov chain methodology. The analysis of the DFS time in

early breast cancer patients is presented in Section 4. We finalize the paper by a discussion in

Section 5.
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2. RANDOM EFFECTS AFT MODEL WITH PENALIZED NORMAL MIXTURE AS

AN ERROR DISTRIBUTION

Our approach not only allows for right-censored data but also for left- or interval-censored

data. Therefore, assume that Ti,l (i = 1, . . . , N, l = 1, . . . , ni) occurred within an interval of

time btLi,l, t
U
i,lc. For an exactly observed event time, btLi,l, t

U
i,lc = [ti,l, ti,l], for a right-censored

observation, btLi,l, t
U
i,lc = (ti,l, ∞). Further assume that observed intervals are the result of

an independent noninformative censoring process.

In this paper, we consider the AFT model (3) with the following linear predictor

ηi,l = b′izi,l + β′xi,l, i = 1, . . . , N, l = 1, . . . , ni,

where bi = (bi,1, . . . , bi,q)
′ are i.i.d. vectors of random effects with a density gb, which is

assumed here to be the density of the multivariate normal distribution with (unknown) mean

γ = (γ1, . . . , γq)
′ and (unknown) covariance matrix D. i.e., gb(bi) = ϕq(bi |γ, D). Further,

xi,l is a vector of patient- and center-specific covariates assumed to have an homogeneous

effect across centers. Finally, zi,l = (zi,l,1, . . . , zi,l,q)
′ is a vector of factors with a varying

(heterogeneous) effect across centers. For example, to model the baseline and treatment effect

heterogeneity between centers we take zi,l = (1, treati,l)
′. For identifiability reasons, γ1 = 0

whenever the baseline heterogeneity between centers is considered. i.e. whenever zi,l,1 ≡ 1. For

convenience in the notation, we will assume in the remainder of the paper that zi,l,1 ≡ 1.

To allow for a flexible specification of the baseline survival distribution, represented by the

density gε of the error terms εi,l in the AFT model (3), it is specified as a shifted and scaled

penalized normal mixture (see Komárek et al. [20], and Komárek and Lesaffre [1]). That is,

gε(ε) = τ−1
K

∑

j=−K

wj(a)ϕ1

{

τ−1(ε− α) |µj , σ
2
}

, (6)

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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8 A. KOMÁREK ET AL.

where α and τ are (unknown) intercept and scale parameter, respectively, and

wj(a) =
exp(aj)

∑K
k=−K exp(ak)

, j = −K, . . . ,K (7)

are (unknown) mixture weights. The weights in (7) are reparametrized to ensure that gε is

a density for which we need 0 < wj < 1, j = −K, . . . ,K and
∑

j wj = 1. Therefore, we will

work with the parameter vector a = (a−K , . . . , aK)′ instead of the vectorw = (w−K , . . . , wK)′.

Further, µ = {µ−K , . . . , µK} is a fine grid of equidistant knots centered around zero (µ0 = 0)

and σ2 is a fixed basis variance. The following choice, also used in the analysis presented in

Section 4, is: K = 15, µ−K = −4.5, µK = 4.5, σ = 0.2 and µj+1 − µj = 0.3, see Komárek et

al. [20] for a motivation.

2.1. Penalized likelihood

In the following, we use the convention that
∫ c

c
p(t) dt = p(c). The likelihood contribution of

the ith center can then be written as

Li =

∫

Rq

{

ni
∏

l=1

∫ tU
i,l

tL
i,l

p(t |a, α, τ, β, b) dt

}

ϕq(b |γ, D) db, (8)

where

p(t |a, α, τ, β, b) = (tτ)−1
K

∑

j=−K

wj(a)ϕ1

(

log(t) − α− b′zi,l − β
′xi,l

τ

∣

∣

∣

∣

µj , σ
2

)

. (9)

To estimate the unknown parameters, we propose to follow the approach of Komárek et al. [20]

and maximize the penalized likelihood

Lpenal(θ) =
N
∏

i=1

Li × exp
{

−
λ

2

K
∑

j=−K+s

(∆saj)
2
}

(10)

with respect to θ =
(

β
′,γ′, vec(D), α, τ, a′, λ

)

′

. In expression (10), ∆s denotes the sth-order

difference operator (s = 3 was used in the analysis presented in Section 4). The penalty

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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term, −λ
2

∑K

j=−K+s(∆
saj)

2, which can also be written as −λ
2 a

′P′

sPsa for an appropriate

difference operator matrix Ps, avoids identifiability problems or overfitting the data, see Eilers

and Marx [23]. A trade-off between the smoothness of the density gε and fitting the data is

driven by the smoothing parameter λ, which has to be estimated as well.

2.2. Bayesian specification

Wahba [24] pointed out the link between penalized likelihood and a Bayesian specification

of the model. This link is exploited by Komárek and Lesaffre [1] to obtain estimates of the

parameter θ. Let θ−a =
(

β′,γ′, vec(D), α, τ, λ
)

′

and suppose the prior distribution of θ−a is

proportional to a constant (noninformative prior). Suppose further that the prior of the vector

a is specified to be a Gaussian Markov random field (GMRF, see, e.g., Besag et al. [25]),

namely

p(a |λ) ∝ exp
(

−
λ

2
a′P′

sPsa
)

, (11)

p(θ−a) ∝ 1. (12)

Let

p(θ) = p(a |λ) × p(θ−a) (13)

be the joint prior distribution of θ. Then, using the Bayes’ rule

p(θ | data) ∝
N
∏

i=1

Li × p(θ) =

N
∏

i=1

Li × p(a |λ) × p(θ−a) ∝ Lpenal(θ). (14)

So that, the posterior density of θ is proportional to the penalized likelihood (10).

Instead of (a difficult) maximization of the penalized likelihood (10), one can infer on

the components of θ from suitable (marginal) characteristics of the posterior distribution

p(θ | data). The inference can relatively easily be based on a sample from the posterior

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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distribution obtained using MCMC methodology (e.g., Robert and Casella [26]). This approach

will be followed here.

2.3. Prior distributions

Note that in our context, it is not possible to be fully noninformative about θ−a since otherwise

the posterior distribution is improper. Hence, we cannot use p(θ−a) ∝ 1. Instead, we specify

p(θ−a) as a product of vague, but proper distributions. This will ensure that the resulting

posterior distribution is proper. Namely,

p(θ−a) =
s

∏

j=1

p(βj) ×

q
∏

j=2

p(γj) × p(D) × p(α) × p(τ−2) × p(λ), (15)

where p(βj) (j = 1, . . . , s), p(γj) (j = 2, . . . , q), p(α) are densities of the normal distribution

with (zero) mean and large variance, e.g., N (0, 102) was used in the analysis of Section 4.

Further, p(D) is the inverse Wishart distribution with a small number of degrees of freedom

dfb and a diagonal scale matrix Sb with small values on the diagonal. In Section 4, we used

dfb = q = 2 and Sb = diag(0.002). Finally, p(τ−2) and p(λ), prior densities of the parameters

that can be interpreted as inverse variances, are densities of a dispersed gamma distribution,

e.g., Gamma(1, 0.005) distributions were used in Section 4.

3. INFERENCE

As mentioned above, we will base the inference on the sample from the posterior distribution

(14) which is proportional to the product of (8), (11) and (15).

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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3.1. Bayesian data augmentation

A convenient way to avoid integration over the random effects {bi : i = 1, . . . , N} and the

censored times {ti,l : tLi,l < tUi,l, i = 1, . . . , N, l = 1, . . . , ni} in the likelihood (8) is to use

Bayesian data augmentation (Tanner and Wong [27]).

Further, it is not necessary to work explicitly with the normal mixture (9). Intrinsicly, we

can assume that the residual log-event times belong to one of the 2K + 1 normal components,

labeled by −K, . . . ,K. Let ri,l (i = 1, . . . , N , l = 1, . . . , ni) be the label of the component to

which the (i, l)th residual log-event time belongs, i.e. P(ri,l = j |a) = wj(a) (j = −K, . . . ,K).

For convenience we explain the Bayesian data augmentation approach to the case when

all event times ti,l are censored, i.e. [data] = (tL1,1, t
U
1,1, . . . , t

L
N,nN

, tUN,nN
)′ and tLi,l < tUi,l for

all i and l. Let ψ = (t′, r′, B′)′, with t = (t1,1, . . . , tN,nN
)′, r = (r1,1, . . . , rN,nN

)′, and

B = (b′1, . . . , b
′

N )′, be the vector of latent data, i.e. exact event times, component labels, and

random effects, respectively. The posterior distribution (14) can be written as

p(θ | data) =

∫

p(θ, ψ | data) dψ. (16)

When inference is based on the marginal characteristics of the distribution p(θ | data), we can

sample from p(θ, ψ | data) and ignore the components of ψ in the sample. The distribution

p(θ, ψ | data) has a relatively simple expression. Indeed, using the Bayes’ formula

p(θ, ψ | data) ∝ p(data |θ, t, r, B) × p(t | r, B, θ) × p(r |B, θ) × p(B |θ) × p(θ), (17)

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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12 A. KOMÁREK ET AL.

where

p(data |θ, t, B) = p(data | t) ∝
N
∏

i=1

ni
∏

l=1

I
{

ti,l ∈ btLi,l, t
U
i,lc

}

, (18)

p(t | r, B, θ) =

N
∏

i=1

ni
∏

l=1

{

(ti,lτ)
−1ϕ1

(

log(ti,l) − α− b′izi,l − β
′xi,l

τ

∣

∣

∣

∣

µri,l
, σ2

)}

, (19)

p(r |B, θ) = p(r |θ) =
N
∏

i=1

ni
∏

l=1

wri,l
(a), (20)

p(B |θ) =

N
∏

i=1

ϕq(bi |γ, D), (21)

and p(θ) is given as a product of (11) and (15). Note that the product of (19) – (21) is in fact

equal to the likelihood if the latent data had been observed.

3.2. Markov chain Monte Carlo

To sample from the posterior distribution using the MCMC methodology, we used the Gibbs

algorithm (Geman and Geman [28]). The majority of the full conditional distributions are

identical to those given by Komárek and Lesaffre [1] and we refer the reader therein. The

remaining full conditional distributions pertain to the random effects bi (i = 1, . . . , N), the

means of random effects γ and the covariance matrix D of the random effects. However, they

either have a multivariate normal or or an inverse-Wishart distribution. Details are given in

the Appendix A.

An R (R Development Core Team [29]) package bayesSurv, freely available from the

Comprehensive R Archive Network on http://www.R-project.org, has been written to

sample from the posterior distribution of the model parameters (function bayessurvreg2) and

draw the inference (e.g., function predictive2). We illustrate its use in Appendix B.

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 27:0–0
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3.3. Inference on the model parameters

For each component of the parameter vector θ we derive summary statistics of the posterior

distribution p(θ | data), obtained from the MCMC sample, θ(m) (m = 1, . . . ,M). For example,

the posterior median values are approximated by the MCMC sample medians. Highest

posterior density (HPD) intervals are derived to express the uncertainty with which the

parameter is estimated.

To draw inference on the transformed parameter (vector) ψ(θ), we use the posterior

distribution p
{

ψ(θ)
∣

∣ data
}

and the corresponding MCMC sample ψ
(

θ(m)
)

(m = 1, . . . ,M).

For example, in the context of the AFT model, rather than reporting the results for the fixed

effects β1, . . . , βs or the means γ2, . . . , γq of the random effects, we prefer reporting of the

acceleration factors eβ1 , . . . , eβs , or eγ2 , . . . , eγq , respectively. Indeed, they directly determine,

how the change in the covariate value accelerates (eβ < 1) or decelerates (eβ > 1) the reference

event time.

3.4. Inference on the survival distribution

When interest lies in the survival distribution for a specific combination of covariates xpred

and zpred, we can compute the predictive survival function S(t | data, xpred, zpred), or the

predictive hazard function }(t | data, xpred, zpred) (t > 0) from the MCMC output. The

procedure is analogous, with only an obvious change in notation, to that described in Komárek

and Lesaffre [1] (Section 5.3) and the reader is referred therein for details.
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14 A. KOMÁREK ET AL.

3.5. Inference on random effects

When dealing with heterogeneity, one might be interested in investigating and explaining the

heterogeneity. To this end, we can use the (marginal) posterior distribution p(B | data) of

the random effects b1, . . . , bN , which is obtained from the joint posterior distribution (17) by

integrating out the remaining parameters. When an MCMC sample from the joint posterior

distribution is available, integration is achieved by simply ignoring these remaining parameters

in the sample.

4. THE ANALYSIS OF THE DFS TIME IN EARLY BREAST CANCER PATIENTS

For the analysis of the DFS time in early breast cancer patients in the EORTC trial 10854, we

fitted two random effects AFT models, i.e. given by expressions (3) and (4). In both models, we

included the following covariates: age group (<40, 40 – 50, >50 years), type of prior surgery

(mastectomy, breast conserving), tumor size (not palpable or <2 cm, ≥2 cm), axillary nodal

status (negative, positive), presence of other related disease (no, yes). The first AFT model

(Model with region) contained also dummies for a geographical location, whereas in the

second AFT model (Model without region), the geographical location was not included in

the covariate vector for fixed effects. Since centers are nested within geographical regions it

should be possible to reveal, at least partially, the regional structure of the centers from the

estimates of the center-specific random effects b1,1, . . . , bN,1 in the model without region.

For inference we sampled a chain of length 125 000 with 1:5 thinning which took about 2.5

hour on a Pentium IV 2 GHz PC with 512 MB RAM. The last 25 000 iterations of the chain

were used to derive the summary statistics.
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4.1. Effect of covariates and the survival distribution

Table I shows the posterior summaries for the acceleration factors revealing the effect of

considered covariates in both models. It is seen that the DFS time in the control arm is

approximately 0.86 times shorter than in the POP FAC arm. Based on the model with region

included, the DFS time for the middle age group 40 – 50 years is increased by a factor of

1.38 compared to the youngest group <40 years. For the patients from the oldest group >50

years, the DFS time is increased by a factor of 1.33 compared to the youngest group. The

breast conserving surgery increases the DFS time by a factor of 1.26 compared to mastectomy.

Further, bigger tumors (≥2 cm) lead to a decrease of the DFS time by a factor of 0.63 compared

to smaller tumors of size<2 cm. A positive pathological nodal status decreases the DFS time by

a factor of 0.55 compared to a negative result. The presence of other related disease decreases

the PFS time by a factor of 0.72. From the regional effects it is for example seen that South

Africa performs far the worst than all remaining regions.

<Table I about here.>

In the model without region, the effect of the included covariates is estimated to be practically

the same as in the model with region. This illustrates, among other things a general property of

the AFT model which is robustness towards omission of important covariates (Hougaard [30]).

A complete view on the distribution of the DFS time is given in Figure 2 which shows

the predictive hazard and survival functions in the POP FAC and control arm when fixing

remaining covariates on their reference values.

<Figure 2 about here.>
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4.2. Heterogeneity

Figure 3 shows posterior medians and 95% HPD intervals for acceleration factors based on

the center-specific random effects in both considered models. For comparison purposes, the

plot related to the random intercepts bi,1, (i = 1, . . . , 14) takes also into account the fixed

effect of a geographical region in the model with region explicitly included. In the left part of

Figure 3, France serves as a reference region (model with region) whereas an average over all

regions serves as a reference in the right part of Figure 3 (model without region). This causes

an overall shift when going from left to right in the upper panel of Figure 3. However, besides

that shift, the structure of the posterior medians of the random intercepts is quite similar in

both models. That is, the random intercepts in the model without region were able to capture

to a large extent the effect of the region.

<Figure 3 about here.>

As one could have expected, omission of the covariate region led to the increase of the

variability of the random intercept. Namely, its standard deviation, estimated by the posterior

median of
√

d1,1, increased from 0.111 to 0.302, the 95% HPD interval for
√

d1,1 changed from

(0.015, 0.292) to (0.142, 0.513).

The lower panel of Figure 3 shows further that treatment effect heterogeneity between centers

is of a lower magnitude than the baseline heterogeneity. This is also seen on the posterior

medians of the parameter
√

d2,2, standard deviation of bi,2 (i = 1, . . . , 14) which equals to

0.057 in the model with region and to a slightly higher value of 0.074 in the model without

region, respectively. The 95% HPD intervals for
√

d2,2 are (0.014, 0.180) and (0.015, 0.212),

respectively.
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Most importantly, all increase of the variability caused by the omission of the important

covariate (region) was captured by the variance components of the random effects. The residual

variability, which has a direct impact on the precision with which the effect of the covariates is

evaluated, remains practically the same. More specifically, the posterior median of the standard

deviation of the error terms εi,l changed from 1.481 in the model with region to 1.470 in the

model without region. The corresponding 95% HPD interval changed from (1.341, 1.640) to

(1.345, 1.628).

5. DISCUSSION

We have introduced here a possible approach to perform a regression analysis with survival

clustered data dealing with a heterogeneity between clusters (centers). Both the baseline

heterogeneity, as well as the heterogeneity with respect to the effect of selected covariates

has been considered. The heterogeneity has been taken into account by including the random

effects in the AFT model. Parametric assumptions concerning the baseline survival distribution

have been avoided by using the penalized normal mixture as a model for the error terms in

the AFT model.

As we pointed out in Section 1.2, Legrand et al. [11] analyzed the EORTC trial 10854 using

the frailty PH model. By considering a fixed treatment effect and a random center effect their

objective was to quantify heterogeneity in outcome over centers. They however do not include

a treatment by center interaction and therefore do not account for a possible heterogeneity

in the treatment effect between centers. They argue that factor “treatment” cannot explain

heterogeneity in outcome found over centers as the same proportion of patients is treated

in each treatment arm (randomization stratified by center). However, in our analysis, we
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demonstrated that the treatment effect heterogeneity cannot be ignored, with a magnitude of

this heterogeneity represented by the parameter
√

d2,2. This parameter was, in the model with

region, estimated to be half of the magnitude of the baseline heterogeneity represented by the

parameter
√

d1,1. For this reason, we do not think that the treatment effect heterogeneity can

be automatically ruled out when trying to explain heterogeneity in outcome over centers.

Analogously to Legrand et al. [11], we have found that the baseline heterogeneity between

centers is largely explained by the geographical differences. Finally, Legrand et al. [11]

compared different centers by the mean of the predicted 5-year DFS rates. A similar comparison

was performed in this paper by the mean of the posterior summaries of the acceleration factors

based on the center-specific random effects. With respect to the baseline heterogeneity, a similar

pattern has been found by both methods.
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APPENDIX A: MARKOV CHAIN MONTE CARLO

In appendix A, we provide the full conditional distributions for the random effects bi (i = 1, . . . , N),

the means of random effects γ and the covariance matrix D of the random effects.

Namely,

bi | · · · ∼ N
“

E(bi | · · · ),var(bi | · · · )
”

, i = 1, . . . , N, (22)

with

E(bi | · · · ) = var(bi | · · · ) ×
h

D
−1
γ + (σ τ )−2

ni
X

l=1

zi,l

˘

log(ti,l) − α − β′

xi,l − τ µri,l

¯

i

,

var(bi | · · · ) =
n

D
−1 + (σ τ )−2

ni
X

l=1

zi,l z
′

i,l

o

−1

.

Further, let ν(−1) be the vector of prior means of γ(−1) = (γ2, . . . , γq)
′ and U(−1) be a diagonal matrix

having prior variances of γ(−1) on the diagonal. Let V(−1) and V(−1,1) be the (2, . . . , q)-(2, . . . , q)

block and the (2, . . . , q)-1 block, respectively, of the matrix D
−1. Finally, let bi(−1) = (bi,2, . . . , bi,q)

′

(i = 1, . . . , N). Then

γ(−1) | · · · ∼ N
“

E(γ(−1) | · · · ), var(γ(−1) | · · · )
”

, (23)

with

E(γ(−1) | · · · ) = var(γ(−1) | · · · ) ×
“

U
−1
(−1)ν(−1) + V(−1)

N
X

i=1

bi(−1) + V(1,−1)

N
X

i=1

bi,1

”

,

var(γ(−1) | · · · ) =
“

U
−1
(−1) + N V(−1)

”

−1

.
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Finally,

D | · · · ∼ inverse-Wishart

 

dfb + N, Sb +
N
X

i=1

(bi − γ)(bi − γ)′
!

. (24)

APPENDIX B: ANALYSIS IN R

Appendix B is devoted to a brief description of the R package bayesSurv to perform the analysis

presented in Section 4. We assume that the data are stored in a data.frame called eortc which has

a structure as indicated in Table II. The column id identifies patients, column center different centers.

The DFS time is found in the column DFStime and a censoring indicator (0 for right-censored and 1 for

observed event times) is given in the column DFSevent. The values of covariates are given in columns

labeled trtmt, ageGroup, typeSur, tumSize, nodStat, otDis, region. The columns corresponding to

non-dichotomous covariates (ageGroup and region) are assumed to be created by the R function

factor with appropriately chosen reference category.

<Table II about here.>

Firstly, we specify the basis standard deviation σ (sigma), the number of knots (K), the distance

between 2 consecutive knots expressed as a multiple of the basis standard deviation σ (c4delta),

order of the penalty s (order) and prior choices for the intercept α, scale τ and the smoothing

hyperparameter λ. Specified choices are stored in lists params.error and prior.error:

> params.error <- list(sigma=0.2)

> prior.error <- list(K=15, c4delta=1.5, order=3,

+ prior.intercept="normal", mean.intercept=0, var.intercept=100,

+ prior.scale="gamma", shape.scale=1, rate.scale=0.005,

+ prior.lambda="gamma", shape.lambda=1, rate.lambda=0.005)

Secondly, the prior choices for fixed effects β, the mean of the random effects b2 (parameter γ2) and

the random effects b are specified and stored as lists prior.betaGamma and prior.b.

> prior.betaGamma <- list(mean.prior=rep(0, 11), var.prior=rep(100, 11))
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> prior.b <- list(prior.D = "inv.wishart", df.D = 2, scale.D = 0.002*c(1,0,1))

Note that β = (β1, . . . , β10)
′ in the model with region so that there are 11 ‘β’ and ‘γ’ parameters to

be estimated.

The core part of the analysis, MCMC sampling, is then performed using the function bayessurvreg2

in the following way:

> library(bayesSurv)

> sample <- bayessurvreg2(Surv(DFStime, DFSevent)~trtmt+ageGroup+typeSur+

+ tumSize+nodStat+otDis+region+cluster(center), random=~trtmt,

+ prior=prior.error, init=params.error,

+ prior.beta=prior.betaGamma, prior.b=prior.b,

+ nsimul=list(niter=125000, nthin=5, nburn=100000), store=list(b=TRUE),

+ dir="/home/userAK/", data=eortc)

Sampled chains are then found in the form of ASCII files having an extension .sim in the directory

called “/home/userAK/” and can be further worked out, e.g., using the R package coda [31]. For

example, data for Table I were obtained using the following commands:

> library(coda)

> betaGamma <- read.table("/home/userAK/beta.sim", header=TRUE)

> exp.betaGamma <- mcmc(exp(betaGamma))

> summary(exp.betaGamma)

> HPDinterval(exp.betaGamma)

To compute the predictive hazard and survival functions as shown in Figure 2, we have to specify

the combinations of covariates for which the hazard and survival functions would be computed:

> eortc.pred <- data.frame(DFStime=c(1, 1), DFSevent=c(0, 0), trtmt=c(1, 0),

+ ageGroup=factor(c(0, 0), levels=0:2, labels=c("<40", "40--50", ">50")),

+ typeSur=c(0, 0), tumSize=c(0, 0), nodStat=c(0, 0), otDis=c(0, 0),

+ region=factor(c(0, 0), levels=0:4, labels=c("F", "NL", "P", "SE", "SA")),
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+ center=c(1, 2))

Computation of the values of predictive survival and hazard functions on the equidistant grid of 100

time values from 1 to 5 002 days is then performed using the following code:

> pred <- predictive2(Surv(DFStime, DFSevent)~trtmt+ageGroup+typeSur+

+ tumSize+nodStat+otDis+region+cluster(center), random=~trtmt,

+ grid=seq(1, 5002, length=100), Gspline=list(dim=1, K=15),

+ quantile=c(0.025, 0.975), only.aver=FALSE, dir="/home/userAK/",

+ predict=list(Surv=TRUE, density=FALSE, hazard=TRUE, cum.hazard=FALSE),

+ data=eortc.pred)

By the argument quantile, the user can obtain also pointwise posterior predictive quantiles for the

hazard and survival function.

More detailed description of the functions from the bayesSurv package and their arguments can be

found in the documentation to the package.
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Table I. Posterior medians and 95% highest posterior density intervals for the acceleration factors
(exp(γ) and exp(β) parameters).

Model with region Model without region

Posterior 95% HPD Posterior 95% HPD

Effect median interval median interval

Treatment group (reference: POP FAC arm)

control arm 0.858 (0.712, 1.010) 0.860 (0.729, 1.009)

Age group (reference: <40 years)

40 – 50 years 1.384 (1.035, 1.762) 1.411 (1.064, 1.819)

>50 years 1.330 (1.019, 1.656) 1.368 (1.061, 1.738)

Type prior surgery (reference: mastectomy)

breast conserving 1.257 (1.041, 1.483) 1.281 (1.070, 1.509)

Tumor size (reference: <2 cm)

≥2 cm 0.630 (0.521, 0.748) 0.625 (0.515, 0.745)

Nodal status (reference: negative)

positive 0.549 (0.461, 0.635) 0.546 (0.459, 0.639)

Other disease (reference: absent)

present 0.724 (0.538, 0.930) 0.716 (0.536, 0.926)

Region (reference: France)

The Netherlands 0.669 (0.457, 0.943)

Poland 1.417 (0.845, 2.154)

Southern Europe 0.713 (0.465, 1.007)

South Africa 0.479 (0.295, 0.700)
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Table II. Structure of the R data.frame eortc holding the data.

id center DFStime DFSevent trtmt ageGroup

1 11 5 139 0 1 40--50

2 31 4 163 0 0 <40

3 41 733 1 1 >50

...
...

...
...

...
...

typeSur tumSize nodStat otDis region

0 1 0 0 NL

1 0 0 0 F

0 1 1 0 SE

...
...

...
...

...
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Figure 1. Kaplan-Meier estimates of the DFS time distribution separately for each institution. Solid
line: POP FAC arm, dotted-dashed line: control arm.
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28 A. KOMÁREK ET AL.

Hazard Survival
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Figure 2. Model with region. Predictive hazard and survival function for the POC FAC arm (solid
line) and control arm (dotted-dashed line) and remaining covariates fixed to the reference values.
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Figure 3. Posterior medians and 95% highest posterior density intervals for center-specific random
effects based acceleration factors. Random intercepts in the model with region are further shifted by

a corresponding region main effect β(region).
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