

Vignette for ‘blocksdesign’ package

Introduction

Comparative experiments in agriculture and biology often involve the estimation of treatment effects

against a background of high non-treatment variability. Treatments can be unstructured such as

comparisons between individual varieties or regimes or they can have complex factorial structures

such as factorial combinations of different fertilizer types. Unstructured treatments usually assume

that all pairwise treatment comparisons are of equal importance but structured treatments usually

require a treatment model for the effects of the different treatment components. Effective treatment

comparison requires effective control of background variability and most agricultural and biological

experiments use replicated treatments divided into blocks for the control of background variability.

The aim of good block design is to group treatments into blocks that are as homogeneous as possible

so that within-blocks treatment comparisons are made with improved precision relative to between-

blocks treatment comparisons. Good experimental design requires both good treatment design and

good block design and the ‘blocksdesign’package is intended to provide an integrated general

purpose design package for treatment and block designs especially for field and crop experiments.

Treatments designs

Treatment design for unstructured treatment sets is chiefly concerned with the choice of individual

treatments and choice of replication and these choices usually depend on the purposes and economics

of a trial and are not amenable to optimization methods. Structured treatments sets such as factorial

designs or response surface designs (see Piepho and Edmondson 2018), however, usually depend on

empirical linear models for interpretation and ‘blocksdesign’ can optimize the choice of treatments for

any empirical linear treatment model for any combination of factorial or polynomial treatment model.

The treatment design is selected from a candidate set of treatments by choosing a fixed number of

treatments that optimize the information matrix of the treatments design using the D-optimality

criterion (see Atkinson et. al. 2007). Treatments are selected from the candidate set with replacement

unless the size of the candidate set exactly equals the size of the required design in which case the

treatments design can be selected either with or without replacement. Selection without replacement

allows the full candidate set to be selected and allows any arbitrary treatment set with any arbitrary

replication to be used as the treatment design.

Blocks designs

Often experimental units will have high background variability and then proper account must be taken

of plot-to-plot variability. In many situations, comparability between treatments can be improved by

grouping the experimental units into blocks that are as homogeneous as possible and the choice of

blocks design can be critical for the success of an experiment. The most basic type of are complete

randomized blocks where each block contains one or more complete replicate sets of treatments.

Complete randomized blocks estimate all treatment effects fully within blocks and are usually the best

choice for small experiments. However, for large experiments, the variability within complete blocks

can be large and then it may be beneficial to further sub-divide each complete replicate block into

smaller nested sub-blocks to improve the precision of the within-sub-block treatment comparisons.

Nested blocks

Complete replicate blocks with a single level of nesting are called resolvable incomplete blocks and

are widely used in practical research. Treatment information is estimated both within and between the

incomplete blocks and a fully informative analysis requires the combination of within and between-

block treatment information using some form of mixed-model analysis, see, for example, Piepho and

Edmondson (2018) and the R mixed model software package lme4 (Bates et. al. 2014). The aim of

good block design is to maximize the precision of estimation of treatment effects and for a single level

of nesting block designs can be optimized by maximizing the information content of the incomplete

blocks. Various design criteria have been considered for block design (see, for example, John &

Williams 1998) but the most general design criterion is D-optimality. The D-optimality criterion

maximizes the determinant of the design information matrix and is the criterion of choice used by the

‘blocksdesign’ package.

Large designs

Although resolvable block designs with a single level of nesting work well for small or moderate

numbers of experimental units, a single level of nesting may be inadequate for large experiments such

as field variety trials which may involve scores or hundreds of treatments. Small or moderate sized

experiments with nested blocks of reasonable size will confound only a small amount of treatment

information between blocks and should have good efficiency even when the inter- to intra-block

variance ratio is high. For large sized experiments, however, if the block size of a single set of nested

blocks is small enough to give good within-block homogeneity of variance, the inter-block space will

be large and will confound a substantial amount of treatment information between blocks.

Furthermore, the inter-block space will be large and may be highly heterogeneous. In these

circumstances, the efficiency of the inter-block analysis will be low leading to a less than optimal

recovery of inter-block information.

Multi-level nesting

Multi-level nesting gives a series of nested blocks where the nested inter-block space at each level of

nesting can be assumed to have good homogeneity of variance and where only a small amount of

useful treatment information is confounded within each nested inter-block space. In many situations,

the variability of the nested inter-block space will decrease with depth of nesting and in these

situations top-down optimization should ensure that the minimum possible amount of treatment

information is confounded within each nested inter-block space. A mixed model analysis of a multi-

level nested block design using modern mixed model design is straightforward and allows the proper

weighted combination of treatment information from each nested inter-block space.

Factorial block designs

Sometimes it can be advantageous to use a double blocking system in which one set of blocks is

crossed with a second set of blocks in a fully factorial block design. In field trials, the two sets of

blocks are often called row blocks and column blocks, respectively, and often coincide with physical

rows and columns in the design layout. Double blocking can be valuable for controlling block effects

in two dimensions simultaneously and crossed blocks designs are often assumed to fit a simple

additive main effects model with additive row and additive column effects. However, additivity of

block effects is a very strong assumption and unlikely to be valid for crossed block factors with many

levels such as field designs with long rows, long columns and single plot row-by-column

intersections. Crossed block designs with fewer levels per factor and with blocks of two or more plots

in each interaction provide more flexibility for modelling factorial block effects but require

assumptions at the design stage about the relative importance of possible block interaction effects

versus block main effects.

Factorial block interactions

Assume that the block intersections of a crossed blocks design contain two or more plots and that the

crossed blocks interaction effects are estimable. It is straightforward to optimize the main effects of a

crossed block design by using a sequential fitting approach but once the row and column blocks are

fixed it is not possible to optimize the rows-by-columns blocks by a simple swapping algorithm. Let represent the model matrix for a crossed blocks design where is the treatments design

matrix and the block contrasts are partitioned into two orthogonalized sets and such that

represents the main effects of the blocks design and represents the rows-by-columns interaction

effects Then the ‘blocksdesign’ algorithm optimizes the following weighted blocks adjusted treatment
information matrix determinant for :
If the information matrix in (1) is the usual additive crossed blocks model whereas if ,

the information matrix is just the full factorial interaction blocks model. However, for intermediate

weighting, , the information matrix (1) down-weights the block interaction effects by

the square of the weighting parameter w. The best choice of down-weighting parameter will depend

on the design efficiencies of the various factorial block effects and is best found by trial error at the

design stage, see examples below.

Design optimization

The ‘blocksdesign’ package has two design optimization functions:

blocks: a special recursive function for nested block designs for unstructured treatment sets. The

function generates designs for treatments with arbitrary levels of replication and arbitrary depth of

nesting where each successive set of blocks is optimized within the levels of each preceding set of

blocks using conditional D-optimality. Special block designs such as lattice designs or latin or Trojan

square designs are constructed algebraically using mutually orthogonal Latin squares (MOLS).

Designs based on prime-power MOLS require the ‘crossdes’ package, Sailer (2013). The block sizes

are chosen automatically by the algorithm dependent on the block and treatment design and the block

sizes for any particular set of blocks will always be as equal as possible and will never differ by more

than one unit. The outputs from the blocks function include a data frame showing the allocation of

treatments to blocks for each plot of the design and a table showing the achieved D- and A-efficiency

factors for each set of nested blocks together with A-efficiency upper bounds, where available. A plan

showing the allocation of treatments to blocks in the bottom level of the design is also included in the

output. See John and Williams (1998) for a definition of A-efficiency.

 design: a general purpose function for unstructured or general qualitative or quantitative factorial

treatment models. The design inputs include a candidate set of treatments, a treatments model and the

required blocks design. If the candidate set and the required design size differ, the treatment design is

always selected from the candidate with replacement to optimize the information matrix of the

required treatment model. If the number of candidate treatments exactly equals the design size, the

full candidate set of treatments will normally provide the treatment design but a parameter ‘fullset’
can be set to FALSE if selection with replacement is required. After the treatment design has been

selected, the blocks design algorithm builds the blocks design by sequentially adding blocks factors

where each block factor is optimized conditional on all previous block factors. If the design has

estimable crossed block factor interaction effects the blocks main effects and interaction effects are

optimized as shown in equation (1). Outputs include a data frame of the block and treatment factors

for each plot and a table showing the achieved D-efficiency factors for each set of nested or crossed

blocks. Fractional factorial efficiency factors based on the generalized variance of the complete

factorial design are also shown (see the design documentation for more details).

Example designs for unstructured treatment sets

Example 1 Four replicates of 12 treatments in 4 complete blocks with 4 sub-blocks nested in each

main block (this corresponds to a rectangular lattice design see Plan 10.10 Cochran and Cox 1957)

Inputs
blocks(treatments = 12, replicates = 4 ,blocks = c(4, 4))

Outputs
$blocks_model
 Level Blocks D-Efficiency A-Efficiency A-Bound
1 Level_1 4 1 1 1
2 Level_2 16 0.7176709 0.7096774 0.7096774

$Plan
 Level_1 Level_2 Blocks.Plots: 1 2 3
1 Blocks_1 Blocks_1 4 6 5
2 Blocks_1 Blocks_2 1 3 12
3 Blocks_1 Blocks_3 8 10 11
4 Blocks_1 Blocks_4 7 9 2
5 Blocks_2 Blocks_1 7 6 12
6 Blocks_2 Blocks_2 3 5 10
7 Blocks_2 Blocks_3 11 4 9
8 Blocks_2 Blocks_4 8 2 1
9 Blocks_3 Blocks_1 11 3 7
10 Blocks_3 Blocks_2 8 12 4
11 Blocks_3 Blocks_3 6 2 10
12 Blocks_3 Blocks_4 9 5 1
13 Blocks_4 Blocks_1 8 5 7
14 Blocks_4 Blocks_2 4 2 3
15 Blocks_4 Blocks_3 10 12 9
16 Blocks_4 Blocks_4 6 1 11

This design is constructed algebraically from MOLS and because it is a balanced rectangular lattice

should always attain the theoretical A-efficiency upper bound

Example 2 Four replicates of 12 treatments and 16 replicates of one additional treatment in 4

complete blocks with 4 sub-blocks nested in each main block

Inputs
blocks(treatments = c(12, 1), replicates = c(4, 1), blocks = c(4, 4))

Outputs
$blocks_model
 Level Blocks D-Efficiency A-Efficiency A-Bound
1 Level_1 4 1 1 <NA>
2 Level_2 16 0.8059274 0.8 <NA>

$Plan
 Level_1 Level_2 Blocks.Plots: 1 2 3 4
1 Blocks_1 Blocks_1 7 5 4 13
2 Blocks_1 Blocks_2 9 12 13 6
3 Blocks_1 Blocks_3 13 8 10 3
4 Blocks_1 Blocks_4 2 11 13 1
5 Blocks_2 Blocks_1 13 6 11 4
6 Blocks_2 Blocks_2 1 9 13 8
7 Blocks_2 Blocks_3 2 5 10 13
8 Blocks_2 Blocks_4 13 7 12 3
9 Blocks_3 Blocks_1 13 5 8 6
10 Blocks_3 Blocks_2 2 9 7 13
11 Blocks_3 Blocks_3 13 10 12 11
12 Blocks_3 Blocks_4 1 3 13 4
13 Blocks_4 Blocks_1 9 13 4 10
14 Blocks_4 Blocks_2 2 6 13 3
15 Blocks_4 Blocks_3 1 5 12 13
16 Blocks_4 Blocks_4 8 11 7 13

This design should be identical with Example 1 except that a single control treatment (16 replicates)

has been added to each of the 16 nested blocks. This design is constructed algorithmically by

‘blocksdesign’ but in this example it would have been simpler (and more reliable) to add the control

treatment to each block in Example 1 by hand. In other situations the replication pattern and the

blocks pattern may not match so conveniently and then the algorithmic method is likely to be more

efficient and more reliable than a simple heuristic method for adding control treatments. Upper

efficiency upper bounds are not available because the design is not equally replicated but the

efficiency factors can be useful for comparing different optimizations to ensure that that an optimal or

near-optimal design has been found.

Example 3a. Two replicates of 128 treatments with two main blocks and four levels of nesting with

two nested sub-blocks at each level of nesting.

Inputs
blocks(128, 2, c(2, 2, 2, 2, 2, 2))

Outputs
$blocks_model
 Level Blocks D-Efficiency A-Efficiency A-Bound
1 Level_1 2 1 1 1
2 Level_2 4 0.9891437 0.9844961 0.9883226
3 Level_3 8 0.9677833 0.9548872 0.9601815
4 Level_4 16 0.9264364 0.9007092 0.9057052
5 Level_5 32 0.8419961 0.786915 0.7898712
6 Level_6 64 0.6654802 0.5427813 0.566227

$Plan
 Level_1 Level_2 Level_3 Level_4 Level_5 Level_6 Blocks.Plots: 1 2 3 4
1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 79 24 33 14
2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 29 42 34 115
3 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 18 41 94 5
4 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 26 21 30 39
5 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 36 112 82 72
6 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 81 110 106 78
7 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 65 113 23 63
8 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 99 8 125 84
9 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 52 58 117 127
10 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 11 116 19 10
11 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 91 126 59 75
12 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 104 107 4 64
13 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 85 98 28 123
14 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 49 120 16 118
15 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 71 100 67 102
16 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 68 17 95 77
17 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 87 53 2 69
18 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 61 108 76 66
19 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 96 88 15 128
20 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 31 54 92 62
21 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 101 25 37 109
22 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 89 73 111 43
23 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 22 86 97 13
24 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 74 3 83 90
25 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 56 1 38 105
26 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 45 60 103 47
27 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 57 121 44 35
28 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 93 6 27 7
29 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 46 9 55 20
30 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 114 32 122 40
31 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 119 80 124 50
32 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 51 70 12 48
33 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_1 64 16 101 94
34 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 Blocks_2 54 9 61 22
35 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_1 81 85 20 41
36 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 Blocks_2 117 8 47 7
37 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_1 36 56 69 31
38 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 Blocks_2 19 32 98 124
39 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_1 105 25 123 42
40 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 Blocks_2 84 91 90 18
41 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_1 108 30 33 109
42 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 Blocks_2 77 38 58 128
43 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_1 63 55 70 1
44 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 Blocks_2 126 89 112 67
45 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_1 100 97 28 60
46 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 Blocks_2 96 119 2 99
47 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_1 72 13 11 39
48 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 Blocks_2 48 45 14 107
49 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_1 86 118 29 15
50 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 Blocks_2 127 35 37 82
51 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_1 102 110 27 50
52 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 Blocks_2 24 46 88 75
53 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_1 121 66 103 95
54 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 Blocks_2 122 52 4 3
55 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_1 78 68 21 74
56 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 Blocks_2 40 79 23 62
57 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_1 120 43 44 106
58 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 Blocks_2 26 71 12 53
59 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_1 73 104 80 92
60 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 Blocks_2 5 6 116 113
61 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_1 111 114 51 34
62 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 Blocks_2 57 87 65 83
63 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_1 49 10 125 76
64 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 Blocks_2 59 93 17 115

This design shows the capability of blocksdesign for repeated or recursive nesting of very large block

designs. The main replicate blocks comprise 128 plots and these main blocks are recursively split into

pairs of sub-blocks at each of 5 levels of nesting. The optimization criterion is D-optimality but the

$blocks_model output shows both the optimized D-efficiency and the A-efficiency for each level of

nesting. As the design is equally replicated and has equal block sizes, A-efficiency upper bounds exist

for each level of nesting and the $blocks_model efficiency factors show that the blocks design at each

level of nesting is quite close to the theoretical upper bound except possibly for the bottom level of

nesting. However, it is known that the estimated upper bounds become unreliable as the efficiency of

the design is reduced therefore the bottom level bound of 0.566227 is probably not very useful.

 For a more useful test, it is better to compare the block efficiencies of the multi-level nested design

with the corresponding efficiencies of a set of nested blocks of the same size but from a single-level

nested design. The following example shows the efficiencies of blocks of size four from a single-level

nested blocks design with 32 blocks of size 4 nested in replicate blocks of size 128:

Example 3b. Two replicates of 128 treatments with 2 main blocks and 32 blocks of size 4 nested in

each main block.

Inputs
 blocks(128, 2, c(2, 32))

Outputs
$blocks_model
 Level Blocks D-Efficiency A-Efficiency A-Bound
1 Level_1 2 1 1 1
2 Level_2 64 0.6656609 0.5441637 0.566227

The D and A-efficiencies from the bottom level of the multi-level design were 0.6654802 and

0.5427813, respectively, which shows that the reduction in efficiency of the bottom level blocks of

the multi-level design due to the constraints imposed by the higher level blocks of the design was

small especially for the D-optimality criterion which was the criterion used for design optimization.

Example designs for general block and treatment designs

Example 4 Four replicates of 12 treatments with 4 main replicate rows and 4 main replicate columns.

Inputs
treatments = factor(rep(1:12,4))
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48))
design(treatments,blocks,searches=200)$blocks_model

Outputs
Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency
Rows 4 1 1 Rows 4 1 1
Cols 4 1 1 Rows*Cols 16 0.7176709 0.7096774

This example shows a row and column block design for 4 replicates of 12 treatments with blocks of

size 3 in each row-by-column intersection. The design has efficiency 1 for the rows and columns

blocks and this shows that the design has a complete set of treatments in each row and each column

block. The default weighting of 0.5 was used which gave w = 0.25 in equation (1) and this weighting

gave D and A-efficiencies of 0.7176709 and 0.7096774, respectively, for the 16 row-by-column

intersection blocks. The design() function does not show upper bounds for the efficiency factors but

for an equireplicate design with equal sized blocks, an A-efficiency upper bound can be found by

using the blocksdesign::A_bound(n, v, b) function where n is the total number of plots, v is the total

number of treatments and b is the total number of blocks. Using this function gives:

A_bound(48,12,16) = 0.7096774 for the intersection blocks which shows that the design in Example 1

attained the upper efficiency bound in each of the Rows, Columns and Rows*Columns block

structures. The example is a special design called a Trojan square and normally not all three block

structures for this type of crossed block design can be optimized simultaneously. Nevertheless, the

example shows the utility of the weighting method for dealing with crossed row and column type

designs with blocks of plots nested in the rows-by-columns intersections.

Example 5 Four replicates of 12 treatments with 4 main replicate rows and 4 main replicate columns

and 3 sub-column blocks nested in each main column.

Inputs
treatments = factor(rep(1:12,4))
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48), subCols = gl(12,1,48))
design(treatments,blocks,searches=200)$blocks_model

Outputs

Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency
Rows 4 1 1 Rows 4 1 1
Cols 4 1 1 Rows*Cols 16 0.7176709 0.7096774
subCols 12 0.8053142 0.7925806 Rows*Cols*subCols 48 <NA> <NA>

This example extends the design in Example 4 by nesting 3 sub-columns in each main column to give

a physical layout for an experiment with four rows and 16 columns where the 16 columns are

arranged in four replicate main columns blocks each containing 3 nested sub-columns. The main

rows, main columns and main intersection block efficiencies are unchanged from example 4 because

the sub-column blocks have been optimized by swaps made within the main row-by-column

intersection blocks. The efficiency factors for the sub-column blocks can be compared with the

efficiencies of a simple nested block design for 4 replicates of 48 treatments with 4 main blocks and 3

sub-blocks in each main block by using the blocks(12,4,c(4,3))$blocks_model which gives D and A-

efficiency factors of 0.8053142 and 0.7925806 respectively. In this example, the sub-column blocks

are fully efficient compared with a simple nested blocks design with blocks of the same size and there

is no loss of efficiency due to the additional constraints of the row and column layout of the design.

Note that the main rows and the sub-columns intersect in single plots therefore is no estimate of

variability and no efficiency factors for the main rows by sub-columns interactions.

Example 6 Two replicates of 272 treatments in a 16 x 34 design with nested rows and columns

Inputs
data(durban)
durban=durban[c(3,1,2,4,5)]
durban=durban[do.call(order, durban),]
treatments=data.frame(gen=durban$gen)
Reps = factor(rep(1:2,each=272))
Rows = factor(rep(1:16,each=34))
Col1 = factor(rep(rep(1:4,c(9,8,8,9)),16))
Col2 = factor(rep(rep(1:8,c(5,4,4,4,4,4,4,5)),16))
Col3 = factor(rep(1:34,16))
blocks = data.frame(Reps,Rows,Col1,Col2,Col3)
design(treatments,blocks,searches=1)$blocks_model

Outputs

Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency
Reps 2 1 1 Reps 2 1 1
Rows 16 0.9647882 0.9507384 Reps*Rows 16 0.9647882 0.9507384
Col1 4 0.995518 0.9944849 Reps*Rows*Col1 64 0.8437223 0.781362
Col2 8 0.9853798 0.9800809 Reps*Rows*Col1*Col2 128 0.6762391 0.5377895
Col3 34 0.9207087 0.8914904 Reps*Rows*Col1*Col2*Col3 544 <NA> <NA>

This example explores an alternative blocking system for a real experimental design. The original

design (see see Durban et al 2003) was a simple additive row-and-column design with rows

comprising 34 plots and columns comprising 16 plots. Examination of the data (not shown here)

suggests that these assumptions were highly unrealistic and that even after eliminating additive row

and column effects the treatment adjusted residuals for each individual row were far from

homogeneous. The example design shows the efficiency factors for a nested blocks design with three

levels of nesting within columns which would have provided additional control of trends within rows.

For comparison, the efficiency factors of the actual treatments design (see data set ‘durban’) assuming
the block model shown above can be found from the following analysis:

Inputs
blockEfficiencies(treatments,blocks)

Outputs

Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency
Reps 2 1 1 Reps 2 1 1
Rows 16 0.9640685 0.9479535 Reps*Rows 16 0.9640685 0.9479535
Col1 4 0.9922603 0.9888487 Reps*Rows*Col1 64 0.8407711 0.7710131
Col2 8 0.9826103 0.9752815 Reps*Rows*Col1*Col2 128 0.6748665 0.5368455
Col3 34 0.9161031 0.8809427 Reps*Rows*Col1*Col2*Col3 544 <NA> <NA>

Every efficiency measure in the first analysis is an improvement on the corresponding efficiency

measure in the second analysis. The first design gives more protection against unforeseen or

unpredicted trends or patterns in the spatial layout of the design and therefore should provide a more

robust design for a practical experiment.

Example 7 Second-order model for a 1/3rd fraction of five qualitative 3-level factors in 3 blocks of
size 27

Inputs
treatments = expand.grid(F1 = factor(1:3), F2 = factor(1:3), F3 = factor(1:3),
F4 = factor(1:3), F5 = factor(1:3))
blocks=data.frame(main=gl(3,27))
model = " ~ (F1 + F2 + F3 + F4 + F5)^2"
repeat {
z=design(treatments,blocks,treatments_model=model,searches=5)
if (z$blocks_model[1,3] == 1) break }
print(z)

Outputs

$treatments_model

Treatment.model D.Efficiency
 ~ (F1 + F2 + F3 + F4 + F5)^2 1

$blocks_model

Blocks levels D-Efficiency A-Efficiency Interactions levels D-Efficiency A-Efficiency
main 2 1 1 main 2 1 1

This example shows how the blocksdesign::design() function can fractionate and blocks factorial

treatment designs. The example is a classical regular fraction of a second-order model for five 3-level

factors arranged in 3 blocks each of size 27. An orthogonal design is easily constructed algebraically

so it provides a useful test of the algorithmic method. The algorithm easily constructs a 1/3rd fraction

of a full factorial design for the required model but not all such fractions can be divided into three

orthogonal blocks and increasing the number of searches will not always help because once the

algorithm finds an orthogonal treatment fraction it uses that fraction exclusively when searching for

an orthogonal block design. For that reason, the example shows how to repeatedly re-construct the

entire design until the required orthogonal block design is found.

Example 8 Second-order response surface design for three 3-level factors assuming a 10 point design

Input

treatments = expand.grid(A = 1:3, B = 1:3, C = 1:3)
blocks=data.frame(main=gl(1,10))
model = " ~ (A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)"
design(treatments,blocks,treatments_model=model,searches=5)

$treatments_model
 Treatment.model D.Efficiency
~ (A + B + C)^2 + I(A^2) + I(B^2) + I(C^2) 0.9262674

$design
 main A B C
1 1 1 2 2
2 1 2 3 1
3 1 2 1 2
4 1 1 1 3
5 1 2 2 3
6 1 3 3 3
7 1 1 1 1
8 1 3 2 1
9 1 3 1 3
10 1 1 3 3

This example shows the D-optimum choice of 10 treatments from a complete factorial design for
three 3-level factors assuming a second-order response surface model. The second-order model has
nine parameters therefore a design based on only 10 point is almost saturated and may not be useful
for model checking. Nevertheless, this choice of factorial combinations will give the maximum
information on the assumed model. The D-efficiency factor is the ratio of the D-optimum efficiency
of a design based on the full candidate set versus the D-optimum efficiency of the optimized design
and has no special meaning as the full candidate set is not a natural choice of design for this treatment
model. Nevertheless, the standardisation makes it simple to compare the efficiency of different
optimizations and normally the design with the largest treatment design efficiency factor will be the
preferred choice of design

Comment on quantitative nuisance factors

The ‘blocksdesign’ algorithm distinguishes between treatment factors and block factors because the
treatments are the factors of interest whereas block factors are merely nuisance factors which need to
be allowed for in the model fitting process. Therefore it makes sense to optimize the treatment factors

first before the block factors to ensure maximum precision on the treatment factors irrespective of
whether the block factors prove useful or not. The blocksdesign’ algorithm fits only qualitative block
factors for factorial block effects but, if required, it would be possible to include quantitative
polynomial nuisance effects as part of the ‘treatment’ effects model. However, that would require
including the quantitative polynomial nuisance factors in the treatments candidate treatment set and it
is not clear if selection with replacement would necessarily provide a suitable fraction for the actual
required treatment model. Until further study is undertaken, the best option for robust trend or
smoothing models is to use a multi-level nested block design with a sufficiently complex block
structure to provide for good local control of variability at the scale required for trend or smoothing
models.

References

Atkinson, A.C, Donev, A.N. & Tobias, R. D. (2007). Optimum Experimental Designs, with SAS.

Oxford, Oxford University Press.

BATES D., MAECHLER M., BOLKER B., WALKER S. (2015). Fitting Linear Mixed-Effects

Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

John, J. A & Williams, E. R. (1998). Cyclic and Computer Generated Designs. 2nd Edition, Chapman

and Hall.

Martin Oliver Sailer (2013). crossdes: Construction of Crossover Designs. R package version 1.1-

1.https://CRAN.R-project.org/package=crossdes

Piepho, Hans-Peter & Edmondson R. N. (2018). A tutorial on the statistical analysis of factorial
experiments with qualitative and quantitative treatment factor levels. Journal of Agronomy and Crop
Science, 204, 429-455.

https://cran.r-project.org/package=crossdes
https://www.researchgate.net/journal/0931-2250_Journal_of_Agronomy_and_Crop_Science
https://www.researchgate.net/journal/0931-2250_Journal_of_Agronomy_and_Crop_Science

