
 

Vignette for ‘blocksdesign’ package  
 

Introduction 

 

Comparative experiments in agriculture and biology often involve the estimation of treatment effects 

against a background of high non-treatment variability. Treatments can be unstructured such as 

comparisons between individual varieties or regimes or they can have complex factorial structures 

such as factorial combinations of different fertilizer types. Unstructured treatments usually assume 

that all pairwise treatment comparisons are of equal importance but structured treatments usually 

require a treatment model for the effects of the different treatment components.  Effective treatment 

comparison requires effective control of background variability and most agricultural and biological 

experiments use replicated treatments divided into blocks for the control of background variability. 

The aim of good block design is to group treatments into blocks that are as homogeneous as possible 

so that within-blocks treatment comparisons are made with improved precision relative to between-

blocks treatment comparisons. Good experimental design requires both good treatment design and 

good block design and the ‘blocksdesign’package  is intended to provide an integrated general 

purpose design package for treatment and block designs especially for field and crop experiments. 

Treatments designs 

 

Treatment design for unstructured treatment sets is chiefly concerned with the choice of individual 

treatments and choice of replication and these choices usually depend on the purposes and economics 

of a trial and are not amenable to optimization methods. Structured treatments sets such as factorial 

designs or response surface designs (see Piepho and Edmondson 2018), however, usually depend on 

empirical linear models for interpretation and ‘blocksdesign’ can optimize the choice of treatments for 

any empirical linear treatment model for any combination of factorial or polynomial treatment model. 

The treatment design is selected from a candidate set of treatments by choosing a fixed number of 

treatments that optimize the information matrix of the treatments design using the D-optimality 

criterion (see Atkinson et. al. 2007). Treatments are selected from the candidate set with replacement 

unless the size of the candidate set exactly equals the size of the required design in which case the 

treatments design can be selected either with or without replacement. Selection without replacement 

allows the full candidate set to be selected and allows any arbitrary treatment set with any arbitrary 

replication to be used as the treatment design.  

Blocks designs 

 

Often experimental units will have high background variability and then proper account must be taken 

of plot-to-plot variability. In many situations, comparability between treatments can be improved by 



grouping the experimental units into blocks that are as homogeneous as possible and the choice of 

blocks design can be critical for the success of an experiment. The most basic type of are complete 

randomized blocks where each block contains one or more complete replicate sets of treatments. 

Complete randomized blocks estimate all treatment effects fully within blocks and are usually the best 

choice for small experiments. However, for large experiments, the variability within complete blocks 

can be large and then it may be beneficial to further sub-divide each complete replicate block into 

smaller nested sub-blocks to improve the precision of the within-sub-block treatment comparisons. 

Nested blocks 

Complete replicate blocks with a single level of nesting are called resolvable incomplete blocks and 

are widely used in practical research. Treatment information is estimated both within and between the 

incomplete blocks and a fully informative analysis requires the combination of within and between-

block treatment information using some form of mixed-model analysis, see, for example, Piepho and 

Edmondson (2018) and the R mixed model software package lme4 (Bates et. al. 2014). The aim of 

good block design is to maximize the precision of estimation of treatment effects and for a single level 

of nesting block designs can be optimized by maximizing the information content of the incomplete 

blocks. Various design criteria have been considered for block design (see, for example, John & 

Williams 1998) but the most general design criterion is D-optimality. The D-optimality criterion 

maximizes the determinant of the design information matrix and is the criterion of choice used by the 

‘blocksdesign’ package. 

Large designs 

Although resolvable block designs with a single level of nesting work well for small or moderate 

numbers of experimental units, a single level of nesting may be inadequate for large experiments such 

as field variety trials which may involve scores or hundreds of treatments. Small or moderate sized 

experiments with nested blocks of reasonable size will confound only a small amount of treatment 

information between blocks and should have good efficiency even when the inter- to intra-block 

variance ratio is high. For large sized experiments, however, if the block size of a single set of nested 

blocks is small enough to give good within-block homogeneity of variance, the inter-block space will 

be large and will confound a substantial amount of treatment information between blocks. 

Furthermore, the inter-block space will be large and may be highly heterogeneous. In these 

circumstances, the efficiency of the inter-block analysis will be low leading to a less than optimal 

recovery of inter-block information.  

Multi-level nesting 

Multi-level nesting gives a series of nested blocks where the nested inter-block space at each level of 

nesting can be assumed to have good homogeneity of variance and where only a small amount of 

useful treatment information is confounded within each nested inter-block space. In many situations, 

the variability of the nested inter-block space will decrease with depth of nesting and in these 

situations top-down optimization should ensure that the minimum possible amount of treatment 

information is confounded within each nested inter-block space. A mixed model analysis of a multi-

level nested block design using modern mixed model design is straightforward and allows the proper 

weighted combination of treatment information from each nested inter-block space.  

 



Factorial block designs 

Sometimes it can be advantageous to use a double blocking system in which one set of blocks is 

crossed with a second set of blocks in a fully factorial block design. In field trials, the two sets of 

blocks are often called row blocks and column blocks, respectively, and often coincide with physical 

rows and columns in the design layout. Double blocking can be valuable for controlling block effects 

in two dimensions simultaneously and crossed blocks designs are often assumed to fit a simple 

additive main effects model with additive row and additive column effects. However, additivity of 

block effects is a very strong assumption and unlikely to be valid for crossed block factors with many 

levels such as field designs with long rows, long columns and single plot row-by-column 

intersections. Crossed block designs with fewer levels per factor and with blocks of two or more plots 

in each interaction provide more flexibility for modelling factorial block effects but require 

assumptions at the design stage about the relative importance of possible block interaction effects 

versus block main effects. 

Factorial block interactions 

Assume that the block intersections of a crossed blocks design contain two or more plots and that the 

crossed blocks interaction effects are estimable. It is straightforward to optimize the main effects of a 

crossed block design by using a sequential fitting approach but once the row and column blocks are 

fixed it is not possible to optimize the rows-by-columns blocks by a simple swapping algorithm. Let         represent the model matrix for a crossed blocks design where   is the treatments design 

matrix and the block contrasts are partitioned into two orthogonalized sets   and   such that   

represents the main effects of the blocks design and   represents the rows-by-columns interaction 

effects Then the ‘blocksdesign’ algorithm optimizes the following weighted blocks adjusted treatment 
information matrix determinant for      :                                                                            
If     the information matrix in (1) is the usual additive crossed blocks model whereas if    , 

the information matrix is just the full factorial interaction blocks model. However, for intermediate 

weighting,      , the information matrix (1) down-weights the block interaction effects    by 

the square of the weighting parameter w. The best choice of down-weighting parameter   will depend 

on the design efficiencies of the various factorial block effects and is best found by trial error at the 

design stage, see examples below. 

Design optimization 

 

The ‘blocksdesign’ package has two design optimization functions:   

blocks: a special recursive function for nested block designs for unstructured treatment sets. The 

function generates designs for treatments with arbitrary levels of replication and arbitrary depth of 

nesting where each successive set of blocks is optimized within the levels of each preceding set of 

blocks using conditional D-optimality. Special block designs such as lattice designs or latin or Trojan 

square designs are constructed algebraically using mutually orthogonal Latin squares (MOLS). 

Designs based on prime-power MOLS require the ‘crossdes’ package, Sailer (2013). The block sizes 



are chosen automatically by the algorithm dependent on the block and treatment design and the block 

sizes for any particular set of blocks will always be as equal as possible and will never differ by more 

than one unit. The outputs from the blocks function include a data frame showing the allocation of 

treatments to blocks for each plot of the design and a table showing the achieved D- and A-efficiency 

factors for each set of nested blocks together with A-efficiency upper bounds, where available. A plan 

showing the allocation of treatments to blocks in the bottom level of the design is also included in the 

output. See John and Williams (1998) for a definition of A-efficiency.   

 design: a general purpose function for unstructured or general qualitative or quantitative factorial 

treatment models. The design inputs include a candidate set of treatments, a treatments model and the 

required blocks design. If the candidate set and the required design size differ, the treatment design is 

always selected from the candidate with replacement to optimize the information matrix of the 

required treatment model. If the number of candidate treatments exactly equals the design size, the 

full candidate set of treatments will normally provide the treatment design but a parameter ‘fullset’ 
can be set to FALSE if selection with replacement is required. After the treatment design has been 

selected, the blocks design algorithm builds the blocks design by sequentially adding blocks factors 

where each block factor is optimized conditional on all previous block factors. If the design has 

estimable crossed block factor interaction effects the blocks main effects and interaction effects are 

optimized as shown in equation (1). Outputs include a data frame of the block and treatment factors 

for each plot and a table showing the achieved D-efficiency factors for each set of nested or crossed 

blocks. Fractional factorial efficiency factors based on the generalized variance of the complete 

factorial design are also shown (see the design documentation for more details). 

Example designs for unstructured treatment sets 

 

Example 1 Four replicates of 12 treatments in 4 complete blocks with 4 sub-blocks nested in each 

main block (this corresponds to a rectangular lattice design see Plan 10.10 Cochran and Cox 1957) 

Inputs 
blocks(treatments = 12, replicates = 4 ,blocks = c(4, 4)) 
 
Outputs 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency   A-Bound 
1 Level_1      4            1            1         1 
2 Level_2     16    0.7176709    0.7096774 0.7096774 
 
$Plan 
    Level_1  Level_2 Blocks.Plots:  1  2  3 
1  Blocks_1 Blocks_1                4  6  5 
2  Blocks_1 Blocks_2                1  3 12 
3  Blocks_1 Blocks_3                8 10 11 
4  Blocks_1 Blocks_4                7  9  2 
5  Blocks_2 Blocks_1                7  6 12 
6  Blocks_2 Blocks_2                3  5 10 
7  Blocks_2 Blocks_3               11  4  9 
8  Blocks_2 Blocks_4                8  2  1 
9  Blocks_3 Blocks_1               11  3  7 
10 Blocks_3 Blocks_2                8 12  4 
11 Blocks_3 Blocks_3                6  2 10 
12 Blocks_3 Blocks_4                9  5  1 
13 Blocks_4 Blocks_1                8  5  7 
14 Blocks_4 Blocks_2                4  2  3 
15 Blocks_4 Blocks_3               10 12  9 
16 Blocks_4 Blocks_4                6  1 11 
 
 



This design is constructed algebraically from MOLS and because it is a balanced rectangular lattice 

should always attain the theoretical A-efficiency upper bound 

 

Example 2 Four replicates of 12 treatments and 16 replicates of one additional treatment in 4 

complete blocks with 4 sub-blocks nested in each main block 

Inputs 
blocks(treatments = c(12, 1),  replicates = c(4, 1), blocks = c(4, 4)) 
 
Outputs  
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency A-Bound 
1 Level_1      4            1            1    <NA> 
2 Level_2     16    0.8059274          0.8    <NA> 
 
 
$Plan 
    Level_1  Level_2 Blocks.Plots:  1  2  3  4 
1  Blocks_1 Blocks_1                7  5  4 13 
2  Blocks_1 Blocks_2                9 12 13  6 
3  Blocks_1 Blocks_3               13  8 10  3 
4  Blocks_1 Blocks_4                2 11 13  1 
5  Blocks_2 Blocks_1               13  6 11  4 
6  Blocks_2 Blocks_2                1  9 13  8 
7  Blocks_2 Blocks_3                2  5 10 13 
8  Blocks_2 Blocks_4               13  7 12  3 
9  Blocks_3 Blocks_1               13  5  8  6 
10 Blocks_3 Blocks_2                2  9  7 13 
11 Blocks_3 Blocks_3               13 10 12 11 
12 Blocks_3 Blocks_4                1  3 13  4 
13 Blocks_4 Blocks_1                9 13  4 10 
14 Blocks_4 Blocks_2                2  6 13  3 
15 Blocks_4 Blocks_3                1  5 12 13 
16 Blocks_4 Blocks_4                8 11  7 13 

 

This design should be identical with Example 1 except that a single control treatment (16 replicates) 

has been added to each of the 16 nested blocks. This design is constructed algorithmically by 

‘blocksdesign’ but in this example it would have been simpler (and more reliable) to add the control 

treatment to each block in Example 1 by hand. In other situations the replication pattern and the 

blocks pattern may not match so conveniently and then the algorithmic method is likely to be more 

efficient and more reliable than a simple heuristic method for adding control treatments. Upper 

efficiency upper bounds are not available because the design is not equally replicated but the 

efficiency factors can be useful for comparing different optimizations to ensure that that an optimal or 

near-optimal design has been found.  

 
Example 3a. Two replicates of 128 treatments with two main blocks and four levels of nesting with 

two nested sub-blocks at each level of nesting. 

Inputs 
blocks(128, 2, c(2, 2, 2, 2, 2, 2)) 
 
Outputs 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency   A-Bound 
1 Level_1      2            1            1         1 
2 Level_2      4    0.9891437    0.9844961 0.9883226 
3 Level_3      8    0.9677833    0.9548872 0.9601815 
4 Level_4     16    0.9264364    0.9007092 0.9057052 
5 Level_5     32    0.8419961     0.786915 0.7898712 
6 Level_6     64    0.6654802    0.5427813  0.566227 
 



 
$Plan 
    Level_1  Level_2  Level_3  Level_4  Level_5  Level_6 Blocks.Plots:   1   2   3   4 
1  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1                79  24  33  14 
2  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2                29  42  34 115 
3  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1                18  41  94   5 
4  Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2                26  21  30  39 
5  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1                36 112  82  72 
6  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2                81 110 106  78 
7  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1                65 113  23  63 
8  Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2                99   8 125  84 
9  Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1                52  58 117 127 
10 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2                11 116  19  10 
11 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1                91 126  59  75 
12 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2               104 107   4  64 
13 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1                85  98  28 123 
14 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2                49 120  16 118 
15 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1                71 100  67 102 
16 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2                68  17  95  77 
17 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1                87  53   2  69 
18 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2                61 108  76  66 
19 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1                96  88  15 128 
20 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2                31  54  92  62 
21 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1               101  25  37 109 
22 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2                89  73 111  43 
23 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1                22  86  97  13 
24 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2                74   3  83  90 
25 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1                56   1  38 105 
26 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2                45  60 103  47 
27 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1                57 121  44  35 
28 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2                93   6  27   7 
29 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1                46   9  55  20 
30 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2               114  32 122  40 
31 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1               119  80 124  50 
32 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2                51  70  12  48 
33 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1                64  16 101  94 
34 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2                54   9  61  22 
35 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1                81  85  20  41 
36 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2               117   8  47   7 
37 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1                36  56  69  31 
38 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2                19  32  98 124 
39 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1               105  25 123  42 
40 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2                84  91  90  18 
41 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1               108  30  33 109 
42 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2                77  38  58 128 
43 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1                63  55  70   1 
44 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2               126  89 112  67 
45 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1               100  97  28  60 
46 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2                96 119   2  99 
47 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1                72  13  11  39 
48 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2                48  45  14 107 
49 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1                86 118  29  15 
50 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2               127  35  37  82 
51 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1               102 110  27  50 
52 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2                24  46  88  75 
53 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1               121  66 103  95 
54 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2               122  52   4   3 
55 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1                78  68  21  74 
56 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2                40  79  23  62 
57 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1               120  43  44 106 
58 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2                26  71  12  53 
59 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1                73 104  80  92 
60 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2                 5   6 116 113 
61 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1               111 114  51  34 
62 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2                57  87  65  83 
63 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1                49  10 125  76 
64 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2                59  93  17 115 
 
 

This design shows the capability of blocksdesign for repeated or recursive nesting of very large block 

designs. The main replicate blocks comprise 128 plots and these main blocks are recursively split into 

pairs of sub-blocks at each of 5 levels of nesting. The optimization criterion is D-optimality but the 

$blocks_model output shows both the optimized D-efficiency and the A-efficiency for each level of 

nesting. As the design is equally replicated and has equal block sizes, A-efficiency upper bounds exist 

for each level of nesting and the $blocks_model efficiency factors show that the blocks design at each 



level of nesting is quite close to the theoretical upper bound except possibly for the bottom level of 

nesting. However, it is known that the estimated upper bounds become unreliable as the efficiency of 

the design is reduced therefore the bottom level bound of 0.566227 is probably not very useful. 

 For a more useful test, it is better to compare the block efficiencies of the multi-level nested design 

with the corresponding efficiencies of a set of nested blocks of the same size but from a single-level 

nested design. The following example shows the efficiencies of blocks of size four from a single-level 

nested blocks design with 32 blocks of size 4 nested in replicate blocks of size 128: 

Example 3b. Two replicates of 128 treatments with 2 main blocks and 32 blocks of size 4 nested in 

each main block. 

Inputs 
 blocks(128, 2, c(2, 32)) 
 
Outputs 
$blocks_model 
    Level Blocks D-Efficiency A-Efficiency  A-Bound 
1 Level_1      2            1            1        1 
2 Level_2     64    0.6656609    0.5441637 0.566227 
 
 

The D and A-efficiencies from the bottom level of the multi-level design were 0.6654802 and   

0.5427813, respectively, which shows that the reduction in efficiency of the bottom level blocks of 

the multi-level design due to the constraints imposed by the higher level blocks of the design was 

small especially for the D-optimality criterion which was the criterion used for design optimization. 

Example designs for general block and treatment designs 
 

Example 4  Four replicates of 12 treatments with 4 main replicate rows and 4 main replicate columns. 

Inputs  
treatments = factor(rep(1:12,4)) 
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48)) 
design(treatments,blocks,searches=200)$blocks_model 
 

Outputs 
Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency 
Rows      4            1            1         Rows      4            1            1 
Cols      4            1            1    Rows*Cols     16    0.7176709    0.7096774 
 

This example shows a row and column block design for 4 replicates of 12 treatments with blocks of 

size 3 in each row-by-column intersection. The design has efficiency 1 for the rows and columns 

blocks and this shows that the design has a complete set of treatments in each row and each column 

block. The default weighting of 0.5 was used which gave w = 0.25 in equation (1) and this weighting 

gave D and A-efficiencies of 0.7176709 and 0.7096774, respectively, for the 16 row-by-column 

intersection blocks. The design() function does not show upper bounds for the efficiency factors but 

for an equireplicate design with equal sized blocks, an A-efficiency upper bound can be found by 

using the blocksdesign::A_bound(n, v, b) function where n is the total number of plots, v is the total 

number of treatments and b is the total number of blocks. Using this function gives: 

A_bound(48,12,16) = 0.7096774 for the intersection blocks which shows that the design in Example 1 

attained the upper efficiency bound in each of the Rows, Columns and Rows*Columns block 

structures.  The example is a special design called a Trojan square and normally not all three block 



structures for this type of crossed block design can be optimized simultaneously. Nevertheless, the 

example shows the utility of the weighting method for dealing with crossed row and column type 

designs with blocks of plots nested in the rows-by-columns intersections. 

 

Example 5  Four replicates of 12 treatments with 4 main replicate rows and 4 main replicate columns 

and 3 sub-column blocks nested in each main column. 

Inputs 
treatments = factor(rep(1:12,4)) 
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48), subCols = gl(12,1,48)) 
design(treatments,blocks,searches=200)$blocks_model 
 

Outputs 

Blocks levels D-Efficiency A-Efficiency      Interactions levels D-Efficiency A-Efficiency 
Rows      4            1            1              Rows      4            1            1 
Cols      4            1            1         Rows*Cols     16    0.7176709    0.7096774 
subCols  12    0.8053142    0.7925806 Rows*Cols*subCols     48         <NA>         <NA> 
 

 
This example extends the design in Example 4 by nesting 3 sub-columns in each main column to give 

a physical layout for an experiment with four rows and 16 columns where the 16 columns are 

arranged in four replicate main columns blocks each containing 3 nested sub-columns. The main 

rows, main columns and main intersection block efficiencies are unchanged from example 4 because 

the sub-column blocks have been optimized by swaps made within the main row-by-column 

intersection blocks. The efficiency factors for the sub-column blocks can be compared with the 

efficiencies of a simple nested block design for 4 replicates of 48 treatments with 4 main blocks and 3 

sub-blocks in each main block by using the blocks(12,4,c(4,3))$blocks_model which gives D and A-

efficiency factors of 0.8053142 and 0.7925806 respectively. In this example, the sub-column blocks 

are fully efficient compared with a simple nested blocks design with blocks of the same size and there 

is no loss of efficiency due to the additional constraints of the row and column layout of the design. 

Note that the main rows and the sub-columns intersect in single plots therefore is no estimate of 

variability and no efficiency factors for the main rows by sub-columns interactions. 

 

Example 6 Two replicates of 272 treatments in a 16 x 34 design with nested rows and columns 

 

Inputs 
data(durban)  
durban=durban[c(3,1,2,4,5)] 
durban=durban[ do.call(order, durban), ] 
treatments=data.frame(gen=durban$gen) 
Reps = factor(rep(1:2,each=272)) 
Rows = factor(rep(1:16,each=34)) 
Col1 = factor(rep(rep(1:4,c(9,8,8,9)),16)) 
Col2 = factor(rep(rep(1:8,c(5,4,4,4,4,4,4,5)),16)) 
Col3 = factor(rep(1:34,16)) 
blocks = data.frame(Reps,Rows,Col1,Col2,Col3) 
design(treatments,blocks,searches=1)$blocks_model 
 
 
 
 
 
 
 



Outputs 
 
Blocks levels D-Efficiency A-Efficiency         Interactions levels D-Efficiency A-Efficiency 
Reps      2            1            1                     Reps    2            1            1 
Rows     16    0.9647882    0.9507384                Reps*Rows   16    0.9647882    0.9507384 
Col1      4     0.995518    0.9944849           Reps*Rows*Col1   64    0.8437223     0.781362 
Col2      8    0.9853798    0.9800809      Reps*Rows*Col1*Col2  128    0.6762391    0.5377895 
Col3     34    0.9207087    0.8914904 Reps*Rows*Col1*Col2*Col3  544         <NA>         <NA> 
 
 

This example explores an alternative blocking system for a real experimental design. The original 

design (see see Durban et al 2003) was a simple additive row-and-column design with rows 

comprising 34 plots and columns comprising 16 plots. Examination of the data (not shown here) 

suggests that these assumptions were highly unrealistic and that even after eliminating additive row 

and column effects the treatment adjusted residuals for each individual row were far from 

homogeneous. The example design shows the efficiency factors for a nested blocks design with three 

levels of nesting within columns which would have provided additional control of trends within rows. 

For comparison, the efficiency factors of the actual treatments design (see data set ‘durban’) assuming 
the block model shown above can be found from the following analysis: 

Inputs 
blockEfficiencies(treatments,blocks) 
 

Outputs 

Blocks levels D-Efficiency A-Efficiency         Interactions levels D-Efficiency A-Efficiency 
Reps      2            1            1                    Reps    2            1            1 
Rows     16    0.9640685    0.9479535               Reps*Rows   16    0.9640685    0.9479535 
Col1      4    0.9922603    0.9888487          Reps*Rows*Col1   64    0.8407711    0.7710131 
Col2      8    0.9826103    0.9752815     Reps*Rows*Col1*Col2  128    0.6748665    0.5368455 
Col3     34    0.9161031    0.8809427 Reps*Rows*Col1*Col2*Col3 544         <NA>         <NA> 
 
 

Every efficiency measure in the first analysis is an improvement on the corresponding efficiency 

measure in the second analysis. The first design gives more protection against unforeseen or 

unpredicted trends or patterns in the spatial layout of the design and therefore should provide a more 

robust design for a practical experiment. 

 

Example 7 Second-order model for a 1/3rd fraction of five qualitative 3-level factors in 3 blocks of 
size 27 
 
Inputs 
treatments = expand.grid(F1 = factor(1:3), F2 = factor(1:3), F3 = factor(1:3),  
F4 = factor(1:3), F5 = factor(1:3)) 
blocks=data.frame(main=gl(3,27)) 
model = " ~ (F1 + F2 + F3 + F4 + F5)^2" 
repeat { 
z=design(treatments,blocks,treatments_model=model,searches=5) 
if ( z$blocks_model[1,3] == 1) break } 
print(z) 
 
Outputs 
 
$treatments_model 
 
Treatment.model    D.Efficiency 
 ~ (F1 + F2 + F3 + F4 + F5)^2            1 
 
$blocks_model 
 
Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency 
main      2            1            1         main      2            1            1 



This example shows how the blocksdesign::design() function can fractionate and blocks factorial 

treatment designs. The example is a classical regular fraction of a second-order model for five 3-level 

factors arranged in 3 blocks each of size 27. An orthogonal design is easily constructed algebraically 

so it provides a useful test of the algorithmic method. The algorithm easily constructs a 1/3rd fraction 

of a full factorial design for the required model but not all such fractions can be divided into three 

orthogonal blocks and increasing the number of searches will not always help because once the 

algorithm finds an orthogonal treatment fraction it uses that fraction exclusively when searching for 

an orthogonal block design. For that reason, the example shows how to repeatedly re-construct the 

entire design until the required orthogonal block design is found.    

  

Example 8 Second-order response surface design for three 3-level factors assuming a 10 point design 

Input 

treatments = expand.grid(A = 1:3, B = 1:3, C = 1:3) 
blocks=data.frame(main=gl(1,10)) 
model = " ~ ( A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)" 
design(treatments,blocks,treatments_model=model,searches=5)  
 
$treatments_model 
 Treatment.model     D.Efficiency 
~ ( A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)    0.9262674 
 
$design 
   main A B C 
1     1 1 2 2 
2     1 2 3 1 
3     1 2 1 2 
4     1 1 1 3 
5     1 2 2 3 
6     1 3 3 3 
7     1 1 1 1 
8     1 3 2 1 
9     1 3 1 3 
10    1 1 3 3 

 

This example shows the D-optimum choice of 10 treatments from a complete factorial design for 
three 3-level factors assuming a second-order response surface model. The second-order model has 
nine parameters therefore a design based on only 10 point is almost saturated and may not be useful 
for model checking. Nevertheless, this choice of factorial combinations will give the maximum 
information on the assumed model. The D-efficiency factor is the ratio of the D-optimum efficiency 
of a design based on the full candidate set versus the D-optimum efficiency of the optimized design 
and has no special meaning as the full candidate set is not a natural choice of design for this treatment 
model. Nevertheless, the standardisation makes it simple to compare the efficiency of different 
optimizations and normally the design with the largest treatment design efficiency factor will be the 
preferred choice of design   

 

Comment on quantitative nuisance factors 

 

The ‘blocksdesign’ algorithm distinguishes between treatment factors and block factors because the 
treatments are the factors of interest whereas block factors are merely nuisance factors which need to 
be allowed for in the model fitting process. Therefore it makes sense to optimize the treatment factors 



first before the block factors to ensure maximum precision on the treatment factors irrespective of 
whether the block factors prove useful or not. The blocksdesign’ algorithm fits only qualitative block 
factors for factorial block effects but, if required, it would be possible to include quantitative 
polynomial nuisance effects as part of the ‘treatment’ effects model. However, that would require 
including the quantitative polynomial nuisance factors in the treatments candidate treatment set and it 
is not clear if selection with replacement would necessarily provide a suitable fraction for the actual 
required treatment model. Until further study is undertaken, the best option for robust trend or 
smoothing models is to use a multi-level nested block design with a sufficiently complex block 
structure to provide for good local control of variability at the scale required for trend or smoothing 
models.     
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