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Introduction

The time series can be seen from an aplitude-time domain or an amplitude-
frequency domain. The amplitude-frecuency domain are used to analyze proper-
ties of filters used to decompose a time series into a trend, seasonal and irregular
component investigating the gain function to examine the effect of a filter at a
given frequency on the amplitude of a cycle for a particular time series. The
ability to decompose data series into different frequencies for separate analysis
and later recomposition is the first fundamental concept in the use of spectral
techniques in forecasting, such as regression espectrum band, have had little
development in econometric work. The low diffusion of this technique has been
associated with the computing difficulties caused the need to work with complex
numbers, and inverse Fourier transform in order to convert everything back into
real terms. But the problems from the use of the complex Fourier transform
may be circumvented by carrying out the Fourier transform of the data in real
terms, pre-multiplied the time series by the orthogonal matrix Z whose elements
are defined in Harvey (1978).

The spectral analysis commences with the assumption that any series can be
transformed into a set of sine and cosine waves, and can be used to both iden-
tify and quantify apparently nonperiodic short and long cycle processes (first
section). In Band spectrum regression (second section) , is a brief summary of
the regression of the frequency domain (Engle, 1974) The application of spec-
tral analysis to data containing both seasonal (high frequency) and non-seasonal
(low frequency) components may produce adventages, since these different fre-
quencies can be modelled separately and then may be re-combined to produce
fitted values. Durbin (1967 and 1969) desing a technique for studying the gen-
eral nature of the serial dependence in a satacionary time series, that can be use
to statistic contraste in This type of exercises (third section). The time-varying
regression, or the regression whit the vector of parameters time.varying can be
understood in this context (four section).

Spectral analysis



Nerlove (1964) and Granger (1969) were the two foremost researchers on the
application of spectral techniques to economic time series.

The use of spectral analysis requires a change of focus from an amplitude-
time domain to an amplitude-frequency domain. Thus spectral analysis com-
mences with the assumption that any series, Xt, can be transformed into a set
of sine and cosine waves such as:

N
Xi=n+ Z[aj cos(27r%) +b; sin(27r%)] (1)

j=1

where 7 is the mean of the series, a; and b; are the amplitude, f is the
frequency over a span of n observations, t is a time index ranging from 1 to N
where N is the number of periods for which we have observations, the fraction
(ft/n) for different values of t converts the discrete time scale of time series
into a proportion of 2 and j ranges from 1 to n where n= N/2. The highest
observable frequency in the series is n/N (i.e., 0.5 cycles per time interval).
High frequency dynamics (large f) are akin to short cycle processes while low
frequency dynamics (small f) may be likened to long cycle processes. If we let
% = w then equation (1) can be re-written more compactly as:

N
Xi=n+Y_la;cos(w;) +b; sin(w,)] (2)

j=1
Spectral analysis can be used to both identify and quantify apparently non-
periodic short and long cycle processes. A given series X; may contain many
cycles of different frequencies and amplitudes and such combinations of frequen-
cies and amplitudes may yield cyclical patterns which appear non-periodic with
irregular amplitude. In fact, in such a time series it is clear from equation (2)
that each observation can be broken down into component parts of different
length cycles which, when added together (along with an error term), comprise

the observation (Wilson and Perry, 2004).

The overall effect of the Fourier analysis of N observation to a time date

is to partition the variability of the series into components at frequencies QW”,
%’7...77r.The component at frequency w, = %Tp if called the pth harmonic. For

p# %, the equivalent form to write the pth harmonic are:

apcoswpt + bpsinwyt = Rycos(wpt + ¢p)

—1,-—b

where R, = \/a, + b, ajld ¢p = tan (a—pp)

The plot of I(w) = 1\;1:@ against w is called the periodogram of time data.
Trend will produce a peak at zero frequency, while seasonal variations produces
peaks at the seasonal frquency and at integer multiples of the sesaonal frequency.
Then, when a periodogram has a large peak at some frequency w then related
peaks may occurr at 2w, 3w,....(Chaftiel, C,2004)

Band spectrum regression




Hannan (1963) first proposed regression analysis in the frequency domain,later
examining the use of this technique in estimating distributed lag models (Han-
nan, 1965, 1967). Engle (1974) demonstrated that regression in the frequency
domain has certain advantages over regression in the time domain. Consider
the linear regression model

y=Xp+u (3)

where X is an n x k matrix of fixed observations on the independent variables,
B is a k x I vector of parameters, y is an n x 1 vector of observations on the
dependent variable, and u is an n x I vector of disturbance terms each with zero
mean and constant variance, a2

The model may be expressed in terms of frequencies by applying a finite
Fourier transform to the dependent and independent variables.For Harvey (1978)
there are a number of reasons for doing this. One is to permit the application of
the technique known as ’band spectrum regression’, in which regression is carried
out in the frequency domain with certain wavelengths omitted. Another reason
for interest in spectral regression is that if the disturbances in (3) are serially
correlated, being generated by any stationary stochastic process, then regression
in the frequency domain will yield an asymptotically efficient estimator of 3.

Engle (1974) compute the full spectrum regression with he complex finite
Fourier transform based on the n x n matrix W, in which element (, s) is given
by

Wis = ﬁe“\‘s ,5=0,1,....n—1

where \; = 271'%, t=0,1,....n-1, and ¢ = v/—1.
Pre-multiplying the observations in observations in (3) by W yields

y=XB+1 (4)

where y = Wy,X =WX, and u = Wu.

If the disturbance vector in (4) obeys the classical assumptions, viz. E[u] =0
and E[uu'] = 02I,. then the transformed disturbance vector, 1, will have
identical properties. This follows because the matrix W is unitary, i.e., WW7T =
I, where W7 is the transpose of the complex conjugate of W. Furthermore the
observations in (4) contain precisely the same amount of information as the
untransformed observations in (3).

Application of OLS to (4) yields, in view of the properties of 4, the best
linear unbiased estimator (BLUE) of 3. This estimator is identical to the OLS
estimator in (3), a result which follows directly on taking account of the unitary
property of W. When the relationship implied by (4) is only assumed to hold
for certain frequencies, band spectrum regression is appropriate, and this may
be carried out by omitting the observations in (4) corresponding to the remain-
ing frequencies. Since the variables in (4) are complex, however, Engle (1974)
suggests an inverse Fourier transform in order to convert everything back into
real terms (Harvey,1974).

The problems which arise from the use of the complex Fourier transform may
be circumvented by carrying out the Fourier transform of the data in real terms.



In order to do this the observations in (3) are pre-multiplied by the orthogonal
matrix Z whose elements are defined as follows (Harvey,1978):

|
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N =1
1
(%)2COS{W] t=2,4,6,..(n—2)or (n—1)
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The resulting frequency domain regression model is:

where y** = Zy,X** = ZX and v = Zu.

In view of the orthogonality of Z, E[vv'] = 021, when E[uu'] = 02I, and
the application of OLS to (5) gives the BLUE of .

Since all the elements of y** and X** are real, model may be treated by a
standard regression package. If band spectrum regression is to be carried out,
the number of rows in y** and X** is reduced accordingly, and so no problems
arise from the use of an inappropriate number of degrees of freedom.

Amplitude domain-frequency regression

Consider now the linear regression model

Yo = By + g (6)

where x; is an n x 1 vector of fixed observations on the independent variable,
B¢ is a n x 1 vector of parameters,y is an n x 1 vector of observations on the
dependent variable, and u; is an n x 1 vector de errores distribuidos con media
cero y varianza constante.

Whit the assumption that any series, y;,2:,8; and ut, can be transformed
into a set of sine and cosine waves such as:

[a¥ cos(w;) + b sin(w;)

zy =n"+ ) [af cos(w;) + b sin(w;)]
j=1
N
B =n’+ [af cos(w;) + b? sin(w;)]
j=1
Pre-multiplying (6) by Z:
g=if+1u

(7)



where § = Zy,i = Zx, B=ZB y i = Zu
The system (7) can be rewritten as (see appendix):

g =Zx ., 273+ Z1,Z" 0
(8)

If we call é = ZI,,ZT4, It can be found the A that minimize the sum of
squared errors Ep = ZTé.

Once you have found the solution to this optimization, the series would be
transformed into the time domain.

Seasonal Decomposition by the Fourier Coefficients

The amplitude domain-frequency regression method could be use to decom-
pose a time series into seasonal, trend and irregular components of a time serie
y¢ of frequency b or number of times in each unit time interval. For example, one
could use a value of 7 for frequency when the data are sampled daily, and the
natural time period is a week, or 4 and 12 when the data are sampled quarterly
and monthly and the natural time period is a year.

If the observation are teken at equal interval of length, At, then the angular
frequency is w = fracrAt. The equivalent frequency expressed in cycles per
unit time is f = 5= = % A t. Whit only one observation per year, w = 7
radians per year or f = % cycle per year (1 cicle per two years), variation whit
a wavelength of one year has fequency w = 27 radians per year or f = 1 cicle
per year.

For example, in a monthly time serie of N = 100 observation, the seasonal
cycles or the wavelenghth of one year has frequency f = 11—020 = 8,33 cycles for
100 dates. If the time serie are 8 full year, the less seasonal frequency are 1 cycle
for year, or 8 cycle for 96 observation. The integer multiplies are 2%,3%....,
and wavelenghth low of one year has frequency are f < 1—]\;

We can use (8) to estimate the fourier coefficient in time serie y;:
= ZtI,ZT 3+ 21,274
(9)

being t = (1,1,....1)y or t =(1,2,3,..., N)n.
Ift=(1,1,1,..1)y ,

A=7tI, 7" =

OO OO
SO OoO O+ O
OO = OO
o= O oo
o O O O
OO O OO
O OO OO



Then

1 0 0 0 O 0 0
01 0 0 0 0 0
0 01 0O 0 0
A=]10 0 0 1 O 0 0
0 00 0O 0 0

0 0O0O0O0O. 00

are use in (9) to make the regression band spectrum with the first four
coefficient of fourier of the serie y.

The ﬁrstQ% —1 rows the A matrix are used to estimate the fourier coefficients
corresponding to cycles of low frequency, trend cycles, and rows 2% and 2% +1
are used to estimate the fourier coefficients of 1 cicle for year. The integer
multiplies re the rows 6%7 6% + 1, 8%...should be used to obtain the seasonal
frequency.

Example:descomponse by amplitude domain-frequency regression.
IPI base 2009 in Cantabria

The Industrial Price Index of Cantabria is presented in the table below

The time serie by trend an seasonal is named T DST. TD is calculate by
band spectrum regresion of the serie y; and the temporal index ¢, in which
regression is carried out in low amplitude- frequency. The seasonal serie ST
result to take away T'D to T'DST , and the irregular serie IR result to take
away T'DST to y; (figure 8). The temporal index ¢ used in the exemple are the
OLS regression into IPI and the trend index ¢t = (1,2,3,....N)y.

> library(descomponer)
> data(ipi)
> descomponer (ipi,12,1)$datos

y TDST D ST IR
1 90.2 93.49148 97.29581 -3.8043288 -3.29147706
2 98.8 96.76618 97.40651 -0.6403355  2.03382281
3 92.1 105.16011 97.55957  7.6005392 -13.06010720
4 102.7 100.11383 97.73672 2.3771122  2.58616508
5 107.0 105.36545 97.91825  7.4471960 1.63455301
6 98.3 102.67619 98.08444  4.5917463 -4.37619107
7 100.9 99.14371 98.21717  0.9265446 1.75628888
8 66.3 72.41965 98.30134 -25.8816898 -6.11964836
9 101.4 100.48346 98.32624 2.1572165 0.91654243
10 111.8 107.36550 98.28651 9.0789861  4.43450007
11 111.4 105.66091 98.18276  7.4781476 5.73909316
12 85.2 86.24833 98.02170 -11.7733676 -1.04832922
13 94.4 94.02740 97.81584 -3.7884330 0.37259602
14 96.2 96.94503 97.58269 -0.6376590 -0.74503016
15 106.5 104.91231 97.343566  7.5687593 1.58768510
16 101.1 99.48917 97.12200 2.3671694 1.61083240
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101.
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99.
112.
103.

89.

91.

97.
110.
105.
109.
109.
104.

T1.
107.
108.
116.

96.

94.
102.
109.
109.
113.
116.
107.

76.
111.
109.
119.

95.
109.
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125.
104.
123.
119.
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120.

98.
117.
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104.
101.

97.

71.

99.
106.
105.

86

95.

98.
107.
103.
108.
106.
103

TT.
105.
112.
111

92.
100.
104.
112.
107.
112.
110.
106.

80
108.
116.
115.

96.
105
109.
117.
113.
118.
116
113.

87.
115.
122.
120.
102.
110.
113.

35813
39913
71791
08983
18765
36795
16833

.48826

00995
77602
61046
10165
78390
56835

.49319

39968
61838
82176

.50579

63167
72716
01079
31078
33936
57479
04125
77478

. 72646

90415
29003
30756
92699

.45181

19553
90530
33469
83279

.47907

26925
24847
10896
17131
83332
13448
22138
57038

96.
.82661
.79525
.86311
97.
97.
97.
98.
98.
.41100
100.
100.
.39902
102.
102.
103.
103.
103.
104.
104.
104.
104.
104.
104.
105.
105.
105.
106.
. 77405
107.
107.
108.
109.
.82516
110.
110.
111.
111.
.356822
112.
112.
113.
113.
113.
113.
114.

96
96
96

99

101

106

109

112

94209

03947
32701
72154
21225
78249

07348
74442

01504
57441
06455
47924
81888
09036
30628
48380
64309
80558
99208
22108
50717
85988
28293

32521
92348
55221
19255

43188
99734
51024
96420

69653
98790
24454
48059
71031
94623
19733
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.4160356
.5725269
.9226651
.7732827
.1481777
.0409316
.4467921
. 7239851
.7725372
.6349825
.5369794
.3572266
.3848751
.5533075
.9187856
.6648756
.1391389
.0028771
.4154366
.6746027
. 7566413
.6323060
.5051995
.3472838
.3537147
.5340881
.9149060
.5564685
.1301001
.9648227
.3840810
.6252202
. 7407455
.6296296
.4734196
.3373410
.3225543
.5148687
.9110265
.4480614
.1210613
.9267682
.3527255
.5758378
. 7248497
.6269531

.856812832
.49913452
.68208654
.48982901
.61234851
.33206472
.36833257
.51173577
.80995442
.47601811
.58954158
.59835269
.11610157
.53165476
.80680894
.49967709
.48162425
.32175586
.09420740
.86832534
.62715880
.61078761
.91077599
.66063840

0.72520870
6.45874503

.12521823
.02646394
.09585363
.99002963
.19244058
.82698928
.14819131
.19553175
.29469750
.53468571
.86720973
.22093379
.86924913
.14846658
.00895781
.57131077
.83331896
.53447654
.37861665
.12962237
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92
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96
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100
101
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104
105
106
107
108

129.
111.
125.
121.
116.
88.
113.
129.
121.
94.
110.
115.
112.
122.
116.
111.
115.
TT.
106.
115.
106.
83.
92.
94.
96.
8r7.
91.
91.
95.
70.
98.
106.
103.
86.
90.
91.
107.
100.
101.
105.
101.
75.
101.
109.
115.
98.
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121
117

122.

119
116
90

117.
124.
122.
103.
110.
113.
120.
113.
117.
112.
107.
79.
104.
109.
105.
85.
91.
93.
100.
94.
98.
95.
92.
66.
94.
101.
100.
83.
91.
96.
105.
101.
106.
105.
102.
76.
104.
111.
110.

91

.90910
.08157
33939
.82801
.49127
.43504
98378
73008
97177
74264
96455
22345
19554
80977
24442
76564
34901
26977
61189
37796
90524
35274
53037
21952
09652
18741
56716
55065
03412
31734
07301
52634
86057
17132
98328
12477
15641
12380
96265
04288
22804
92534
50915
56283
26517
.80330

114.
114.
115.

115

115.
115.
115.
115.
115.
115.
114.
113.
112.

111

109.
108.

106

104.
102.
100.

98.

96

95.
93.
92.

91
91
91

91.

91

91.
92.
93.
94.
95.

96

97.
98.

99

100.

101

101.
102.
102.
103.
103.

46747 7
75418 2
04800 7
.33236 4
58412 0
77469 -25
87175 2.
84137 8.
65040 7.
26910 -11.
67351 -3
84773 -0.
78568 7
.49232 2
98419 7
28921 4
.44574 O
50102 -25.
50890 2.
52731 8.
615623 7.
.82981 -11
22343 -3.
84112 -0.
71844 7
.87990 2
.33809 7
.09344 4
13474 O
.44018 -25.
97906 2.
71374 8
60191 7
59901 -11
66044 -3.
.74369 -0.
81010 7
82623 2
.76474 7
60489 4
.33254 0
93977 -25.
42425 2
78828 8
03786 7.
18160 -11.

.4416398
.3273982
.2913939
.4956493
.9071470
.3396543

1120225
8887137
3213700
5264553

.7089538

6242766

.4098599
.3174554
.2602334
.4764299
.9032674

2312472
1029837
8506592
2900144

.4770729

6930580
6216001

.3780800
.3075126
.2290730
.4572105
.8993879

1228401
0939449

.8126048
.2586589
.4276905

6771622
6189236

.3463001
.2975698
.1979126
.4379911
.8955084

0144330

.0849062
. 7745503

2273034
3783080

.79089518
.28157443

2.86060751

[y

.37198834

0.30873208

.23503871
.28377603
.26992094
.27177389
. 34264377
.66455342
.07655123
.29553587
.59022509
. 34442458
.56563785
.65098972
.16976916
.68811145

6.52203544

. 79475657
.35273788

0.66962853

.08048013
.39651790
.98741330
.56716185
.55065228
.26587643
.88265582
.22699051
.37365804
.563942747
.62867995
.48327720
. 72476795
.54359493
.52379809
.06264944
.75712158
. 72804413
.52533899
.10915268
.46283178
.53483418
.09670316



109 97.6 99.56851 103.22978 -3.6612663 -1.96851275
110 102.7 102.57721 103.19346 -0.6162472 0.12278761
111 113.2 110.39836 103.08384  7.3145202 2.80163645
112 104.3 105.19939 102.91176  2.2876270 -0.89938650
113 107.6 109.85412 102.68737 7.1667522 -2.25412104
114 103.5 106.83880 102.42003 4.4187717 -3.33880379
115 97.9 103.00994 102.11831  0.8916288 -5.10993901
116 86.3 76.88402 101.79005 -24.9060259  9.41597537
117 108.4 103.51838 101.44251  2.0758674 4.88162432
118 103.5 109.81895 101.08246 8.7364958 -6.31895228
119 103.5 107.91219 100.71625  7.1959478 -4.41219319
120 89.0 89.02086 100.34979 -11.3289256 -0.02086087
121 94.5 96.34308 99.98845 -3.6453705 -1.84307991
122 97.7 99.02332 99.63689 -0.6135707 -1.32331522
123 112.9 106.581562 99.29878  7.2827404 6.31847874
124 97.6 101.25429 98.97660 2.2776842 -3.65428531
1256 111.6 105.80694 98.67135  7.1355917  5.79306067
126 103.8 102.78193 98.38238 4.3995523 1.01806936
127 97.3 98.99509 98.10734 0.8877493 -1.69508506
128 86.6 73.04459 97.84221 -24.7976188 13.55540629
129 94.7 99.64840 97.58158 2.0668286 -4.94840385
130 100.3 106.01739 97.31895 8.6984413 -5.71739065
131 95.4 104.21194 97.04735  7.1645923 -8.81193975
132 85.4 85.48037 96.75991 -11.2795431 -0.08036676
133 96.3 92.82113 96.45061 -3.6294747  3.47886911
134 94.5 095.50404 96.11493 -0.6108942 -1.00403907
135 98.1 103.00152 95.75056  7.2509605 -4.90151667
136 105.0 97.62554 95.35780 2.2677414  7.37445589
137 101.0 102.04441 94.93997  7.1044313 -1.04440606
138 98.8 98.88375 94.50342 4.3803329 -0.08375036
139 91.5 94.94119 94.05732 0.8838697 -3.44119438
140 80.5 68.92406 93.61328 -24.6892117 11.57593655
141 94.6 95.24231 93.18452 2.0577898 -0.64231218
142 100.6 101.44547 92.78508 8.6603868 -0.84546802
143 91.8 99.56192 92.42868 7.1332368 -7.76191538
144 82.1 80.89749 92.12765 -11.2301607 1.20250882
145 91.8 88.08756 91.89189 -3.8043288  3.71244372
146 92.6 91.08754 91.72788 -0.6403355 1.51245564
147 100.1 99.23859 91.63805 7.6005392 0.86141476
148 95.4 93.99740 91.62029 2.3771122 1.40259993

> gdescomponer (ipi,12,1,2002,1)
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Appendix
The multiplication of two harmonic series of diferent frequency:
[a; cos(w;) + bj sin(w;)]x]a; cos(w;) + b; sin(w;)]

gives the following sum:

a;a; cos(w;) cos( omega;) + a;b; cos(w;) sin(w;)

+a;b; sin(w;) cos(w; )b; sin(w;) + b;b; sin(w; ) sin(w;)
that using the identity of the products of sines and cosines gives the following
results:
a;a; + bj b;
2

bjai — bja>

cos(w; — w;) + 5 *sin(w; — w;)

aja,; — bjb b'ai + bjai

: cos(w; +w;) + +-2 sin(w; + w;)

The circularity of w determines that the product of two harmonics series
resulting in a new series in which the Fourier coefficients it’s a linear combination
of the Fourier coefficients of the two harmonics series.

In the following two series:

yr = n¥+a§ cos(wo)+b§ sin(wp)+ay cos(wy)+bY sin(w)+af cos(ws)+b4 sin(wse)+af cos(ws)

xr = n°+af cos(wg)+b§ sin(wg)+a7 cos(wr)+b7 sin(wy )+a3 cos(wa)+b3 sin(ws)+aj cos(ws)

given a matrix ©** of size 8x8 :

0 : af : a5 5
2a§ ay by af +a¥ b5 +0b5 af +2a3 ¥
2b§ by —af —b§ +b5 af —aj —bf ai —aj

ot _ 771:[84’1 2af af +a5 —bf + b3 2a5 0 aj +a3  bf — b3

2| 2bf af+b5 —bf—aj 0 —2aj —b§ +b5 af — a3
243 ai + 2a3 —bf a§ +a¥ —by — b3 ay —by
2b3 $ ai —2af b —b3 af —af —b7 —af
2a3 a3 —b3 ay —b7 ag —b§

Demonstrates that:

i =0y

where y = Wy, = Wz, and 2 = Wz.
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2a3
2a5
—2b3
2a7
—2b%
2a§
—2b§




2 =apyy = WEaWTly=WTWae, Wy = 2, I, Wy
Wtz =a, L, Wy

3 =WTra I, Wy
It is true that;

D, = WTettwy

and

0 = wTy, I, W
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