An Introduction to cpfa

Matthew Snodgress
University of Minnesota, June 17, 2022
Overview
Introduction
Installation
Example 1: Three-way Tensor with Binary Response
Example 2: Four-way Tensor with Multiclass Response
Concluding Thoughts
Appendix: Classification Methods
References

Acknowledgements

Overview

Package cpfa implements a k-fold cross-validation procedure to predict class labels using component loadings
from a single mode of a Parallel Factor Analysis (Parafac) model-1 (Harshman, 1970; Harshman & Lundy,
1994), which is fit to a three-way or four-way data tensor. After fitting a Parafac model with package
multiway via an alternating least squares algorithm (Helwig, 2019), estimated component loadings from one
mode of this model are passed to one or several classification methods. These methods and the packages
used to implement them include: penalized logistic regression (PLR) implemented through glmnet (Zou &
Hastie, 2005; Friedman, Hastie, & Tibshirani, 2010); support vector machine (SVM) implemented through
€1071 (Cortes & Vapnik, 1995; Meyer et al., 2021); random forest (RF) through randomForest (Breiman,
2001; Liaw & Wiener, 2002); and feed-forward neural network (NN) through nnet (Ripley, 1994; Venables
& Ripley, 2002). For each method, a k-fold cross-validation is conducted to tune classification parameters
using estimated Parafac component loadings, optimizing class label prediction. Multiple constraint options
are available to impose on any mode of the Parafac model during the estimation step (see Helwig, 2017a).
Multiple numbers of components can be considered over multiple Parafac models in the primary package
function cpfa. This vignette describes the specific procedure implemented in cpfa and its usage in R (R
Core Team, 2022).

Introduction

A bilinear model, such as principal components analysis (PCA) or independent components analysis (ICA),
assumes that a data matrix can be decomposed into R underlying components (or factors), which consist of
an outer product of a row mode (A mode) and a column mode (B mode), respective to the matrix structure.
Let X be the I x J data, fori=1,2,...,1,and for j =1,2,...,J. A bilinear model decomposes X such that

X =AB' +E (1)

where A is the I x R matrix of mode A weights on R underlying components, and B is the J x R matrix of
mode B weights on R components. The I x J matrix E contains error not explained by the model. Then,

given K levels of a third mode, for k = 1,2,..., K, for some data tensor X of dimensions I x J x K, the

Parafac model can be written as
X = ACkBT + Ej (2)

where Xy, is the k-th level’s I x J data matrix. The A and B matrices have the same interpretation as in the
bilinear model, and Cy, is an R X R diagonal matrix with the k-th level’s component scores along its diagonal.
The E; matrix is the error matrix for the k-th level, which is the portion of X that cannot be explained
by the Parafac model structure (Harshman, 1970). The Parafac model parameters can be estimated using
an alternating least squares (ALS) algorithm with multiple random starts (Kiers, Ten Berge, & Bro, 1999;
Faber, Bro, & Hopke, 2003; Tomasi & Bro 2006). Constraints can be included on any mode’s weight matrix
(Helwig, 2017a). For added constraints, the corresponding step of the ALS algorithm is replaced with a
constrained least squares update. Note that this Parafac model is directly generalizable to data tensors of
higher dimensions (e.g., a four-way data tensor of dimensions I x J x K x L).

Consider the following classification problem: either a three-way data tensor of dimension I x J x K or a
four-way data tensor of dimension I x J x K x L, denoted by X, is used to predict a group label vector y of
dimension N x 1 where N is equal to at least one of the data tensor dimensions (e.g., N = I or N = K).
Both X and y are randomly split into training and testing sets using some split ratio (e.g., 80/20 split),
producing: (1) a training data tensor X, .;,; (2) a testing data tensor X, .;; (3) a training label vector Yirain;
and (4) a testing label vector yiest- Note that X is split along a single mode with the number of levels equal
to N, which we call the classification mode.

Using these split data, cpfa implements an analysis procedure in four steps. Consider the case for a three-way
data tensor where N = K such that the third mode is the classification mode.

Step 1 - Fit Parafac Model: The Parafac model is fit to the training data tensor Xy, ,;, to obtain estimates of
the component weights for the first mode A;ain, second mode Byyain, and third mode Cypaiy. A Parafac model
can be fit multiple times over different combinations of R (e.g, for R € {1,2,3,...,5}) and over different
combinations of mode constraints (e.g., unconstrained on all three modes, orthogonal A, or smoothness on A
and on B). Run const () to see all possible options.

Step 2 - Predict Features: For any fit Parafac model, the estimated Parafac Atrain and Btrain are used to
estimate test set features Cyes; from the test set tensor X,.... The least squares estimates of the features
have the form thst = XZ‘estZtrain(ZtTrainZtrain)’l, where X{.; is the tensor X, . arranged into a matrix
of dimension K x (I x J), and Zyain = Atrain ® Birain denotes the Khatri-Rao product (i.e., columnwise
Kronecker product) between the Parafac first mode and second mode estimated from the training data.

Step 8 - Train Classifier: For any fit Parafac model, the estimated third mode weights Ctrain are used as
features to classify the group labels yiain. Four classification methods are possible: PLR, SVM, RF, and NN.
For each classification method, observations can be weighted to account for class imbalance, and either one or
two classification parameters are tuned via k-fold cross-validation to identify the values that minimize the
expected misclassification rate. Users can supply ranges for the classification parameters for any of the four
methods. For PLR, cpfa tunes a with the penalty parameter A chosen by cv.glmnet (). For SVM, cpfa
assumes a radial basis kernel function and tunes two parameters: cost and . For RF, the number of splitting
predictors is fixed at v/ R and both the number of trees and the minimum node size can be tuned. Finally, for
NN, classification parameters size (number of hidden layer units) and decay (weight decay) can be tuned (see
Appendix for model details for all four methods). The function cpfa implements Steps 1 - 3.

Step 4 - Evaluate Classifier: The predicted features from Step 2 are input as features to the trained classifier
from Step 3 to obtain the test set classifications Jiest using predict.cpfa. These classifications are used
to calculate any of 11 possible classification performance measures calculated with function cpm, which can

compare ytest to Ytest-

Note that the function cpfa contains an argument to implement parallel computing through packages parallel
and doParallel (R Core Team, 2022; Microsoft Corporation & Steve Weston, 2022). The package cpfa also
contains a function print.cpfa for printing results from objects produced by cpfa.

Installation

cpfa can be installed directly from CRAN. Type the following command in a R console:

install.packages("cpfa", "https://cran.us.r-project.org")

The argument repos can be modified according to user preferences. For more options and details, see
help(install.packages). In this case, the package cpfa has been downloaded and installed to the default
directories. Users can download the package source at https://cran.r-project.org/package=cpfa and use Unix
commands for installation.

Example 1: Three-way Tensor with Binary Response

We start by explaining the main function cpfa and examining basic operations and outputs related to this
function.

First, we load the cpfa package:
library(cpfa)

Loading required package: multiway

Loading required package: CMLS

Loading required package: quadprog

Loading required package: parallel

Loading required package: glmnet

Loading required package: Matrix

Loaded glmnet 4.1-4

Loading required package: el1071

Loading required package: randomForest
randomForest 4.7-1.1

Type rfNews() to see new features/changes/bug fixes.
Loading required package: nnet

We start by creating a random three-way tensor and response vector where one mode (a classification mode)
is related to the response, in this case the third mode. To generate the data, we identify a target correlation
matrix that sets the correlations among the columns of the classification mode’s weight matrix and between
these weight matrix columns and a response vector. We then use a Cholesky decomposition to generate
random data that would give rise to this correlation matrix and modify that data to generate a tensor related
to the response (see Gentle, 1998). In R:

create random data for three-way tensor with Parafac structure and response
set.seed(123)
mydim <- c(32, 25, 240)
nfac <- nf <- 3
rho.c.c <- .35
rho.c.y <- .75
R <- matrix(c(1, rho.c.c, rho.c.c, rho.c.y,
rho.c.c, 1, rho.c.c, rho.c.y,
rho.c.c, rho.c.c, 1, rho.c.y,
rho.c.y, rho.c.y, rho.c.y, 1), nfac+1, nfac+1)
Nsubj <- mydim[3]
Nvar <- nfac + 1

https://cran.r-project.org/package=cpfa

C.col <- runif (Nsubj*nfac)

y.col <- rbinom(Nsubj, 1, 0.5)

values <- c(C.col, y.col)

Y <- matrix(values, Nsubj, Nvar)
Y <- Y - matrix(1, Nsubj, 1) %*% apply(Y, 2, mean)
S <= t(Y) %*%h Y

M <- t(chol(8))

Minv <- solve(M)

L <- t(chol(R))

Xq <= Y %*% t(Minv) %*% t(L)

Cmat <- Xq[, 1:3]

Amat <- matrix(rnorm(mydim[1]*nfac), mydim[1], nfac)
Bmat <- matrix(runif (mydim[2]*nfac), mydim[2], nfac)
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, mydim)

Emat <- array(rnorm(prod(mydim)), mydim)

Emat <- nscale(Emat, O, sumsq(Xmat))

X <- Xmat + Emat
y <- factor(as.numeric(Xq[, 4] > 0))

The above creates a random input tensor X and a response vector y. We confirm the dimensions of X and y,
their classes, and the possible values of y:

examine data object X
dim(X)

[1] 32 25 240
class(X)

[1] "array"

examine data object y
class(y)

[1] "factor"
length(y)

[1] 240
table(y)

y
0 1
117 123

Input X has dimensions 32 x 25 x 240 for the first, second, and third modes, respectively, and is of class
“array”. The main function cpfa requires an input data tensor to be of class “array” with either three modes
or four modes, which is satisfied. Response vector y is of class “factor”, which cpfa requires as the class
for a response input. Moreover, the length of y must match the length of one of the dimensions of X; and
response y has 240 values. The third mode of X equals the length of response y (i.e., both are equal to 240);
and we assume the third mode of X is then the classification mode. By default, function cpfa assumes the
classification mode is the third mode (or fourth for a four-way tensor input). Argument cmode in cpfa can be
used to specify a different classification mode if the input array is not organized already with the classification
mode last (see Example 2 for a use of cmode).

The function table also indicates that y contains two class labels, showing that y contains a binary response.
There appears to be a slight imbalance in the observed class memberships. Function cpfa calculates the

observed proportions of class memberships in y and provides this information to classification methods
to account for imbalanced data when training classifers (see Introduction, Step 3 for classifier training
information). If this default is undesirable, users can specify prior probabilities of class membership using the
argument prior in function cpfa. See help(cpfa). We ignore this argument for now.

We next split our data into training and testing sets using an 80/20 split (80% in training, and 20% in
testing):

split data into training and testing sets
split <- 0.8

nlev <- length(y)

index <- round(split*nlev)

X.train <- X[, , 1:index]

X.test <- X[, , (index+1):nlev]

y.train <- y[1:index]

y.test <- as.numeric(y[(index + 1):nlev]) - 1

We specify (1) the number of components to be used when estimating multiple Parafac models using argument
nfac (see Introduction, Step 1); (2) the number of folds for k-fold cross-validation via the argument nfolds
(see Introduction, Step 3) ; and (3) a set of fold IDs for each observation specified with argument foldid.
Argument method identifies the classifiers to be trained. We set method to include all four of the possible
classification methods (see below). Users can set ranges for tuned classification parameters; we provide a range
for RF parameter ntree as an example (see help(cpfa) for a full list). We also indicate that the classification
response is binary with family <- "binomial" and that the computation is not to be parallelized via
parallel <- FALSE. Note that setting parallel to TRUE will initiate parallel computing. cpfa will also
generate a cluster cl via cl <- makeCluster(detectCores()) if no cluster is provided and parallel <-
TRUE. A cluster can be provided via the cl argument passed directly to multiway (see help(parafac) for
more information).

We set several arguments to be passed directly to package multiway when fitting Parafac models (Introduction,
Step 1). Specifically, we set the constraints to be used for each of the three modes of the Parafac model, which
include: an orthogonality constraint for the first mode, a smoothness constraint for the second mode, and no
constraints for the third mode. For the ALS algorithm, we set the tolerance threshold via ctol <- 1e-02
and the number of random starts via nstart <- 5 (see help(parafac)). Note that we would likely set ctol
to a lower value for real applications and here set it to a larger value in order to improve computation speed
for this example. Likewise, we set nstart to a lower value than might be needed for real applications. In R:
initialize inputs for cpfa

nfac <- 1:3

nfolds <- 5

foldid <- sample(rep(l:nfolds, length(y.train)))

method <- c("PLR", "SYM", "RF", "NN")

ntree <- c(100, 300, 500)

family <- "binomial"

parallel <- FALSE

initialize inputs passed directly to 'parafac' within package 'multiway’
const <- c("orthog", "smooth", "uncons"

ctol <- 1e-02

nstart <- 5

We input the above into main function cpfa and run the function:

tune.object <- cpfa(X.train, y.train, nfac, nfolds,
foldid, method, ntree,
family, parallel, const,
ctol, nstart)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Note that progress is listed for (a) the number of factors/components in the current Parafac model being fit
and for (b) the method currently in progress. Progress listing can be turned off by setting argument verbose

nfac
|
nfac
nfac
nfac
nfac
nfac
I
nfac
nfac
nfac
nfac
nfac
I
nfac
nfac
nfac
nfac

to FALSE.

The output is stored in object tune.object, which is of class cpfa. Running the object’s name prints a
summary of the tuning process conducted in function cpfa. In R:

W NNDNDDN N~ P P

W W w

3

tune.object

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

method

method
method
method
method
method

method
method
method
method
method

method
method
method
method

= parafac

= plr

= svm

= rf

= nn

= parafac

= plr

= svm

= rf

= nn

= parafac

= plr
= svm
= rf
= nn

Parafac Models Estimated:
3-way Parafac with 1 factors
3-way Parafac with 2 factors
3-way Parafac with 3 factors

Classification Methods Tuned:

PLR
SVM
RF
NN

KCV Misclassification Error (estimation time in seconds) by

Model and Method:

Parafac with 1 factors:

PLR: Error = 0.0514 (0.353)
SVM: Error = 0.0517 (1.465)
RF: Error = 0.0622 (2.075)
NN: Error = 0.0517 (2.72)
Parafac with 2 factors:
PLR: Error = 0.0306 (0.301)
SVM: Error = 0.0309 (1.497)
RF: Error = 0.036 (2.816)
NN: Error = 0.0309 (5.718)
Parafac with 3 factors:
PLR: Error = 0.0306 (0.393)
SVM: Error = 0.031 (1.962)
RF: Error = 0.0464 (3.636)

NN: Error = 0.0258 (4.154)

The Parafac models that were fit and the classifiers trained are both listed. Also listed is the k-cv misclassifi-
cation error (i.e., averaged over the number of folds) for each model and method. The approximate estimation
time is listed in parentheses in seconds next to each classifier under each model.

The output stores a number of objects. For example, tune.object$opt.model contains a list of the optimal
models for each classifier (i.e., with the classification parameters that minimized misclassification error).
tune.object$opt.param contains a matrix that lists these parameters for each fit Parfac model. Estimated
component weight matrices are also provided in tune.object$Aweights, tune.object$Bweights, and
tune.object$Cweights. Note that tune.object$Cweights is NULL for a three-way tensor and includes
estimated third mode weights when a four-way tensor is instead provided (e.g., see Example 2). For a list of
all provided output, see help(cpfa).

To determine classification performance, we predict class labels using the testing set (see Introduction, Step
4). We call function predict.cpfa by inputting tune.object of class cpfa into the predict function. In R:

yhat <- predict(tune.object, X.test, "response")

Predicted class membership for each test set observation is found in yhat across each Parafac model (i.e.,
number of factors/components) and each classifier. Alternatively, predicted class membership probabilities can
be estimated instead of class membership labels by specifying type = prob. If neither labels or probabilities
are desired, predicted component loadings can be calculated instead with type = classify.weights. We
focus on a three-factor Parafac model for classifier RF and use function cpm to calculate performance measures:

perform.output <- cpm(yhat$fac.3rf, y.test)
perform.output$cm

0 1
0 256 1
1 1 21

perform.output$class.eval

#it err acc tpr fpr tnr fnr pPpv
1 0.04166667 0.9583333 0.9545455 0.03846154 0.9615385 0.04545455 0.9545455
npv fdr fom fs

1 0.9615385 0.04545455 0.03846154 0.9545455

Function cpm creates output with two parts. The first is the confusion matrix cm for the classification. The
second is a set of classification performance values contained within class.eval (see help(cpm) for details
on these measures). The first performance measure, for example, is the overall classification error. In this
example, it appears that the classifier is performing well—assuming for these example data that good accuracy
is, say, error (err) below 0.25. To examine performance for all numbers of components and all classifiers, we
can write:

apply(yhat, 2, function(x){cpm(x, y.test)})

$fac.lplr
$fac.1plr$cm

0 1

0 256 1

1 121

##

$fac.lplr$class.eval

err acc tpr fpr tnr fnr PPV
1 0.04166667 0.9583333 0.9545455 0.03846154 0.9615385 0.04545455 0.9545455
npv fdr fom fs

1 0.9615385 0.04545455 0.03846154 0.9545455

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$fac.1svm

$fac.1svm$cm
0 1

0256 1

1 121

$fac.1svm$class.eval
err acc
1 0.04166667 0.9583333
npv fdr
1 0.9615385 0.04545455

$fac.1rf

$fac.1rf$cm
0 1

025 1

1 121

$fac.1rf$class.eval

err acc
1 0.04166667 0.9583333
npv fdr

1 0.9615385 0.04545455
$fac.1nn
$fac.1nn$cm

0 1
0256 1
1 121
$fac.1nn$class.eval

err acc
1 0.04166667 0.9583333

npv fdr
1 0.9615385 0.04545455

$fac.2plr

$fac.2plr$cm
0 1

026 2

1 020

$fac.2plr$class.eval
err
1 0.04166667 0.9583333
fom fs
1 0 0.952381

0.9545455 0.03846154

0.9545455 0.03846154

0.9545455 0.03846154

acc tpr

tpr fpr

fom fs

0.03846154 0.9545455

tpr fpr

fom fs

0.03846154 0.9545455

tpr fpr

fom fs

0.03846154 0.9545455

fpr
1 0.07142857 0.9285714

tnr fnr

tnr

tnr

tnr

0 0.9090909

fnr

fnr

fnr

ppv npv

ppv

0.9615385 0.04545455 0.9545455

ppv

0.9615385 0.04545455 0.9545455

ppv

0.9615385 0.04545455 0.9545455

fdr
1 0.09090909

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

$fac.2svm

$fac.2svm$cm
0 1

026 3

1 0 19

$fac.2svm$class.eval
err acc tpr fpr tnr fnr PPV npv fdr fom
1 0.0625 0.9375 1 0.1034483 0.8965517 0 0.8636364 1 0.1363636 O
fs
1 0.9268293

$fac.2rf

$fac.2rf$cm
0 1

0256 2

1 120

$fac.2rf$class.eval
err acc tpr fpr tonr for PPV npv
1 0.0625 0.9375 0.952381 0.07407407 0.9259259 0.04761905 0.9090909 0.9615385
fdr fom fs
1 0.09090909 0.03846154 0.9302326

$fac.2nn

$fac.2nn$cm
0 1

026 2

1 0 20

$fac.2nn$class.eval
err acc tpr fpr tnr fnr ppv npv fdr
1 0.04166667 0.9583333 1 0.07142857 0.9285714 0 0.9090909 1 0.09090909
fom fs
1 0 0.952381

$fac.3plr

$fac.3plr$cm
0 1

026 2

1 0 20

$fac.3plr$class.eval

err acc tpr fpr tnr fnr PPV npv fdr
1 0.04166667 0.9583333 1 0.07142857 0.9285714 0 0.9090909 1 0.09090909
fom fs
1 0 0.952381
$fac.3svm
$fac.3svm$cm

#i# 0 1

0 26 2

1 0 20

##

$fac.3svm$class.eval

err acc tpr fpr tnr fnr PPV npv fdr
1 0.04166667 0.9583333 1 0.07142857 0.9285714 0 0.9090909 1 0.09090909
fom fs

1 0 0.952381

##

##

$fac.3rf

$fac.3rf$em

0 1

0 25 1

1 121

##

$fac.3rf$class.eval

err acc tpr fpr tnr fnr PPV
1 0.04166667 0.9583333 0.9545455 0.03846154 0.9615385 0.04545455 0.9545455
npv fdr fom fs

1 0.9615385 0.04545455 0.03846154 0.9545455

##

#i#

$fac.3nn

$fac.3nn$cm

0 1

0 26 2

1 0 20

##

$fac.3nn$class.eval

err acc tpr fpr tnr fnr PPV npv fdr
1 0.04166667 0.9583333 1 0.07142857 0.9285714 0 0.9090909 1 0.09090909
fom fs

1 0 0.952381

Example 2: Four-way Tensor with Multiclass Response

We consider a second example that includes a four-way input tensor and a response vector with three possible
class memberships (a multiclass response). We start by creating a random four-way tensor and response
vector where one mode (a classification mode) is related to the response, in this case the third mode:

create random data for four-way tensor with Parafac structure and response
set.seed(123)

nfac <- nf <- 3

mydim <- c(32, 25, 240, 20)

aseq <- seq(-3, 3, mydim[1])
Amat <- cbind(dnorm(aseq), dchisq(aseq+3.1, 3),
dt (aseq-2, 4), dgamma(aseq+3.1, 3, 1))[,1:3]
Bmat <- svd(matrix(runif (mydim[2]*nf), mydim[2], nf), 0)$u

rho.c.c <- .725

rho.c.y <= .9

R <- matrix(c(1, rho.c.c, rho.c.c, rho.c.y,
rho.c.c, 1, rho.c.c, rho.c.y,
rho.c.c, rho.c.c, 1, rho.c.y,

10

rho.c.y, rho.c.y, rho.c.y, 1), nfac+1, nfac+1)

Nsubj <- mydim[3]
Nvar <- nfac + 1
C.col <- runif(Nsubj*nfac)
y.col <- rbinom(Nsubj, 1, 0.5)
values <- c(C.col, y.col)
Y <- matrix(values, Nsubj, Nvar)
Y <~ Y - matrix(1, Nsubj, 1) %*% apply(Y, 2, mean)
S <- t(Y) Y%xh Y
M <- t(chol(S))
Minv <- solve(M)
L <- t(chol(R))
Xq <= Y %*% tMinv) %x% t(L)
Cmat <- Xq[, 1:3]
y <- Xq[,4]
for(i in 1:length(y)){

if (abs(y[i]) > 0.09){

y[il <= 2
}
if ((y[i] < 0.09) & (y[il > 0)){
y[i] <- 1
}
if ((y[i] > -0.09) & (y[i]l < 0)){
y[il <= 0
}
}
Dmat <- matrix(runif (mydim[4]*nf), mydim[4], nf)
Xmat <- tcrossprod(Amat, krprod(Dmat, krprod(Cmat, Bmat)))
Xmat <- array(Xmat, mydim)
Emat <- array(rnorm(prod(mydim)), mydim)
Emat <- nscale(Emat, O, sumsq (Xmat)) # SNR = 1
X <- Xmat + Emat
X2 <- X

y2 <- factor(y)

We note the dimensions of the four-way data array X2 and its object class:
dim(X2)

[1] 32 25 240 20
class(X2)
[1] "array"

In this example, tensor X in object X2 is of dimensions 32 x 25 x 240 x 20 and is of class “array”, which is
required by the main function cpfa. We assume the classification mode is the third mode containing 240
levels. We next examine the response vector y2:

class(y2)

[1] "factor"
length(y2)

[1] 240

11

table (y2)

y2
0 1 2
98 98 44

The response vector is of class “factor”, which is required by cpfa. It contains 240 class labels with three
possible values, and there exists some imbalance among the three classes. As before in Example 1, we split
the data into training and testing sets using an 80/20 split ratio. Note that we split the input tensor using
its third mode as we assume that the third mode is the classification mode:

split data into training and testing sets
split <- 0.8

nlev <- length(y2)

index <- round(split*nlev)

X.train <- X2[, , 1l:index, 1]

X.test <- X2[, , (index+1):nlev,]

y.train <- y2[1:index]

y.test <- as.numeric(y2[(index + 1):nlev]) - 1

Also as in Example 1, we initialize arguments to input into the main function cpfa:

initialize inputs for cpfa

nfac <- 3
nfolds <- 3
foldid <- sample(rep(l:nfolds, length(y.train)))

method <- c("PLR", "SVM", "RF", "NN")
ntree <- c(100, 300, 500)

family <- "multinomial"

parallel <- FALSE

initialize inputs passed directly to 'parafac' within package 'multiway’
const <- c("orthog", "smooth", "uncons", "uncons"

ctol <- 1e-02

nstart <- 5

Compared to Example 1, we note several changes. First, we only examine a Parafac model with three
components/factors in this example. Second, the number of folds in k-fold cross-validation is now set to
three while another value is included in the input for argument const to designate constraints (or their
absence) for each of the four tensor modes. Finally, because the response is multiclass, we have set family
<- multinomial, which function cpfa interprets as a multiclass classification problem. Before inputting into
cpfa, we also now set argument cmode, which designates the classification mode of the input tensor:

cmode <- 3

In this case, the third mode is the classification mode. Inputting into cpfa:

tune.object2 <- cpfa(X.train, y.train, nfac, nfolds,
foldid, method, ntree,
family, parallel, const,
ctol, nstart, cmode)

nfac = 3 method = parafac

|

nfac = 3 method = plr
nfac = 3 method = svm
nfac = 3 method = rf

nfac = 3 method = nn

12

Output is similar to output from Example 1 with tune.object2$Cweights now containing estimated weights
for the third mode. Note that cpfa shifts the classification mode to the last (furthest right) mode when
argument cmode is provided. In this case, input modes ordered 1, 2, 3, and 4 correspond to output modes
ordered 1, 2, 4, and 3 (i.e., classification mode has been reordered to be last). We predict class labels using
the testing set and examine the classification performance:

yhat <- predict(tune.object2, X.test, "response")
apply(yhat, 2, function(x){cpm(x, y.test)})

$fac.3plr
$fac.3plr$cm
0 1 2

0 15 1 10

1 1 18 3

2 0 0 0

#i#

$fac.3plr$class.eval

err acc tpr fpr tnr fnr pPpVv npv fdr
1 0.3125 0.6875 NaN 0.1325801 0.8674199 NaN 0.6282895 0.8033878 0.3717105
fom fs

1 0.1966122 NaN

#i#

#i#t

$fac.3svm
$fac.3svm$cm
0O 1 2

015 0 O

1 019 1

2 1 012

##

$fac.3svm$class.eval

err acc tpr fpr tnr fnr PPV
1 0.04166667 0.9583333 0.9576923 0.01994048 0.9800595 0.04230769 0.9535256
npv fdr fom fs

1 0.9785714 0.04647436 0.02142857 0.9556044

#i#

##

$fac.3rf

$fac.3rf$cm
0o 1 2

014 0 1

1 019 2

2 2 0 10

#it

$fac.3rf$class.eval

#it err acc tpr fpr tnr fnr ppv
1 0.1041667 0.8958333 0.8904762 0.04928315 0.9507168 0.1095238 0.8814103
npv fdr fom fs

1 0.9442002 0.1185897 0.05579976 0.88592

#i#t

##

$fac.3nn

$fac.3nn$cm
0O 1 2
0 15 3 10

13

1 1 16 3

2 0 0 O

##

$fac.3nn$class.eval

err acc tpr fpr tnr fnr PPV npv fdr
1 0.3541667 0.6458333 NaN 0.1736482 0.8263518 NaN 0.5932018 0.7803993 0.4067982
fom fs

1 0.2196007 NaN

Note that if a confusion matrix contain all zeros on one of its rows or columns (i.e., is singular), some
performance measures will return NaN.

Concluding Thoughts

Package cpfa implements a k-fold cross-validation procedure discussed in the Introduction, connecting Parafac
models fit by multiway to classification methods implemented through four popular packages used for
classification, including: glmnet, €1071, randomForest, and nnet. Parallel computing is implemented
through packages parallel and doParallel. The two examples above highlight the use of cpfa and its three
main functions. For more information about the package, see https://CRAN.R-project.org/package=cpfa or
examine package help files with help(cpfa), help(predict.cpfa), or help(cpm). Note that Parafac model
details are provided in the Introduction while classification methods are specified further in the Appendix.

Appendix: Classification Methods
Penalized Logistic Regression (PLR)

Binomial logistic regression extends ordinary linear regression to cases with binary responses by placing linear
terms within a logistic link function. Given a binary response y € {0, 1}, the probability of a given class is

modeled as 1

Ply=1|x) = , 3

W= 1) = o (B T xTB))

where x = (zq,... ,xp)T is the observed predictor vector, By is the unknown intercept parameter, and
B = (B1,--.,3)" is the unknown vector of slope parameters. The probability for the remaining class is

P(y =0|x) =1— P(y = 1]x). Given n independent observations {(x;,y;)}" 1, binomial maximum likelihood
is used to estimate the parameters. Specifically, the maximum likelihood estimation approach seeks to find
the (8o, B) that maximize the log-likelihood function

n

U(Bo, B) =Y —log(1+exp(Bo +x; B)) + > _vi(Bo+ %/ B), (4)

i=1 i=1

fori=1,...,n (Cox, 1958). In penalized logistic regression (PLR), a penalty is added to the logistic loss
function to introduce bias and reduce the estimator’s variance. The new objective can be stated

min ¢ (8o, 8) + A Y P(6) (5)

0, le
where A > 0 is a tuning parameter that controls the influence of the penalty term, and P(f;) is a function
of the coefficients defining the penalty (Helwig, 2017b). The ridge penalty makes use of the ¢5 norm and
is given P(f;) = ﬂ;, which is used in ridge regression (Hoerl & Kennard, 1970). Ridge regression shrinks
predictor coefficients towards zero (but not to zero exactly) and is typically applied when predictors are highly
correlated. Alternatively, the lasso penalty makes use of the ¢; norm and is written P(3;) = |5;], which
is used in lasso regression (Tibshirani, 1996). Often applied in high-dimensional settings, lasso introduces
sparsity by shrinking some coefficients to zero, creating a method for identifying useful predictors. However, it
is known for arbitrarily selecting one predictor among a group of highly correlated predictors, which presents
a limitation to data scenarios with highly correlated features. As a compromise, the elastic net penalty

14

https://CRAN.R-project.org/package=cpfa

combines the ¢; norm with the ¢, norm, and can be written P(83;) = o|;| + 3(1 — «) 2, where 0 < o < 1is
a tuning parameter that designates a tradeoff between the two norms (Zou & Hastie, 2005). This tradeoff
can be used to overcome lasso’s arbitrary selection. Note that cpfa tunes a while cv.glmnet from glmnet

tunes A internally.

Support Vector Machine (SVM)

A support vector classifier finds an optimal hyperplane that separates two classes of points in a shared
feature space (Boser et al., 1992; Cortes & Vapnik, 1995). One representation of the SVM objective is with
a loss-penalty formulation. For n observations and p predictors, let f(x;) = 8o + h(x;) " B, where x; is the
i-th observation’s observed predictor vector for i = 1,...,n, and where h(x;) " = (h1(x;), ha(x:), ..., hp(x:))
is a transformation of x; into a higher (possibly infinite-dimensional) space via selected basis functions. A
loss-penalty objective for SVMs can be stated as

n

1 P
min 3 (1= il (i) + A D163, (6)
i=1 j=1

where y; is the i-th observation’s binary response. Contained within f(x;) are Sy and B, the model’s intercept
and slope coefficients, which are the parameters that define the separating hyperplane’s location. Moreover,
¢(r) = (1 — r)4 is hinge loss, where (-)4 indicates the positive part of a real-valued number, also written
#(r) = max (1 —r,0). In the second term, || - ||3 is the £3 norm and \ is a tuning parameter that weights
the penalty added to the loss (Zou, 2019). Hinge loss and its variants are the most frequently employed for
SVMs and constitute one family of loss functions. We can re-express f(x;) such that

f(x)= Zaz’yi<h(xi)a h(x)) + fo, (7)

where «; is a reparameterization of the slope coefficients, and where (h(x;),h(x)) denotes the inner product
between h(x;) and h(x) (Hastie et al., 2009, pg. 423). Rather than calculating this inner product, a kernel
function can be used instead where K (x;,x;) = (h(x;), h(x;)). While the kernel function itself can be treated
as a tuning parameter, the radial basis function kernel for SVMs is known to be useful and flexible (Pisner &
Schnyer, 2020). The radial basis kernel function can be written K (x;,x;) = exp(—v|/x; — x;[|?), where v is
taken as a tuning parameter. For SVMs with radial basis kernels, the complexity cost C' is also important.
Cost is a reparameterization of A where C' = % Note that cpfa only uses a radial basis kernel and tunes
both C and 7.

Random Forest (RF)

Random forest (RF) takes the ideas of bagging and classification trees and extends them (see Haste et al.,
2009 for a discussion of classification trees and bagging). For B identically distributed (but not independent)
random variables, each with variance o2, the variance of their average can be given

]_ _
po? +—Lo?, (8)

where p is their pairwise correlation (Hastie et al., 2009, pg. 588). Taking the random variables to be B
bootstrap samples of some training set, bagging reduces the second term by increasing B. The addition
of random forests is to randomly select a subset of predictors at each terminal node, for a given tree and
bootstrap sample, splitting the tree and repeating many times over, and averaging the variance across subsets.
Choosing predictor subsets reduces p and thereby reduces the first term (Breiman, 2001). In practice, RF
outperforms bagging and is one of several general classifiers that performs best on benchmark data sets,
alongside boosting, SVMs, and NNs (Fernandez-Delgado et al., 2014). To optimize classification, three RF
parameters are typically tuned with cross-validation, including: (1) the number of trees grown; (2) the number
of predictors sampled at each node splitting; and (3) the minimum node size, where a larger minimum node
size corresponds to smaller trees. Note that cpfa sets the number of predictors sampled at each node splitting
to VR (see Introduction) and tunes both number of trees and minimum node size.

15

Feed-forward Neural Networks (NN)

Neural networks (NNs) include a family of related statistical models that generalize linear regression by
taking nonlinear functions of linear features (Ripley, 1994). A widely used NN is the feed-forward neural
network (FFNN), also called a single layer perceptron, which solves a regression problem in two stages. In
stage one, linear combinations of input features (called hidden units) are formed and nonlinearly transformed.
In a second stage, linear combinations of these derived features are then taken and transformed using a
separate function. Specifically, for k = 1,..., K classes, for m = 1,... M hidden units, and for p predictors, a
FFNN classification model can be written

Vi = gi(Bo, + Bi d(an,, + al, X)), 9)

where Y}, is the target response for the k-th class, and where X is a p-variate predictor vector (Hastie et al.,
2009, pg. 392). Terms within ¢ represent the first stage, where ay,, is the intercept for the m-th hidden unit,
and where a.,;,, is a p x 1 vector of coefficients weighing the p predictors for the m-th hidden unit. Frequently,
the stage one transformation ¢ is the logistic function ¢(r) = 1/(1 4+ e~ "). Stage two is then given within
gk, where fp, is the intercept for the k-th class, and where 8, is a M x 1 coefficient vector that weighs
the derived features from stage one. For classification, the second stage function gj is often the softmax

function g (r) = %, which is the transformation used in logistic multinomial regression (Bridle, 1990).
e

1=
Selecting a large M for a fixed gi. will often overfit the solution, so M is usually treated as a tuning parameter
optimized by cross-validation (Hastie et al., 2009, pg. 393).

To estimate model parameters, FFNNs use either squared error or entropy (deviance). For squared error, the
objective function is given

K N
R(0) = Z Z(Zh‘k - gk(xi))Q»
k=1i=1
and for entropy/deviance, by
N K
Z Zyzk IOg gk Ty)
=1 k=1
both for kK =1,..., K classes and i = 1,..., N observations. Parameters are estimated using variants of

gradient descent, also called back-propagation in NN literature. In order to reduce overfitting, R is typically
regularized by adding a bias term with R(0) + AJ(#), where A > 0 weights the amount of added bias, and
where

_ E 2 § : 2
- ﬁk:m + Qo -
k,m k,m

This form of regularization is also called weight decay, and A is usually treated as a tuning parameter to be
optimized by cross-validation (Hastie et al., 2009, pgs. 395 - 397). Note that cpfa tunes both size and decay.

References

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers.
In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs, with relation-
ships to statistical pattern recognition. Neurocomputing (pp. 227-236). Springer, Berlin, Heidelberg.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

16

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2), 215-232.

Faber, N. K. M., Bro, R., & Hopke, P. K. (2003). Recent developments in CANDECOMP /PARAFAC
algorithms: a critical review. Chemometrics and Intelligent Laboratory Systems, 65(1), 119-137.

Ferndndez-Delgado, M., Cernadas, E., Barro, S.; & Amorim, D. (2014). Do we need hundreds of classifiers to
solve real world classification problems?. The Journal of Machine Learning Research, 15(1), 3133-3181.

Friedman, J. Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via
Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Gentle, J. E. (1998). Numerical linear algebra for applications in statistics. Springer Science & Business
Media.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an” explanatory”
multimodal factor analysis.

Harshman, R. A. & Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational Statistics and
Data Analysis, 18, 39-72.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning:
data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.

Helwig, N. E. (2017a). Estimating latent trends in multivariate longitudinal data via Parafac2 with functional
and structural constraints. Biometrical Journal, 59(4), 783-803.

Helwig, N. E. (2017b). Adding bias to reduce variance in psychological results: A tutorial on penalized
regression. The Quantitative Methods for Psychology, 13(1), 1-19.

Helwig, N. E. (2019). multiway: Component Models for Multi-Way Data. R package version 1.0-6.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1), 55-67.

Kiers, H. A., Ten Berge, J. M., & Bro, R. (1999). PARAFAC2—Part I. A direct fitting algorithm for the
PARAFAC2 model. Journal of Chemometrics: A Journal of the Chemometrics Society, 13(3-4), 275-294.

Liaw, A. & Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3), 18-22.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2021). €1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-6.

Microsoft Corporation and Steve Weston (2022). doParallel: Foreach Parallel Adaptor for the ‘parallel’
Package. R package version 1.0.17.

Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. Machine Learning (pp. 101-121). Academic
Press.

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.

Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal Statistical
Society: Series B (Methodological), 56(3), 409-437.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1), 267-288.

Tomasi, G., & Bro, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational
Statistics & Data Analysis, 50(7), 1700-1734.

Venables, W. and Ripley, B. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York.
ISBN 0-387-95457-0.

17

https://www.R-project.org/

Zou, H. (2019). Classification with high dimensional features. Wiley Interdisciplinary Reviews: Computational
Statistics, 11(1), e1453.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

Acknowledgements

A special thanks to my mentor and advisor, Nathaniel E. Helwig, Ph.D.; for his thoughtful advice on R
package development.

18

	Matthew Snodgress
	Overview
	Introduction
	Installation
	Example 1: Three-way Tensor with Binary Response
	Example 2: Four-way Tensor with Multiclass Response
	Concluding Thoughts
	Appendix: Classification Methods
	Penalized Logistic Regression (PLR)
	Support Vector Machine (SVM)
	Random Forest (RF)
	Feed-forward Neural Networks (NN)

	References
	Acknowledgements

