A tutorial dbEmpLikeGOF R package

Jeffrey C. Miecznikowski*, Albert Vexlert, and Lori A. Shepherde
March 10, 2011

Statistical Genetics and Genomics Research Group
Department of Biostatistics, University at Buffalo
New York State Center of Excellence in Bioinformatics and Life Sciences
Roswell Park Cancer Institute

*jcm38@buffalo.edu, favexler@buffalo.edu, ¢las65@buffalo.edu

Contents
1 Introduction 2
2 Examples 2

1 Introduction

The dbEmplikeGOF package provides a function dbEmplikeGOF to be used for
density based empirical likelihood (EL) goodness-of-fit tests based on sample
entropy, as well as to perform the two sample EL ratio test for distribution
equality. The function provides the test statistic and associated p-values. The
p-value can be calculated by Monte-Carlo methods or estimated based on pre-
calculated tables of selected sample sizes and alpha values. For details and
algorithms:

Vexler A, Gurevich G, Empirical likelihood ratios applied to
goodness-of-fit tests based on sample entropy. Computational
Statistics and Data Analysis 54(2010) 531-545.

Gurevich G, Vexler A, A two-sample empirical likelihood ratio
test based on sample entropy. Statistics and Computing, 2011.

2 Examples

The following performs a density-based empirical likelihood based goodness-of-
fit tests based on sample entropy and calculates the p-value based on Monte-
Carlo methods. The examples examine three null hypothesis, 1) data follows a
normal distribution with unknown mean and standard deviation, 2) data follows
a uniform distribution on 0 to 1 and 3) data from two samples are from the same
distribution. The example below tests the data (normData) against the normal
distribution.

> library(dbEmpLikeGOF)
> normData = rnorm(25)
> dbEmpLikeGOF (x = normData, testcall = "normal", pvl.Table = FALSE)

...Working on teststat
...Working on p-value
$teststat

[1] 5.263233

$pvalue
[1] 0.641

The p-value can be estimated based on precalulated tables rather than pre-
forming Monte-Carlo methods. This is controlled by the argument pvl.Table.
To estimate based on tables pvl.Table argument is TRUE, which is the default
setting.

> dbEmpLikeGOF (x = normData, testcall = "normal", pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 5.263233

$pvalue
[1] 0.6434953

Similar calculations can be made to test data against a uniform distribution
on zero to one.

> unifData = runif(30)
> dbEmpLikeGOF (x = unifData, testcall = "uniform", pvl.Table = FALSE)

...Working on teststat
...Working on p-value
$teststat

[1] 3.058422

$pvalue
[1] 0.938

> dbEmpLikeGOF (x = unifData, testcall = "uniform", pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 3.058422

$pvalue
[1] 0.9309227

Notice the data in each of the above examples was designed to match the
proposed distribution. Below is an example where the data does not follow the
proposed distribution

> dbEmpLikeGOF (x = unifData, testcall = "normal", pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 10.18825

$pvalue
[1] 0.02227329

It is also possible to test for distribution equality between two samples.
When specifying an x and y samples, the dbEmpLikeGOF function will test for
distribution equality between the two samples.

> dbEmpLikeGOF (x = unifData, y = normData, pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 24.13037

$pvalue
[1] 0.001

> normDataSet2 = rnorm(40)
> dbEmpLikeGOF (x = normDataSet2, y = normData, pvl.Table = TRUE)

...Working on teststat
estimating pvalue based on table
$teststat

[1] 11.32801

$pvalue
[1] 0.434434

Notice the sample vectors do not have to be of equal length.

