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1 Introduction

The dbEmplikeGOF package provides a function dbEmplikeGOF to be used for
density based empirical likelihood (EL) goodness-of-fit tests based on sample
entropy, as well as to perform the two sample EL ratio test for distribution
equality. The function provides the test statistic and associated p-values. The
p-value can be calculated by Monte-Carlo methods or estimated based on pre-
calculated tables of selected sample sizes and alpha values. For details and
algorithms:

Vexler A, Gurevich G, Empirical likelihood ratios applied to
goodness-of-fit tests based on sample entropy. Computational
Statistics and Data Analysis 54(2010) 531-545.

Gurevich G, Vexler A, A two-sample empirical likelihood ratio
test based on sample entropy. Statistics and Computing, 2011.

2 Examples

The following performs a density-based empirical likelihood based goodness-of-
fit tests based on sample entropy and calculates the p-value based on Monte-
Carlo methods. The examples examine three null hypothesis, 1) data follows a
normal distribution with unknown mean and standard deviation, 2) data follows
a uniform distribution on 0 to 1 and 3) data from two samples are from the same
distribution. The example below tests the data (normData) against the normal
distribution.

> library(dbEmpLikeGOF)
> normData = rnorm(25)
> dbEmpLikeGOF (x = normData, testcall = "normal", pvl.Table = FALSE)

...Working on teststat
...Working on p-value
$teststat

[1] 5.263233

$pvalue
[1] 0.641

The p-value can be estimated based on precalulated tables rather than pre-
forming Monte-Carlo methods. This is controlled by the argument pvl.Table.
To estimate based on tables pvl.Table argument is TRUE, which is the default
setting.

> dbEmpLikeGOF (x = normData, testcall = "normal", pvl.Table = TRUE)



...Working on teststat
estimating pvalue based on table
$teststat

[1] 5.263233

$pvalue
[1] 0.6434953

Similar calculations can be made to test data against a uniform distribution
on zero to one.

> unifData = runif(30)
> dbEmpLikeGOF (x = unifData, testcall = "uniform", pvl.Table = FALSE)

...Working on teststat
...Working on p-value
$teststat

[1] 3.058422

$pvalue
[1] 0.938

> dbEmpLikeGOF (x = unifData, testcall = "uniform", pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 3.058422

$pvalue
[1] 0.9309227

Notice the data in each of the above examples was designed to match the
proposed distribution. Below is an example where the data does not follow the
proposed distribution

> dbEmpLikeGOF (x = unifData, testcall = "normal", pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 10.18825

$pvalue
[1] 0.02227329

It is also possible to test for distribution equality between two samples.
When specifying an x and y samples, the dbEmpLikeGOF function will test for
distribution equality between the two samples.



> dbEmpLikeGOF (x = unifData, y = normData, pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 24.13037

$pvalue
[1] 0.001

> normDataSet2 = rnorm(40)
> dbEmpLikeGOF (x = normDataSet2, y = normData, pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 11.32801

$pvalue
[1] 0.434434

Notice the sample vectors do not have to be of equal length.



