
Using ‘buildmer’ to automatically find & compare
maximal (mixed) models

Cesko C. Voeten
27 Augustus 2019

Introduction

Barr, Levy, Scheepers, & Tily (2013) suggest that for valid statistical inference, a regression model must
control for all possible confounding factors, specifically those coming from random effects such as subjects
and items. Bates, Kliegl, Vasishth, & Baayen (2015) suggest that this proposed strategy leads to overfitting
and that an appropriately-parsimonious model must be chosen, preferably based on theory but possibly also
using stepwise elimination (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). Both strategies require a
maximal model to be identified (for Barr et al. (2013), this is the final model; for Matuschek et al. (2017),
this is the basis for backward stepwise elimination), but for many psycholinguistic experiments, the truly
maximal model will fail to converge and a reasonable subset model needs to be chosen.

The buildmer package aims to automate the procedures identifying the maximal model that can still converge
& performing backward stepwise elimination based on a variety of criteria (change in log-likelihood, AIC,
BIC). The package does not contain any model-fitting code, but functions as an administrative loop around
other packages by simply building up a maximal formula object and passing it along. Currently, the package
supports models that can be fitted by (g)lm, (g)lmer (package lme4), gls, lme (package nlme), gam, bam
(package mgcv), gamm4 (package gamm4), glmmTMB (package glmmTMB), multinom (package nnet), glmertree
(package glmertree), and it can use JuliaCall to drive Douglas Bates’s MixedModels package for Julia.

A vowel study

To illustrate what buildmer can do for you, the package comes with a particularly pathological dataset called
vowels. It looks like this:
library(buildmer)
head(vowels)

participant word vowel neighborhood timepoint f1 f2
1 1 Keulen oey 36.1961 0.05118788 407.8202 1838.611
2 1 Keulen oey 36.1961 0.11941466 416.2701 1635.436
3 1 Keulen oey 36.1961 0.18764143 450.6488 1654.561
4 1 Keulen oey 36.1961 0.25586821 449.7890 1645.075
5 1 Keulen oey 36.1961 0.32409498 444.6863 1606.261
6 1 Keulen oey 36.1961 0.39232176 438.5311 1607.581
following information stress
1 lOns 4.511475 TRUE
2 lOns 4.511475 TRUE
3 lOns 4.511475 TRUE
4 lOns 4.511475 TRUE
5 lOns 4.511475 TRUE
6 lOns 4.511475 TRUE

This is a pilot study that I conducted when I was just starting my PhD, and attempted to analyze in probably
the worst way possible. The research question was whether vowel diphthongization in the Dutch vowels

1

/e:,ø:,o:,Ei,œy/ was affected by syllable structure, such that an /l/ within the same syllable would block
diphthongization but an /l/ in the onset of the next syllable would permit it. In plain English, the question
was whether these five vowels in Dutch were pronounced like the vowel in English ‘fear’, with the tongue
held constant for the duration of the vowel, or like the vowel in English ‘fade’, which has an upward tongue
movement towards the position of the vowel in English ‘fit’. The position of the tongue can be measured in a
simple word-list reading experiment by measuring the speech signal’s so-called ‘first formant’, labeled f1
in this dataset, where lower F1 = higher tongue. Thus, the research question is if the F1 either changes or
remains stable for the duration of each vowel depending on whether the following consonant is an ‘l’ in the
same syllable (coded as lCda in column following) or in the next syllable (coded as lOns). Additionally, I
wanted to control for the factors neighborhood (a measure of entropy: ‘if only one sound is changed anywhere
in this word, how many new words could be generated?’), information (another measure of entropy derived
from the famous Shannon information measure), and stress (a dummy encoding whether the vowel was
stressed or unstressed).

An entirely reasonable way to analyze these data, and the approach I ultimately pursued later in my PhD,
would be to take samples from each vowel at 75% realization and at 25% realization, subtract these two,
and use this ‘delta score’ as dependent variable: if this score is non-zero, the vowel changes over time, if it is
approximately zero, the vowel was stable. In this dataset, however, I instead took as many samples as were
present in the part of the wave file corresponding to these vowels, and wanted to fit a linear regression line
through all of these samples as a function of the sample number. This number, scaled from 0 to 1 per token,
is listed in column timepoint. To make the model even more challenging to fit, only six participants were
tested in this pilot study, making it very difficult to find an optimum when including a full random-slope
structure.

In lme4 syntax, the fully maximal model would be given by the following formula:
f <- f1 ~ vowel*timepoint*following * neighborhood*information*stress +

(vowel*timepoint*following * neighborhood+information+stress | participant) +
(timepoint | word)

It should go without saying that this is a completely unreasonable model that will never converge. A first
step towards reducing the model structure could be to reason that effects of neighborhood, information, and
stress, which are all properties of the individual words in this data set, could be subsumed into the random
effects by words. This reduces the maximal model to:
f <- f1 ~ vowel*timepoint*following +

(vowel*timepoint*following | participant) +
(timepoint | word)

This model is still somewhat on the large side, so we will now use buildmer to check: - if this model is
capable of converging at all; - if all of these terms are really necessary.

Finding the maximal feasible model & doing stepwise elimination
from it

To illustrate buildmer’s modular capabilities, we’ll fit this model in two steps. We start by identifying the
maximal model that is still capable of converging. We do this by running buildmer, with the direction
argument set to 'order'. We also set lme4s optimizer to bobyqa, as this manages to get much further than
the default nloptwrap. The output of the command is edited for brevity.
library(lme4)
m <- buildmer(f,data=vowels,direction='order',control=lmerControl(optimizer='bobyqa'))

Determining predictor order
Currently evaluating LRT for: vowel, timepoint, following

2

Fitting as (g)lm: f1 ~ vowel
Fitting as (g)lm: f1 ~ timepoint
Fitting as (g)lm: f1 ~ following
Updating formula: f1 ~ following
Currently evaluating LRT for: vowel, timepoint
Fitting as (g)lm: f1 ~ following + vowel
Fitting as (g)lm: f1 ~ following + timepoint
Updating formula: f1 ~ following + vowel
Currently evaluating LRT for: timepoint, vowel:following
[...]
Currently evaluating LRT for: vowel | participant
Fitting via lme4, with REML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + following:vowel:timepoint + (1 + timepoint | word) + (1 + timepoint + following + timepoint:following + vowel | participant)
boundary (singular) fit: see ?isSingular
None of the models converged - giving up ordering attempt.

The order step is useful if the maximal model includes random effects: buildmer will start out with an
empty model and keeps adding terms to this model until convergence can no longer be achieved. The order
step adds terms in order of their contribution to a certain criterion, such that the most important random
slopes will be included first; this criterion is controlled by the crit argument. The default criterion is the
significance of the change in log-likelihood (LRT: terms which provide lower chi-square p values are considered
more important), but other options are also supported. These are the raw log-likelihood (LL: terms which
provide the largest increase in the log-likelihood; this measure will favor categorical predictors with many
levels), AIC (AIC), and BIC (BIC); you can select among them by passing e.g. crit='LRT'. The default
direction is c('order','backward'), i.e. proceeding directly to backward stepwise elimination, but for
illustration purposes we separate those steps here. (The crit argument also accepts vectors, such that
e.g. direction=c('order','backward'),crit=c('LL','LRT') is allowed.)

After a lot of model fits, the model converges onto the following maximal model:
(f <- formula(m@model))

f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint +
following:vowel + following:vowel:timepoint + (1 + timepoint +
following + timepoint:following | participant) + (1 + timepoint |
word)

The maximal feasible model, i.e. the maximal model that is actually capable of converging, is one excluding
random slopes for vowels by participants. This is not optimal for inference purposes, but for now it will
do; we will see below that taking out the correlation parameters in the random effects makes it possible to
include random slopes for vowels as well. We now proceed to the next step: stepwise elimination. This could
also be done using e.g. lmerTest, but since the machinery was needed for direction='order' anyway it
came at very little cost to also implement stepwise elimination in buildmer (both forward and backward are
supported). This uses the same elimination criterion as could be specified previously; if left unspecified, it
defaults to crit='LRT', for the likelihood-ratio test. This is the preferred test for mixed models in Matuschek
et al. (2017).
m <- buildmer(f,data=vowels,direction='backward',control=lmerControl(optimizer='bobyqa'))

Fitting ML and REML reference models
Fitting with REML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + following:vowel:timepoint + (1 + timepoint | word) + (1 + timepoint + following + timepoint:following | participant)
Fitting with ML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + following:vowel:timepoint + (1 + timepoint | word) + (1 + timepoint + following + timepoint:following | participant)
Testing terms
Fitting with ML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + (1 + timepoint | word) + (1 + timepoint + following + timepoint:following | participant)
Fitting with REML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + following:vowel:timepoint + (1 | word) + (1 + timepoint + following + timepoint:following | participant)
Fitting with REML: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + following:vowel:timepoint + (1 + timepoint | word) + (1 + timepoint + following | participant)
grouping term
1 <NA> 1

3

2 <NA> following
3 <NA> vowel
4 <NA> timepoint
5 <NA> vowel:timepoint
6 <NA> following:timepoint
7 <NA> following:vowel
8 <NA> following:vowel:timepoint
9 participant 1
10 participant timepoint
11 participant following
12 participant timepoint:following
13 word 1
14 word timepoint
block LRT Iteration
1 NA NA 1 NA 1
2 NA NA following NA 1
3 NA NA vowel NA 1
4 NA NA timepoint NA 1
5 NA NA vowel:timepoint NA 1
6 NA NA following:timepoint NA 1
7 NA NA following:vowel NA 1
8 NA NA following:vowel:timepoint 4.967287e-01 1
9 NA participant 1 NA 1
10 NA participant timepoint NA 1
11 NA participant following NA 1
12 NA participant timepoint:following 8.319280e-11 1
13 NA word 1 NA 1
14 NA word timepoint 2.134598e-153 1
Updating formula: f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint + following:vowel + (1 + timepoint | word) + (1 + timepoint + following + timepoint:following | participant)
Fitting ML and REML reference models
[...]
All terms are significant
Finalizing by converting the model to lmerTest

By default, buildmer automatically calculates summary and ANOVA statistics based on Wald z-scores
(summary) or Wald χ2 tests (ANOVA). For answering our research question, we look at the summary:
summary(m)

Linear mixed model fit by REML (p-values based on Wald z-scores) [lmerMod]
Formula:
f1 ~ following + vowel + timepoint + vowel:timepoint + following:timepoint +
(1 + timepoint | word) + (1 + timepoint + following + timepoint:following |
participant)
Data: vowels
Control: control
##
REML criterion at convergence: 149448.9
##
Scaled residuals:
Min 1Q Median 3Q Max
-6.2347 -0.4168 0.0102 0.3877 21.6815
##
Random effects:
Groups Name Variance Std.Dev. Corr

4

word (Intercept) 2539.3 50.39
timepoint 11089.5 105.31 -0.78
participant (Intercept) 2199.7 46.90
timepoint 3423.5 58.51 -0.50
followinglOns 747.3 27.34 0.11 0.65
timepoint:followinglOns 3053.2 55.26 0.64 -0.88 -0.67
Residual 10018.1 100.09
Number of obs: 12351, groups: word, 148; participant, 6
##
Fixed effects:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 551.733 20.075 27.484 < 2e-16 ***
followinglOns 49.106 14.504 3.386 0.00071 ***
vowel1 114.254 8.951 12.765 < 2e-16 ***
vowel2 142.083 8.910 15.946 < 2e-16 ***
vowel3 -125.955 8.626 -14.601 < 2e-16 ***
vowel4 -79.211 9.970 -7.945 1.94e-15 ***
timepoint -15.445 26.856 -0.575 0.56523
vowel1:timepoint -39.663 18.239 -2.175 0.02966 *
vowel2:timepoint -91.032 18.171 -5.010 5.45e-07 ***
vowel3:timepoint 105.886 17.554 6.032 1.62e-09 ***
vowel4:timepoint 38.924 20.271 1.920 0.05483 .
followinglOns:timepoint -136.888 29.411 -4.654 3.25e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
(Intr) fllwnO vowel1 vowel2 vowel3 vowel4 timpnt vwl1:t vwl2:t
follwnglOns -0.043
vowel1 -0.014 0.020
vowel2 -0.017 0.025 -0.225
vowel3 -0.029 0.031 -0.210 -0.207
vowel4 0.034 -0.031 -0.278 -0.276 -0.266
timepoint -0.533 0.596 0.017 0.020 0.034 -0.041
vowl1:tmpnt 0.011 -0.016 -0.787 0.177 0.165 0.218 -0.021
vowl2:tmpnt 0.013 -0.020 0.177 -0.787 0.163 0.217 -0.025 -0.226
vowl3:tmpnt 0.023 -0.024 0.166 0.164 -0.788 0.210 -0.044 -0.210 -0.208
vowl4:tmpnt -0.027 0.024 0.219 0.218 0.210 -0.788 0.051 -0.277 -0.276
fllwnglOns: 0.567 -0.720 -0.016 -0.020 -0.024 0.024 -0.788 0.020 0.024
vwl3:t vwl4:t
follwnglOns
vowel1
vowel2
vowel3
vowel4
timepoint
vowl1:tmpnt
vowl2:tmpnt
vowl3:tmpnt
vowl4:tmpnt -0.265
fllwnglOns: 0.031 -0.030

The highly significant effect for followinglOns:timepoint shows that if the following /l/ is in the onset
of the next syllable, there is a much larger change in F1 compared to the reference condition of having the

5

following /l/ in the coda of the same syllable.

Diagonal random-effects covariances

One hidden feature that is present in buildmer but that has not yet been discussed is the ability to group
terms together in blocks for ordering and stepwise-elimination purposes. While the first argument to buildmer
functions is normally a formula, it is also possible to pass a buildmer terms list'. This is a data frame
as generated bytabulate.formula‘:
tabulate.formula(f)

index grouping term
1 <NA> <NA> 1
2 <NA> <NA> following
3 <NA> <NA> vowel
4 <NA> <NA> timepoint
5 <NA> <NA> vowel:timepoint
6 <NA> <NA> following:timepoint
7 <NA> <NA> following:vowel
8 <NA> <NA> following:vowel:timepoint
9 9 1 participant 1
10 9 1 participant timepoint
11 9 1 participant following
12 9 1 participant timepoint:following
13 10 1 word 1
14 10 1 word timepoint
code block
1 1 NA NA 1
2 following NA NA following
3 vowel NA NA vowel
4 timepoint NA NA timepoint
5 vowel:timepoint NA NA vowel:timepoint
6 following:timepoint NA NA following:timepoint
7 following:vowel NA NA following:vowel
8 following:vowel:timepoint NA NA following:vowel:timepoint
9 9 1 participant 1 NA participant 1
10 9 1 participant timepoint NA participant timepoint
11 9 1 participant following NA participant following
12 9 1 participant timepoint:following NA participant timepoint:following
13 10 1 word 1 NA word 1
14 10 1 word timepoint NA word timepoint

This is an internal buildmer data structure, but it is rather self-explanatory in how it is used. It is possible to
modify the block column to force terms to be evaluated as a single group, rather than separately, by giving
these terms the same block value. These values are not used in any other way than this purpose of selecting
terms to be grouped together, which can be exploited to fit models with diagonal random-effects structures.
The first step is to create explicit columns for the factor vowel; if this is not done, only random-effect
correlations between vowels and other random slopes will be eliminated and those between the vowels
themselves will remain.
vowels <- cbind(vowels,model.matrix(~vowel,vowels))

We next create a formula for this modified data set. To make it easier to type, we do not explicitly
diagonalize the formula ourselves, but use buildmer’s diag() method for formula objects. We then call

6

tabulate.formula() on the new formula, providing a regular expression that matches terms belonging to
the same vowel. Note that we cannot use the simple vowel factor in the fixed-effects part of the formula,
as this will break buildmer’s marginality checks when considering which terms are eligible for inclusion or
removal.
form <- diag(f1 ~ (vowel1+vowel2+vowel3+vowel4)*timepoint*following +

((vowel1+vowel2+vowel3+vowel4)*timepoint*following | participant) +
(timepoint | word))

terms <- tabulate.formula(form,group='vowel[^:]')

Finally, we can instruct buildmer to use this specially-crafted terms object by simply passing it along instead
of a regular formula. buildmer will recognize what is going on, and look for an additional dep argument for
the name of the dependent variable in the data frame (provided as a character string).
m <- buildmer(terms,data=vowels,dep='f1',control=lmerControl(optimizer='bobyqa'))

This approach allows random slopes for vowel and for vowel:timepoint to make it in, both of which
significantly improve model fit. This model seems much more adequate for statistical inference.

Other options

Because buildmer does not do any model fitting by itself but is only an administrative formula processor
around pre-existing modeling fuctions, it was straightforward to extend it beyond its original purpose of
mixed-effects models. The logical extension of buildmer to GAMMs is fully supported (with the exception
of gamm models; see buildgamm() for options). Relevant functions are available as buildgam, buildbam,
and buildgamm4. glmmTMB models are also supported via function buildglmmTMB, although their syntax for
covariance structures (e.g. diag(timepoint | participant)) is not; these models are still useful for their
ability to handle autocorrelation, zero-inflation, and to use REML for GLMMs. From package nlme, gls
models are supported via buildgls, and the fixed-effects part of lme models can be eliminated via buildlme.
At the request of Willemijn Heeren, buildmer was also extended to handle multinomial-logistic-regression
models fitted by function multinom from package nnet; see function buildmultinom. It is also possible to use
buildjulia to drive Douglas Bates’s MixedModels package for Julia. Finally, buildmertree was recently
added, which makes it possible to do term ordering and backward elimination of the random-effects part of
glmertree models.

References

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis
testing: Keep it maximal. Journal of Memory and Language, 68 (3), 255–278.

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv Preprint
arXiv:1506.04967.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in
linear mixed models. Journal of Memory and Language, 94, 305–315.

7

	Introduction
	A vowel study
	Finding the maximal feasible model & doing stepwise elimination from it
	Diagonal random-effects covariances
	Other options
	References

