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Abstract

"distr" is a package for R from version 1.8.1 onwards that is distributed under
GPL license 2.0. Its own current version is 2.0. The aim of this package is to pro-
vide a conceptual treatment of random variables (r.v.’s) by means of S4–classes. A
mother class Distribution is introduced with slots for a parameter and for functions
r, d, p, and q for simulation, respectively for evaluation of density / c.d.f. and quantile
function of the corresponding distribution. All distributions of the "stats" package
are implemented as subclasses of either AbscontDistribution or DiscreteDistribu-
tion, which themselves are again subclasses of UnivariateDistribution. By means
of these classes, we may automatically generate new objects of these classes for the
laws of r.v.’s under standard mathematical univariate transformations and under stan-
dard bivariate arithmetical operations acting on independent r.v.’s. Package "distr"
in this setting works as basic package for further extensions. These start with package
"distrEx", covering statistical functionals like expectation, variance and the median
evaluated at distributions, as well as distances between distributions and basic sup-
port for multivariate and conditional distributions. Next, from version 2.0 on, comes
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package "distrMod" which uses these concepts to provide an object orientated com-
petitor to fitdistr from package "MASS" in covering estimation in statistical models.
Further on there are packages "distrSim" for the standardized treatment of simula-
tions, also under contaminations and package "distrTEst" with classes and methods
for evaluations of statistical procedures on such simulations. Finally, from version 2.0
on, there is package "distrTeach" to embody illustrations for basic stats courses using
our distribution classes.
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Parts of this document appeared in an earlier and much shorter form in R-News, 6(2) as“S4 Classes

for Distributions”, c.f. [8], which in its published form refers to package versions 1.6, resp. 0.4-2. This
present document takes into account the subsequent revisions and versions.

0 Motivation

R up to now contains powerful techniques for virtually any useful distribution using the
suggestive naming convention [prefix]<name> as functions where [prefix] stands for r,
d, p, or q and <name> is the name of the distribution.
There are limitations of this concept, however: You can only use distributions which are
implemented in some library already or for which you yourself have provided an implemen-
tation. In many natural settings you want to formulate algorithms once for all distributions,
so you should be able to treat the actual distribution <name> as sort of a variable.
You may of course paste together prefix and the value of <name> as a string and then use
eval(parse(....)). This is neither very elegant nor flexible, however.
Instead, we would rather like to implement the algorithm by passing an object of some
distribution class as argument to the function. Even better though, we would use a generic
function and let the S4-dispatching mechanism decide what to do at run-time. In partic-
ular, we would like to automatically generate the corresponding functions r, d, p, and q
for the law of expressions like X+3Y for objects X and Y of class Distribution, or, more
general, of a transformation of X, Y under a function f : R2 → R which is already realized
as a function in R.
This is possible with package "distr". As an example, try

> require(distr)
> N ← Norm(mean = 2, sd = 1.3)
> P ← Pois(lambda = 1.2)
> Z ← 2*N + 3 + P

> Z
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Distribution Object of Class: AbscontDistribution

> plot(Z)

> p(Z)(0.4)

[1] 0.002415384

> q(Z)(0.3)

[1] 6.70507

> Zs ← r(Z)(50)

> Zs

[1] 11.994385 8.538795 11.312725 6.094137 3.401160 8.905619 8.644664
[8] 6.026353 6.116226 8.169731 8.702574 9.927414 7.154507 5.733199
[15] 8.177670 8.800914 12.690592 6.068872 6.489099 13.310259 9.599871
[22] 6.291959 9.615965 11.983269 7.776756 12.357980 5.725671 4.802628
[29] 11.597046 10.443739 8.880235 5.678810 7.149605 6.652561 4.411658
[36] 11.974129 5.680529 11.429826 10.953929 11.150838 4.343000 8.241198
[43] -3.273997 12.846162 10.026250 8.785263 9.178183 9.729189 12.119644
[50] 8.957892
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Comment:
Let N an object of class "Norm" with parameters mean=2, sd=1.3 and let P an object of class "Pois"
with parameter lambda=1.2. Assigning to Z the expression 2*N+3+P, a new distribution object is
generated —of class "AbscontDistribution" in our case— so that identifying N, P, Z with random
variables distributed according to N, P, Z, L(Z) = L(2 ∗ N + 3 + P), and writing p(Z)(0.4) we get
P (Z ≤ 0.4), q(Z)(0.3) the 30%-quantile of Z, and with r(Z)(50) we generate 50 pseudo random
numbers distributed according to Z, while the plot command generates the above figure.

1 Concept

In developing our packages, we had the following principles in mind: We wanted to be
open in our design so that our classes could easily be extended by any volunteer in the R
community to provide more complex classes of distributions as multivariate distributions,
times series distributions, conditional distributions. As an exercise, the reader is encour-
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aged to implement extrem value distributions from the package "evd"1. The largest effort
will in fact be the documentation. . .
We also wanted to preserve naming and notation from R-"stats" as far as possible so that
any programmer used to S could quickly use our package. Even more so, as the distribu-
tions already implemented to R are all well tested and programmed with skills we lack, we
use the existing r, d, p, and q-functions wherever possible, only wrapping them by small
code sniplets to our class hierarchy.
Third we wanted to use a suggestive notation for our automatically generated methods r,
d, p, and q, which we think is now largely achieved. All this should make intensive use
of object orientation in order to be able to use inheritance and method overloading. Let
us briefly explain why we decided to realize r, d, p, and q as part of our class definitions:
Doing so, we place ourselves somewhere between pure object orientation where methods
would be slots —in the language of the S4-concept, confer [2]— and the S4 paradigm where
methods “live their own life” apart from the classes, or, to q, which should be regarded use
[1]’s terminology, we use COOP2-style for r, d, p, and q methods, and FOOP3 -style for
”normal” methods.
The S4-paradigm with methods which are not attached to an object but rather behave dif-
ferently according to the classes of their arguments is fine if there are particular user-written
methods for only some few general distribution classes like AbscontDistribution, as in
the case for plot or "+" (c.f. [5], Section 2.2). During a typical R session with "distr",
however, there will be a lot of, mostly automatically generated objects of our distribution
classes, each with its own r, d, p, and q; this even applies to intermediate expressions like
2*N, 2*N+3 to eventually produce Z in the example in the motivation. Treating r, d, p,
and q as generic functions, we would need to generate new classes for each expression 2*N,
2*N+3, Z and, correspondingly, particular S4-methods for r, d, p, and q for each of these
new classes; apparently, this would produce overly many classes for an effective inheritance
structure.
In providing arithmetics for distributions, we have to deviate a little from the paradigm of
S as a functional language: For operators like “+”, additional parameters controlling the
precision of the results cannot be handily passed as arguments. For this purpose we provide
global options which may be inspected and modified by distroptions, getdistrOption4

in complete analogy to options, getOption. Finally our concept as to parameters: Con-
trary to the standard R-functions like rnorm we only permit length 1 for parameters like
mean, because we see the objects as implementations of univariate random variables, for
which vector-valued parameters make no sense; rather one could gather several objects

1a solution to this “homework” may be found in the sources to "distrEx"
2class-object-orientated programming, as e.g. in C++
3function-object-orientated programming, as in the S4-concept
4Upto version 0.4-4, we used a different mechanism to inspect/modify global options of "distrEx"

(see section 5.2); corresponding functions distrExoptions, getdistrExOption for package "distrEx" are
available from version 1.9 on.
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with possibly different parameters to a vector/list of distributions. Of course, the origi-
nal functions rnorm etc. remain unchanged and still allow for vector-valued parameters.
Kouros Owzar in an off-list mail raised the point, that in case of multiple parameters as
in case of the normal or the Γ-distribution, it might be useful to be able to pass these
multiple parameters in vectorized form to the generating function. We, too, think that this
is a good idea, but have shifted this question to the new extension package "distrMod"
which covers more general treatment of statistical models, see section 4.

2 Organization in classes

Loosely speaking we have three large groups of classes: distribution classes (in "distr"),
simulation classes (in "distrSim") and an evaluation class (in "distrTEst"), where the
latter two are to be considered only as tools which allow a unified treatment of simulations
and evaluation of statistical estimation (perhaps also tests and predictions later) under
varying simulation situations. Additionally, package "distrEx" provides classes for discrete
multivariate distributions and for factorized, conditional distributions, as well as a bundle
of functionals and distances (see below).

2.1 Distribution classes

The purpose of the classes derived from the class Distribution is to implement the concept
of a r.v./distribution as such in R.
All classes derived from Distribution have a slot param for a parameter, a slot img for
the range and the constitutive slots r, d, p, and q.
From version 1.9 on, up to arguments referring to a parameter of the distribution (like
mean for the normal distribution), these function slots have the same arguments as those
of package "stats", i.e.; for a distribution object X we may call these functions as

• r(X)(n) —except for objects of class Hyper, where there is a slot n already, so
here the argument name to r is nn.

• d(X)(x, log = FALSE)

• p(X)(q, lower.tail = TRUE, log.p = FALSE)

• q(X)(p, lower.tail = TRUE, log.p = FALSE)

For the arguments of these function slots see e.g. rnorm from package "stats". Note
that, as usual, slots d, p, and q are vectorized in their first argument, but are not on the
subsequent ones. The idea is to gain higher precision for the upper tails or when multiplying
probabilities.
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2.1.1 Subclasses

To begin with, we have considered univariate distributions giving the S4-class Univari-
ateDistribution, and as typical subclasses, we have introduced classes for absolutely
continuous and discrete distributions —AbscontDistribution and DiscreteDistribu-
tion.

The former, from version 1.9 on, has a slot gaps of class OptionalMatrix, i.e.; an ob-
ject which may either be NULL or a matrix. This slot, if non-NULL, contains left and right
endpoints of intervals where the density of the object is 0. This slot may be inspected by
the accessor gaps() and modified by a corresponding replacement method. It may also
be filled automatically by setgaps(object, exactq = 6, ngrid = 50000), where upon
evaluation of the d-slot on a grid of length ngrid, all regions in the range5 of the distribu-
tion where the density is smaller than 10−exactq are set to gaps.
For saved objects from earlier versions, we provide the functions isOldVersion and
conv2NewVersion to check whether the object was generated by an older version of this
package and to convert such an object to the new format, respectively.

Class DiscreteDistribution has a slot support, a vector containing the support of the
distribution, which is truncated to the lower/upper TruncQuantile in case of an infinite
support. TruncQuantile is a global option of "distr" described in section 5. From
version 1.9 on, there are methods p.l and q.r for the left-continuous variant of the cdf,
i.e.; t 7→ p.l(t) = P (X < t)), and the right-continuous variant of the quantile function, i.e.;

s 7→ q.r(s) = sup{t |P (object ≤ t) ≤ s}

Also from version 1.9 on, class DiscreteDistribution has a subclass LatticeDistribu-
tion for supports consisting of6 an affine linear lattice of form p + iw for p ∈ R, w ∈ R,
w 6= 0 and i = 0, 1, . . . , L, L ∈ N ∪ ∞. This class gains a slot lattice of class Lat-
tice (see below). The purpose of this class is mainly its use in DFT/FFT methods for
convolution. Slot lattice may be inspected by the usual accessor function lattice().
As by inheritance, all subclasses of LatticeDistribution which prior to version 1.9 were
direct subclasses of DiscreteDistribution gain a slot lattice, too, we provide again
isOldVersion and conv2NewVersion methods to check whether the object was generated
by an older version of this package and to convert such an object to the new format, re-
spectively. Also note that internally, we suppress lattice points from the support where the
probability is 0.

5more precisely: between lower and upper TruncQuantile; TruncQuantile is a global option of "distr"
described in section 5

6or at least if filled with points carrying no mass have a representation as an affine linear lattice
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Objects of classes LatticeDistribution resp. DiscreteDistribution, and from ver-
sion 2.0 on, also AbscontDistribution, may be generated using the generating functions
LatticeDistribution() resp. DiscreteDistribution() resp. AbscontDistribution();
see also the corresponding help. E.g., to produce a discrete distribution with support
(1, 5, 7, 21) with corresponding probabilities (0.1, 0.1, 0.6, 0.2) we may write

> D ← DiscreteDistribution(supp = c(1,5,7,21), prob = c(0.1 ,0.1 ,0.6 ,0.2))

> D

Distribution Object of Class: DiscreteDistribution

> plot(D)
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and to generate an absolutely continuos distribution with density proportional to e−|x|
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we write
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> AC ← AbscontDistribution(d = function(x) exp(-abs(x)^3), withStand = TRUE)

> AC

Distribution Object of Class: AbscontDistribution

> plot(AC)
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As subclasses of these absolutely continuous and discrete classes, we have implemented
all parametric families which already exist in the "stats" package of R in form of [pre-
fix]<name> functions —by just providing wrappers to the original R-functions.
Schematically, the inheritance relations as well as the slots of the corresponding classes
may be read off from figure 1. Class LatticeDistribution and slot gaps, as well as addi-
tional classes AffLinAbscontDistribution, AffLinDiscreteDistribution, AffLinLat-
ticeDistribution (c.f. section 3.2) are still lacking in this graphic so far, however, as well
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Figure 1: Inheritance relations and slots of the corresponding (sub-)classes for Distribution where we

do not repeat inherited slots

as the classes introduced in version 2.0.

The most powerful use of our package probably consists in operations to automatically
generate new slots r, d, p, and q —induced by mathematical transformations. This is
discussed in some detail in subsection 3.
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2.1.2 Classes for Mixture Distributions

Lists of distributions As a first step, we allow distributions to be gathered in lists,
giving classes DistrList and UnivarDistrList, where in case of the latter, all elements
must be univariate distributions. For these, the usual indexing operations with [[.]] are
available. As we will use these lists to construct more general mixture distributions in some
subsequent versions, we have moved these routines to package "distr" from version 1.9
on.

Mixing distributions To be able to work with distributions which are neither purely
absolutely continuous nor purely discrete, like e.g. the distribution of min(X, 1) for X ∼
N (0, 1), from package version 2.0 on, we support mixtures of distributions. These are
realized as subclasses of class UnivariateDistribution. To begin with, we introduce
a class UnivarMixingDistribution as subclass of class UnivariateDistribution which
additionally has two slots MixCoeff and MixDistr. While the former is a numeric vector
taking up the mixture coefficients of the distribution, the latter is an object of class Uni-
varDistrList as described below, taking up the distributions of the mixture components;
as usual, these slots have their respective accessor and replacement functions. Usually, this
mixing distribution will neither have a Lebesgue density nor be purely discrete, having a
counting density. So slot d as a rule will be empty. Objects of this class may be gener-
ated by the generating function UnivarMixingDistribution(), see also the corresponding
help. In addition there is the function flat.mix to simplify such an object converting it
to an object of class UnivarLebDecDistribution; confer subsection 3.3. Note that these
mixing distributions may be recursive, i.e. compoments of slot MixDistr may again be of
class UnivarMixingDistribution.

> library(distr)
> M1 ← UnivarMixingDistribution(Norm(), Pois(lambda =1), Norm(),
+ withSimplify = FALSE)
> M2 ← UnivarMixingDistribution(M1 , Norm(), M1, Norm(), withSimplify = FALSE)

> M2

An object of class "UnivarMixingDistribution"
---------------------------------------------
It consists of 4 components
Components:
[[1]]An object of class "UnivarMixingDistribution"

:---------------------------------------------
:It consists of 3 components
:Components:
:[[1]]Distribution Object of Class: Norm
: :mean: 0

13



: :sd: 1
:[[2]]Distribution Object of Class: Pois
: :lambda: 1
:[[3]]Distribution Object of Class: Norm
: :mean: 0
: :sd: 1
:---------------------------------------------
:Weights:
:0.333000 :0.333000 :0.333000 :

---------------------------------------------
[[2]]Distribution Object of Class: Norm

:mean: 0
:sd: 1

[[3]]An object of class "UnivarMixingDistribution"
:---------------------------------------------
:It consists of 3 components
:Components:
:[[1]]Distribution Object of Class: Norm
: :mean: 0
: :sd: 1
:[[2]]Distribution Object of Class: Pois
: :lambda: 1
:[[3]]Distribution Object of Class: Norm
: :mean: 0
: :sd: 1
:---------------------------------------------
:Weights:
:0.333000 :0.333000 :0.333000 :

---------------------------------------------
[[4]]Distribution Object of Class: Norm

:mean: 0
:sd: 1

---------------------------------------------
Weights:
0.250000 0.250000 0.250000 0.250000
---------------------------------------------

Lebesgue Decomposed distributions As seen in the above example of min(X, 1),
classes DiscreteDistribution and Abscontdistribution are not closed under arithmetic
operations. To have such a closure, from version 2.0 on, we introduce class UnivarLeb-
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DecDistribution, which realizes a Lebesgue decomposition of a univariate distribution
into a discrete and an absolutely continuous distribution. Of course, we still cannot cover
distributions having a non-trivial continuous but not absolutely continuous part like the
Cantor distribution, but class UnivarLebDecDistribution provides a sufficiently general
compromise. Class UnivarLebDecDistribution is a subclass of class UnivarMixingDis-
tribution, where in addition we assume that both slots MixCoeff and MixDistr are of
length 2, and that the first component of slot MixDistr is of class AbscontDistribution
while the second is of class DiscreteDistribution. For this class there are particular ac-
cessors acWeight, discreteWeight for the respective weights and acPart, discretePart
for the respective distributions. Again there is a generating function UnivarMixingDistri-
bution(). In addition there is the function flat.LCD to simplify such an object converting
it to an object of class UnivarLebDecDistribution; confer subsection 3.3.Classes Abscon-
tDistribution, DiscreteDistribution and UnivarLebDecDistribution are grouped to
a virtual class (more specifically a class union) AcDcLcDistribution.

2.1.3 Classes for multivariate distributions and for conditional distributions

In "distrEx", we provide the following classes for handling multivariate distributions:

Multivariate distribution classes Multivariate distributions are much more compli-
cated than univariate ones, which is why but a few exceptional ones have already been
implemented to R in packages like "multnorm". In particular it is not so clear what a
slot q should mean and, in higher dimensions slot p, and possibly also slot d may become
awkward. So, for multivariate distributions, realized as class MultivariateDistribution,
we only insist on slot r, while the other functional slots may be left void.

The easiest case is the case of a discrete multivariate distribution with finite support
which is implemented as class DiscreteMVDistribution.

Conditional distribution classes Also arising in multivariate settings only are condi-
tional distributions. In our approach, we realize factorized, conditional distributions where
the (factorized) condition is in fact treated as an additional parameter to the distribution.
The condition is realized as an object of class Condition, which is a slot of corresponding
classes UnivariateCondDistribution. This latter is the mother class to classes Abscon-
tCondDistribution and DiscreteCondDistribution. The most important application
of these classes so far is regression, where the distribution of the observation given the
covariates is just realized as a UnivariateCondDistribution.

2.1.4 Parameter classes

As most distributions come with a parameter which often is of own interest, we endow the
corresponding slots of a distribution class with an own parameter class, which allows for
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some checking like “Is the parameter lambda of an exponential distribution non-negative?”,
“Is the parameter size of a binomial a positive integer?”
Consequently, we have a method liesIn that may answer such questions by a TRUE/FALSE
statement. Schematically, the inheritance relations of class Parameter as well as the slots of
the corresponding (sub-)classes may be read off in figure 2 where we do not repeat inherited
slots. The most important set to be used as parameter domain/sample space (rSpace) will
be an Euclidean space. So rSpace and EuclideanSpace are also implemented as classes,
the structure of which may be read off in figure 3.

From version 1.9 on, we also have a subclass Lattice, which is still lacking in the
preceding figure. It has slots pivot (of class ”numeric”), width (of class ”numeric” but
tested against “==0”) and Length (of class ”numeric” but tested to be an integer “>0” or
Inf). All slots may be inspected/modified by the usual accessor/replacement functions.

2.2 Simulation classes

From version 1.6 on, the classes and methods of this subsection are available in package
"distrSim".

The aim of simulation classes is to gather all relevant information about a simulation
in a correspondingly designed class. To this end we introduce the class Dataclass that
serves as a common mother class for both ”real” and simulated data. As derived classes
we then have a simulation class where we also gather all information needed to reconstruct
any particular simulation.
From version 1.8 of this package on, we have changed the format how data / simulations
are stored: In order to be able to cope with multivariate, regression and (later) time se-
ries distributions, we have switched to the common array format samplesize x obsDim
x runs where obsDim is the dimension of the observations. For saved objects from earlier
versions, we provide the functions isOldVersion and conv2NewVersion to check whether
the object was generated by an older version of this package and to convert such an object
to the new format, respectively. For objects generated from version 1.8 on, you get the
package version of package "distrSim", under which they have been generated by a call
to getVersion().
Finally, coming from robust statistics we also consider situations where the majority of the
data stems from an ideal situation/distribution whereas a minority comes from a contam-
inating source. To be able to identify ideal and contaminating observations, we also store
this information in an indicator variable.
As the actual values of the simulations only play a secondary role, and as the number of
simulated variables can become very large, but still easily reproducible, it is not worth
storing all simulated observations but rather only the information needed to reproduce the
simulation. This can be done by savedata.
Schematically, the inheritance relations of class Dataclass as well as the slots of the corre-
sponding (sub-)classes may be read off in figure 4 where we do not repeat inherited slots.
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Figure 2: Inheritance relations and slots of the corresponding (sub-)classes for Parameter

Also, analogously to package "distr", global options for the output by methods plot and
summary are controlled by distrSimoptions() and getdistrSimoptions()
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rSpace
+name: character

EuclideanSpace
+dimension: numeric

Reals

Naturals

Figure 3: Inheritance relations and slots of the corresponding (sub-)classes for rSpace

2.3 Evaluation class

From version 1.6 on, the class and methods of this subsection are available in package
"distrTEst".
When investigating properties of a new procedure (e.g. an estimator) by means of simu-
lations, one typically evaluates this procedure on a large set of simulation runs and gets a
result for each run. These results are typically not available within seconds, so that it is
worth storing them. To organize all relevant information about these results, we introduce
a class Evaluation the slots of which is filled by method evaluate —see subsection 3.12.
Schematically, the slots of this class may be read off in figure 5. A corresponding savedata
method saves the object of class Evaluation in two files in the R-working directory: one
using the filename <filename> also stores the results; the other one, designed to be “hu-
man readable”, comes as a comment file with filename <filename>.comment only stores
the remaining information. The filename can be specified in the optional argument fileN
to savedata; by default it is concatenated from the filename slot of the Dataclass ob-
ject and <estimatorname>, which you may either pass as argument estimatorName or by
default is taken as the R-name of the corresponding R-function specified in slot estimator.

From version 1.8 on, slot result in class Evaluation is of class DataframeorNULL,
i.e.; may be either a data frame or NULL, and slot call.ev in class Evaluation is of class
”CallorNULL”, i.e.; may be either a call or NULL. Also, we want to gather Evaluation
objects in a particular data structure EvaluationList (see below), so we have to be able
to check whether all data sets in the gathered objects coincide. For this purpose, from this
version on, class Evaluation has an additional slot Data of class Dataclass. In order not
to burden the objects of this class too heavily with uninformative simulated data, in case
of a slot Data of one of the simulation-type subclasses of Dataclass, this Data itself has
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Dataclass
+filename: vectororNULL
+Data: vectororNULL
+runs: numeric
+samplesize: numeric

Simulation
+seed: list
+distribution: UnivariateDistribution

Contsimulation
+ind: vectororNULL
+Data.id: vectororNULL
+Data.c: vectororNULL
+rate: numeric
+seed: list
+distribution.c: UnivariateDistribution
+distribution.id: UnivariateDistribution

Figure 4: Inheritance relations and slots of the corresponding (sub-)classes for Dataclass

Evaluation
+name: character
+filename: character
+call.ev: call
+result: vectororNULL
+estimator: OptionalFunction

Figure 5: Slots of class Evaluation

an empty Data-slot.

2.4 EvaluationList class

The class and methods of this subsection are available in package "distrTEst".
In order to compare different procedures / estimators for the same problem, it is natural
to gather several Evaluation objects with results of the same range (e.g. a parameter
space) generated on the same data, i.e.; on the same Dataclass object. To this end, from
version 1.8 on, we have introduced class EvaluationList. Schematically, the slots of this
class may be read off in figure 6. The common Data slot of the Evaluation objects in an
EvaluationList object may be accessed by the accessor method Data.
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   EvaluationList   

+name: character

+Elist: list

Figure 6: Slots of class EvaluationList

3 Methods

3.1 Arithmetics

We have made available quite general arithmetical operations to our distribution objects,
generating new image distributions automatically. In this context some comments are due
as to the interpretation of corresponding arithmetic expressions of distribution objects:

Caveat: These arithmetics operate on the corresponding r.v.’s and not on
the distributions.

(For the latter, they only would make sense in restricted cases like convex combinations).

Martin Mächler pointed out that this might be confusing. So, this warning is also issued
on attaching package "distr", and, by default, again whenever a Distribution object,
produced by such arithmetics is shown or printed; this also applies to the last line in

> A1 ← Norm (); A2 ← Unif()

> A1 + A2

Distribution Object of Class: AbscontDistribution

Warning message:
arithmetics on distributions are understood as operations on r.v.'s
see 'distrARITH()'; for switching off this warning see '?distroptions' in:
print(object)

This behaviour will soon be annoying so you may switch it off setting the global option
WarningArith to FALSE (see section 5).

Function distrArith() displays the following comment
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######################################################################
# On arithmetics operating on distributions in package "distr"
######################################################################

Attention:

Special caution is due in the followin issues

%--------------------------------------------------------------------
% Interpretation of arithmetics
%--------------------------------------------------------------------

Arithmetics on distribution objects are understood as operations on
corresponding random variables (r.v.'s) and _not_ on distribution
functions or densities;
e.g.

sin( Norm() + 3 * Norm() ) + 2

returns a distribution object representing the distribution of the r.v.

sin(X+3*Y)+2

where X and Y are r.v.'s i.i.d. N(0,1).

%--------------------------------------------------------------------
% Adjusting accuracy
%--------------------------------------------------------------------

Binary operators like "+", "-" would loose their elegant calling
e1 + e2 if they had to be called with an extra argument controlling
their accuracy. Therefore, this accuracy is controlled by global options.
These options are inspected and set by distroptions(), getdistrOption(),
see ?distroptions

%--------------------------------------------------------------------
% Multiple instances in expressions and independence
%--------------------------------------------------------------------

Special attention has to be paid to arithmetic expressions of
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distributions involving multiple instances of the same symbol:

/-> All arising instances of distribution objects in arithmetic
expressions are assumed stochastically independent. <-/

As a consequence, whenever in an expression, the same symbol for
an object occurs more than once, every instance means a new
independent distribution.

So for a distribution object X, the expressions X+X and 2*X are _not_
equivalent.

The first means the convolution of distribution X with distribution
X, i.e. the distribution of the r.v. X1 + X2, where X1 and X2 are
identically distributed according to X.
In contrast to this, the second expression means the distribution of
the r.v. 2 X1 = X1 + X1, where again X1 is distributed according to X.

Hence always use 2*X, when you want to realize the second case.

Similar caution is due for X^2 and X*X and so on.

%--------------------------------------------------------------------
% Simulation based results varying from call to call
%--------------------------------------------------------------------

At several instances (in particular for non-monotone functions from group
Math like sin(), cos()) new distributions are generated by means of
RtoDPQ, RtoDPQ.d, RtoDPQ.LC. In these functions, slots d, p, q are
filled by simulating a large number of random variables, hence they are
stochastic estimates.

So don't be surprised if they will change from call to call.

3.2 Affine linear transformations

We have overloaded the operators "+", "-", "*", "/" such that affine linear transformations
which involve only single univariate r.v.’s are available; i.e. is expressions like Y=(3*X+5)/4
are permitted for an object X of class AbscontDistribution or DiscreteDistribution (or
some subclass), giving again an object Y of class AbscontDistribution or
DiscreteDistribution (in general). Here the corresponding transformations of the d,
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p, and q-functions are done analytically.
From version 1.9 on, we use subclasses AffLinAbscontDistribution, AffLinDiscrete-
Distribution, AffLinLatticeDistribution as classes of the return values to enhance
accuracy of functinals like E, var, etc. in package "distrEx". These classes in addition
to their counterparts without prefix “AffLin” have slots a, b, and X0, to capture the fact
that an object of this class is distributed as a * X0 + b. Also, we introduce a class union
AffLinDistribution of classes AffLinAbscontDistribution and
AffLinDiscreteDistribution. Consequently, the result Y of Y <- a1 * X + b1 for an
object X of (a subclass of) class AffLinDiscreteDistribution (if a != 0) is of the same
class as X but with slots Y@a = a1 * X@a, Y@b = b1 + a1 * X@b, Y@X0 = X@X0. In version
2.0, the same principle has been applied to introduce class AffLinUnivarLebDecDistribution.
All AffLin-xxx distribution classes are grouped to a virtual class (more specifically a class
union) AffLinDistribution.

3.3 Decompositions and Flattening

One of the issues when programming the distribution of the multiplication of independent
random variables is that we have to treat positive and negative part (and, if nontrivial, point
mass to 0) separately. To this end, from version 2.0 on, there are methods decomposePM
to decompose a discrete, an absolutely continuous or a Lebesgue decomposed distribution
into its respective parts.

> decomposePM(Norm ())

$neg
$neg$D
Distribution Object of Class: AbscontDistribution

$neg$w
[1] 0.5

$pos
$pos$D
Distribution Object of Class: AbscontDistribution

$pos$w
[1] 0.5

> decomposePM(Binom (2,0.3)- Binom (5 ,.4))
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$neg
$neg$D
Distribution Object of Class: DiscreteDistribution

$neg$w
[1] 0.758944

$`0`
$`0`$D
Distribution Object of Class: Dirac
location: 0

$`0`$w
[1] 0.1780704

$pos
$pos$D
Distribution Object of Class: DiscreteDistribution

$pos$w
[1] 0.0629856

> decomposePM(UnivarLebDecDistribution(Norm(),Binom (2,0.3)- Binom (5,.4),

+ acWeight = 0.3))

$pos
$pos$D
An object of class "UnivarLebDecDistribution"
--- a Lebesgue decomposed distribution:

Its discrete part (with weight 0.227000) is a
Distribution Object of Class: DiscreteDistribution
This part is accessible with 'discretePart()'.

Its absolutely continuous part (with weight 0.773000) is a
Distribution Object of Class: AbscontDistribution
This part is accessible with 'acPart()'.
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$pos$w
discreteWeight

0.1940899

$neg
$neg$D
An object of class "UnivarLebDecDistribution"
--- a Lebesgue decomposed distribution:

Its discrete part (with weight 0.780000) is a
Distribution Object of Class: DiscreteDistribution
This part is accessible with 'discretePart()'.

Its absolutely continuous part (with weight 0.220000) is a
Distribution Object of Class: AbscontDistribution
This part is accessible with 'acPart()'.

$neg$w
discreteWeight

0.6812608

$`0`
$`0`$D
Distribution Object of Class: Dirac
location: 0

$`0`$w
discreteWeight

0.1246493

On the other hand, concatenating mathematical operations would easily yield quite
complicated structures. A first thing to do is to look whether some components carry mass
(approximately) 0. simplifyD uses this to cancel out such components, and if possible
return simpler types; see also the help to this function.

Also, sometimes one would like to let collapse a whole list of distributions (as in the
MixDistr of a UnivarMixingDistribution object) into a simpler UnivarLebDecDistribution-
class form. This is what is done in the the functions flat.mix and flat.LCD.

> D1 ← Norm()
> D2 ← Pois (1)
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> D3 ← Binom (1,.4)
> D4 ← UnivarMixingDistribution(D1 ,D2,D3, mixCoeff = c(0.4 ,0.5 ,0.1) ,
+ withSimplify = FALSE)
> D ← UnivarMixingDistribution(D1,D4,D1,D2, mixCoeff = c(0.4 ,0.3 ,0.1 ,0.2) ,
+ withSimplify = FALSE)

> D

An object of class "UnivarMixingDistribution"
---------------------------------------------
It consists of 4 components
Components:
[[1]]Distribution Object of Class: Norm

:mean: 0
:sd: 1

[[2]]An object of class "UnivarMixingDistribution"
:---------------------------------------------
:It consists of 3 components
:Components:
:[[1]]Distribution Object of Class: Norm
: :mean: 0
: :sd: 1
:[[2]]Distribution Object of Class: Pois
: :lambda: 1
:[[3]]Distribution Object of Class: Binom
: :size: 1
: :prob: 0.4
:---------------------------------------------
:Weights:
:0.400000 :0.500000 :0.100000 :

---------------------------------------------
[[3]]Distribution Object of Class: Norm

:mean: 0
:sd: 1

[[4]]Distribution Object of Class: Pois
:lambda: 1

---------------------------------------------
Weights:
0.400000 0.300000 0.100000 0.200000
---------------------------------------------
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> D0← flat.mix(D)

> D0

An object of class "UnivarLebDecDistribution"
--- a Lebesgue decomposed distribution:

Its discrete part (with weight 0.380000) is a
Distribution Object of Class: DiscreteDistribution
This part is accessible with 'discretePart(res$value)'.

Its absolutely continuous part (with weight 0.620000) is a
Distribution Object of Class: AbscontDistribution
This part is accessible with 'acPart(res$value)'.

Many arithmetic operations described in the subsequent sections do this simplification
on their return value, according to the global option SimplifyD.

3.4 The group math of unary mathematical operations

Also the group math of unary mathematical operations is available for distribution classes;
so expressions like exp(sin(3*X+5)/4) are permitted. The corresponding r method con-
sists in simply performing the transformation to the simulated values of X. The corre-
sponding (default-) d, p and q-functions are obtained by simulation, using the technique
described in the following subsection.
By means of substitute, the bodies of the r, d, p, q-slots of distributions show the param-
eter values with which they were generated; in particular, convolutions and applications of
the group math may be traced in the r-slot of a distribution object, compare
r(sin(Norm()) + cos(Unif() * 3 + 2)).

Initially, it might be irritating that the same “arithmetic” expression evaluated twice in
a row gives two different results, compare

> A1 ← Norm (); A2 ← Unif()

> d(sin(A1 + A2 ))(0.1)

[1] 0.3807518

> d(sin(A1 + A2 ))(0.1)

[1] 0.3736556
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> sin(A1 + A2)

Distribution Object of Class: AbscontDistribution

This is due to the fact, that all slots are filled starting from simulations. To explain this, a
warning is issued by default, whenever a Distribution object, filled by such simulations
is shown or printed; this also applies to the last line in the preceding code sniplet. This
behaviour may again be switched off by setting the global option WarningSim to FALSE
(see section 5).

As they are frequently needed, from version 1.9 on, math operations abs(), exp(), and
—if an R-version ≥ 2.6.0 is used— also log() are implemented in an analytically exact
form, i.e.; with exact expressions for slots d, p, and q.

3.5 Construction of d, p, and q from r

In order to facilitate automatic generation of new distributions, in particular those arising
as image distributions under transformations of correspondingly distributed random vari-
ables, we provide ad hoc methods that should be overloaded by more exact ones wherever
possible. As, at least in principle each of these slots is sufficient for the reconstruction of
the other ones, we follow the following strategy:
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d p q r reconstruction
+ + + + no reconstruction necessary
+ + + −

r as q(X)(runif(n))
+ + − +

q by numerical inversion from p
+ + − −

q again from p and r again from slot q
+ − + +

p by numerical integration from d
+ − + −

p from d, and r from q
+ − − +

p from d, and q from p
+ − − −

p from d, q from p and r from q
− + + +

d by numerical differentiation (with D1ss from package
"sfsmisc" from p

− + + −
d from p, r from q

− + − +
d, q from p

− + − −
d, q from p, r from q

− − + +
p by numerical inversion from q, d from p

− − + −
p, r from q, d from p

− − − + use RtoDPQ
− − − − not allowed

More specifically, by means of the function RtoDPQ we first generate 10RtoDPQ.e random
numbers where RtoDPQ.e is a global option of this package and is discussed in section 5.
A density estimator is evaluated along this sample, the distribution function is estimated
by the empirical c.d.f. and, finally, the quantile function is produced by numerical inver-
sion. Of course the result is rather crude as it relies on the law of large numbers only, but
this way all transformations within the group math become available. If the input of the
transformation is of class UnivarLebDecDistribution, RtoDPQ is replaced by RtoDPQ.LC.
In this case, replicated values are taken as belonging to the discrete part, for which the
distribution is generated according to the corresponding frequencies with the generating
function DiscreteDistribution(). With the remaining, non replicated values, the abso-
lutely continuous part is reconstructed just as with RtoDPQ.

Where laws under transformations can easily be computed exactly —as for affine linear
transformations— we replace this procedure by the exactly transformed d, p, q-methods.
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3.6 Convolution

A convolution method for two independent r.v.’s is implemented by means of explicit cal-
culations for discrete summands, and by means of DFT/FFT7 if one of the summands is
absolutely continuous or (from version 1.9 on:) both are lattice distributed with a common
lattice as support. This method automatically generates the law of the sum of two inde-
pendent variables/distributions X and Y of any univariate distributions —or in S4-jargon:
the addition operator "+" is overloaded for two objects of class UnivariateDistribution
and corresponding subclasses.

3.7 Further Binary Operators

Having implemented a class for Lebesgue decomposed distributions, we have been able to
realize further binary operators, in particular we have exact analytical constructions for
multiplication, division, exponentiation:

> A1 ← Norm (); A2 ← Unif()
> A1A2 ← A1*A2

> plot(A1A2)

7Details to be found in [5]
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> A12 ← 1/(A2 + .3)

> plot(A12)
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> B ← Binom (5 ,.2)+1
> A1B ← A1^B

> plot(A1B , xlim=c(-3,3))
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> plot (1.2^A1)
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> plot(B^A1)
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3.8 Truncation, Pairwise Minimum/Maximum, Huberization

Up to version 2.0, we have had truncation, Huberization and minimum and maximum of
random variables as illustrating demos; in particular the last three could not be realized
in a completely satisfactory manour, as Lebesgue decomposed distributions had not been
available before. Now these illustrations have moved into the package itself:

> H ← Huberize(Norm(),lower=-1,upper =2)

> plot(H)
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> T ← Truncate(Norm(),lower=-1,upper =2)

> plot(T)
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> M1 ← Maximum(Unif(0,1), Minimum(Unif(0,1), Unif (0 ,1)))

> plot(M1)
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> M2 ← Minimum(Exp(4) ,4)

> plot(M2)
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> M3 ← Minimum(Norm(2,2), Pois (3))

> plot(M3)
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3.9 Overloaded generic functions

Methods print, plot, show and summary have been overloaded for classes Distribution,
Dataclass, Simulation, ContSimulation, as well as Evaluation and EvaluationList
to produce “pretty” output. More specifically there are also particular show methods for
classes UnivarDistrList, UnivarMixingDistribution and UnivarLebDecDistribution.
print, plot, show and summary have additional, optional arguments for plotting subsets
of the simulations / results: index vectors for the dimensions, the runs, the observations,
and the evaluations may be passed using arguments obs0, runs0, dims0, eval0, confer
help("<mthd>-methods",package=<pkg>) where <mthd> stands for plot, show, print,
or plot, and <pkg> stands for either "distrSim" or "distrTEst".

For an object of class Distribution, plot displays the density/probability function,
the c.d.f. and the quantile function of a distribution. Note that all usual parameters of
plot remain valid. For instance, you may increase the axis annotations and so on. More
important, you may also override the automatically chosen x-region by passing an xlim

40



argument:

> plot(Cauchy(), withSweave = TRUE)
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> plot(Cauchy(),xlim=c(-4,4), withSweave = TRUE)
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Moreover you may control optional main, inner titles and subtitles with arguments
main / sub / inner. To this end there are preset strings substituted in both expression
and character vectors (where in the following x denotes the argument with which plot()
was called)

%A deparsed argument x

%C class of argument x

%P comma-separated list of parameter values of slot param of argument x

%Q comma-separated list of parameter values of slot param of argument x in parenthesis
unless this list is empty; then ""

%N comma-separated <name> = <value> - list of parameter values of slot param of ar-
gument x

%D time/date at which plot is/was generated
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As usual you may control title sizes and colors with cex.main / cex.inner / cex.sub
respectively with col / col.main / col.inner / col.sub. Additionally it may be helpful
to control top and bottom margins with arguments bmar, tmar. plot() can also cope with
log-arguments. We provide different default symbols for unattained [pch.u] / attained
[pch.a] one-sided limits, which may be overridden by corresponding arguments pch / pch.a
/ pch.u.

For objects of class AbscontDistribution, you may set the number of grid points used
by an ngrid argument; also the “quantile”-panel takes care of finite left/right endpoints of
support and optionally tries to identify constancy region of the p-slot.

For objects of class DiscreteDistributions, we use stepfun() from package "base"
as far as possible and (also for panel“q”for AbscontDistributions) consequently take over
its arguments do.points, verticals, col.points / col.vert / col.hor and cex.points.

As examples consider the following 10 plots:
For objects of class Dataclass —or of a corresponding subclass— plot plots the sample

against the run index and in case of ContSimulation the contaminating variables are
highlighted by a different color. Additional arguments controlling the plot as in the default
plot command may be passed, confer help("plot-methods",package="distrSim").

For an object of class Evaluation, plot yields a boxplot of the results of the evaluation.
For an object of class EvaluationList, plot regroups the list according to the different
columns/coordinates of the result of the evaluation; for each such coordinate, a boxplot is
generated, containing possibly several procedures, and, if evaluated at a Contsimulation,
the plots are also grouped into evaluations on ideal and real data. As for the usual boxplot
function you may pass additional “plot-type” arguments to this particular plot method,
confer help("plot-methods",package="distrTEst"). In particular, the plot-arguments
main and ylim, however, may also be transmitted coordinatewise, i.e.; a vector of the same
length as the dimension of the result resDim (e.g. parameter dimension), respectively a 2
x resDim matrix, or they may be transmitted globally, using the usual S recycling rules.

3.10 liesInSupport

For all discrete distribution classes, we have methods liesInSupport to check whether a
given vector/ a matrix of points lies in the support of the distribution.

3.11 Simulation (in package "distrSim")

From version 1.6 on, simulation is available in package "distrSim".
For the classes Simulation and ContSimulation, we normally will not save the current

values of the simulation, as they can easily be reproduced knowing the values of the other
slots of this class. So when declaring a new object of either of the two classes, the slot Data
will be empty (NULL). To fill it with the simulated values, we have to apply the method
simulate to the object. This has to be redone whenever another slot of the object is
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> plot(Binom(size = 4, prob = 0.3))
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> plot(Binom(size = 4, prob = 0.3), do.points = FALSE , verticals = FALSE ,

+ withSweave = TRUE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Binom(4, 0.3)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

Quantile function of Binom(4, 0.3)

44



> plot(Binom(size = 4, prob = 0.3), main = TRUE , inner = FALSE , cex.main = 1.6,

+ tmar = 6)
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Distribution Plot for Binom(size = 4, prob = 0.3)

> plot(Binom(size = 4, prob = 0.3), cex.points = 1.2, pch = 20, lwd = 2,

+ withSweave = TRUE)
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> B ← Binom(size = 4, prob = 0.3)
> plot(B, col="red", col.points = "green", main = TRUE , col.main="blue",
+ col.sub = "orange", sub = TRUE , cex.sub = 0.6, col.inner = "brown",

+ withSweave = TRUE)
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generated Mon Sep 15 04:57:38 2008

> plot(Nbinom(size = 4,prob = 0.3), cex.points = 1.2, pch.u = 20, pch.a = 10,

+ withSweave = TRUE)
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> plot(Chisq(), log = "xy", ngrid = 100)
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> plot(Norm(), lwd=3, col = "red", ngrid = 200, lty = 3, las = 2,

+ withSweave = TRUE)
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> plot(Norm(), main = "my Distribution: \%A",
+ inner = list(expression(paste(lambda , "-density of \%C(\%P)")), "CDF",
+ "Pseudo -inverse with param 's \%N"),
+ sub = "this plot was correctly generated on \%D",

+ cex.inner = 0.9, cex.sub = 0.8)
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this plot was correctly generated on Mon Sep 15 04:57:39 2008

> Ch ← Chisq (); setgaps(Ch, exactq = 3)
> plot(Ch, cex = 1.2, pch.u = 20, pch.a = 10, col.points = "green",

+ col.vert = "red")
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changed. To guarantee reproducibility, we use the slot seed.
This slot is controlled and set through Paul Gilbert’s "setRNG" package. By default, seed is
set to setRNG(), which returns the current“state”of the random number generator (RNG).
So the user does not need to specify a value for seed, and nevertheless may reproduce his
samples: He simply uses simulate to fill the Data slot. If the user wants to, he may also
set the seed explicitly via the replacement function seed(), but has to take care of the
correct format himself, confer the documentation of setRNG. One easy way to fill the Data
slot of a simulation X with “new” random numbers is

> have.distrSim ← suppressWarnings(require("distrSim"))
> if (have.distrSim)
+ {X ← Simulation ()
+ seed(X) ← setRNG ()
+ simulate(X)
+ print(Data(X)[1:10])
+ } else {
+ cat("\n functionality not (yet) available; ")
+ cat("you have to install package \"distrSim\" first.\n")

+ }

[1] -1.32825113 0.18893240 -1.89889201 2.33018441 0.40599533 0.13052602
[7] -1.51286485 -0.04725049 -0.59279804 -0.38142054

3.12 Evaluate (in package "distrTEst")

From version 1.6 on evaluate is available in "distrTEst".
In an object of class Evaluation we store relevant information about an evaluation of a

statistical procedure (estimator/test/predictor) on an object of class Dataclass, including
the concrete results of this evaluation. An object of class Evaluation is generated by an
application of method evaluate which takes as arguments an object of class Dataclass
and a procedure of type function. As an example, confer Example 12.8. For data of class
Contsimulation, the result takes a slightly different, combining evalations on ideal and
real data.

3.13 Is-Relations

By means of setIs, we have “told” R that a distribution object obj of class

• "Unif" with Min
.= 0 and Max

.= 1 also is a Beta distribution with parameters shape1
= 1, shape2 = 1

• "Geom" also is a negative Binomial distribution with parameters size = 1, prob =
prob(obj)
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• "Cauchy" with location
.= 0 and scale

.= 1 also is a T distribution with parameters
df = 1, ncp = 0

• "Exp" also is a Gamma distribution with parameters shape = 1, scale = 1/rate(obj)
and a Weibull distribution with parameters shape = 1, scale = 1/rate(obj)

• "Chisq" with non-centrality ncp
.= 0 also is a Gamma distribution with parameters

shape = df(obj)/2, scale = 2

• "DiscreteDistribution" (from version 1.9 on) with an equally spaced support also
is a "LatticeDistribution"

3.14 Further methods

When iterating/chaining mathematical operations on a univariate distribution, generation
process of random variables can become clumsy and slow. To cope with this, we introduce
a sort of “Forget-my-past”-method simplifyr that replaces the chain of mathematical
operations in the r-method by drawing with replacement from a large sample (10RtoDPQ.e)
of these.

3.15 Functionals (in package "distrEx")

3.15.1 Expectation

The most important contribution of package "distrEx" is a general expectation operator.
In basic statistic courses, the expectation E may come as E [X], E [f(X)], E [X|Y = y], or
E [f(X)|Y = y]. Our operator (or in S4-language “generic function”) E covers all of these
situtations (or signatures).

default call The most frequent call will be E(X) where X is an (almost) arbitrary distri-
bution object. More precisely, if X is of a specific distribution class like Pois, it is evaluated
exactly using analytic terms. Else if it is of class DiscreteDistribution we use a sum over
the support of X, and if it is of class AbscontDistribution we use numerical integration8;
for X of class UnivarLebDecDistribution, expectations for discrete and absolutely contin-
uous part are evaluated separately and subsequently combined according to their respective
weights. If we only know that X is of class UnivariateDistribution we use Monte-Carlo
integration. This also is the default method in for class MultivariateDistribution, while
for DiscreteMVDistribution we again use sums. For an object Y of a subclass of class
union AffLinDistribution, we determine the expectation as Y@a * E(Y@X0) + Y@b and
hence use analytic terms for X0 if available.

8i.e., we first try (really(!): try) integrate and if this fails we use Gauß-Legendre integration according
to [6], see also ?distrExIntegrate
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with a function as argument we proceed just as without: if X is of class
DiscreteDistribution, we use a sum over the support of X, and if X is of class
AbscontDistribution we use numerical integration; else we use Monte-Carlo integration.

in addition: with a condition as argument we simply use the corresponding d
respective r slots with the additional argument cond.

exact evaluation is available for X of class Arcsine, Beta (for noncentrality 0), Binom,
Cauchy, Chisq, Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois,
Td, Unif, Weibull.

examples

> have.distrEx ← suppressWarnings(require("distrEx"))
> if (have.distrEx)
+ {D4 ← LMCondDistribution(theta = 1)
+ D4 # corresponds to Norm(cond , 1)

+ N ← Norm(mean = 2)
+
+ print(E(D4, cond = 1))
+ print(E(D4, cond = 1, useApply = FALSE))
+ print(E(as(D4, "UnivariateCondDistribution"), cond = 1))
+ print(E(D4, function(x){x^2}, cond = 2))
+ print(E(D4, function(x){x^2}, cond = 2, useApply = FALSE))
+ print(E(N, function(x){x^2}))
+ print(E(as(N, "UnivariateDistribution"), function(x){x^2},
+ useApply = FALSE)) # crude Monte -Carlo

+ print(E(D4, function(x, cond){cond*x^2}, cond = 2,
+ withCond = TRUE))
+ print(E(D4, function(x, cond){cond*x^2}, cond = 2,
+ withCond = TRUE , useApply = FALSE))
+ print(E(N, function(x){2*x^2}))
+ print(E(as(N, "UnivariateDistribution"), function(x){2*x^2},
+ useApply = FALSE)) # crude Monte -Carlo

+ Y ← 5 * Binom(4, .25) - 3
+ print(Y); print(E(Y))
+ } else {
+ cat("\n functionality not (yet) available; ")
+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 0.9999998
[1] 0.9999998

51



[1] 0.9996965
[1] 4.999993
[1] 4.999993
[1] 4.999993
[1] 4.99363
[1] 9.999987
[1] 9.999987
[1] 9.999987
[1] 10.01996
Distribution Object of Class: AffLinLatticeDistribution
[1] 2

3.15.2 Variance

The next-common functional is the variance. In order to keep a unified notation we will
use the same name as for the empirical variance, i.e., var.

masking "stats"-method var To cope with the different argument structure of the
empirical variance, i.e. var(x, y = NULL, na.rm = FALSE, use) and our functional vari-
ance, i.e., var(x, fun = function(t) t, cond, withCond = FALSE, useApply = TRUE,
...) we have to mask the original "stats"-method:

> var ← function(x , ...)
+ {dots ← list (...)
+ if(hasArg(y)) y ← dots$"y"
+ na.rm ← ifelse(hasArg(na.rm), dots$"na.rm", FALSE)
+ if(!hasArg(use))
+ use ← ifelse (na.rm , "complete.obs","all.obs")
+ else use ← dots$"use"
+ if(hasArg(y))
+ stats::var(x = x, y = y, na.rm = na.rm, use)
+ else
+ stats::var(x = x, y = NULL , na.rm = na.rm, use)

+ }

before registering var as generic function. Doing so, if the x (or the first) argument of var
is not of class UnivariateDistribution, var behaves identically to the "stats" package

default method if x is of class UnivariateDistribution, var just returns the variance
of distribution X — or of fun(X) if a function is passed as argument fun, or, if a condition
argument cond (for Y = y), Var [X|Y = y] respectively Var [f(X)|Y = y] — just as for E.
For an object Y of a subclass of class union AffLinDistribution, we determine the variance
as Y@a^2 * var(Y@X0) and hence use analytic terms for X0 if available.
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exact evaluation is provided for specific distributions if no function and no condition
argument is given: this is available for X of class Arcsine, Beta (for noncentrality 0), Binom,
Cauchy, Chisq,Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois,
Unif, Td, Weibull.

3.15.3 Further functionals

By the same techniques we provide the following functionals for univariate distributions:

• standard deviation: sd

• skewness: skewness (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• kurtosis: kurtosis (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• median: median (not for function/condition arguments)

• median of absolute deviations: mad (not for function/condition arguments)

• interquartile range: IQR (not for function/condition arguments)

3.16 Truncated moments (in package "distrEx")

For Robust Statistics, the first two truncated moments are very useful. These are realized as
generic functions m1df and m2df: They use the expectation operator for general univariate
distributions, but are overloaded for most specific distributions:

• Binom

• Pois

• Norm

• Exp

• Chisq

3.17 Distances (in package "distrEx")

For several purposes like Goodness-of-fit tests or minimum-distance estimators, distances
between distributions are useful. This applies in particular to Robust Statistics. In package
"distrEx", we provide the follwoing distances:

• Kolmogoroff distance

• total variation distance

53



• Hellinger distance

• Cramér von Mises distance

• convex-contamination “distance” (asymmetric!) defined as

d(Q,P ) := inf{r > 0 | ∃ probability H : Q = (1− r)P + rH}

3.18 Functions for demos (in package "distrEx")

To illustrate the possibilities with packages "distr" and "distrEx" we include two major
demos to "distrEx", each with extra code to it — one for the CLT and one for the LLN.

From version 2.0 on, we have started a new package "distrTeach", which is to use the
capabilities of packages "distr" and "distrEx" for illustrating topics of Stochastics and
Statistics as taught in secondary school. So far we have moved the illustrations for the
CLT and the LLN just mentioned to it.

3.18.1 CLT for arbitrary summand distribution

By means of our convolution algortithm as well as with the operators E and sd an illustra-
tion for the CLT is readily written: function illustrateCLT, respectively demo illustCLT.
For plotting, we have particular methods for discrete and absolute continuous distributions.
The user may specify a given summand distribution, an upper limit for the consecutive
sums to be considered and a pause between the corresponding plots in seconds. From
version 1.9 on, we also include a TclTk-based version of this demo, where the user may
enter the distribution argument (i.e.; the summands’ distribution) into a text line and con-
trol the sample size by a slider in some widget: illustCLT_tcl From version 2.0 on, this
functionality has moved to package "distrTeach".

3.18.2 LLN for arbitrary summand distribution

From version 1.9 on, similarly, we provide an illustration for the LLN: function illustrateLLN,
respectively demo illustLLN. The user may specify a vector of sample sizes to be consid-
ered, the number of replicates to be drawn and a pause between the corresponding plots in
seconds, also, optionally, the limiting expectation (in case of class Cauchy: the non-limiting
median) is drawn as a line and Chebyshev/CLT-based (pointwise) confidence bands and
their respective empirical coverages are displayed. From version 2.0 on, this functionality
has moved to package "distrTeach".

3.18.3 Deconvolution example

To illustrate conditional distributions and their implementation in
"distrEx", we consider the following situation: We consider a signal X ∼ PX which is dis-
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turbed by noise ε ∼ P ε, independent from X; in fact we observe Y = X+ε and want to re-
construct X by means of Y . By means of the generating function PrognCondDistribution
of package "distrEx", for absolutely continuous PX , P ε, we may determine the factorized
conditional distribution PX|Y=y, and based on this either its (posterior) mode oder (pos-
terior) expectation; also see demo(Prognose, package="distrEx").

4 New package distrMod

The package "distrMod" aims for an object orientated (S4-styple) implementation of prob-
ability models and introduces several new S4-classes for this purpose. Moreover, it includes
functions to compute minimum criterion estimators – in particular, minimum distance and
maximum likelihood (i.e., minimum negative log-likelihood) estimators.

4.1 Symmetry Classes

As symmetry is a property which usually cannot be proven via numerical computations,
we introduce the S4-class Symmetry and corresponding subclasses which may serve as slots
which indicate that there exists a certain symmetry. So far, we have subclasses for the
symmetry of distributions as well as for the symmetry of functions; confer Figure 7.

S y m m e t r y

+type: character

+SymmCenter: ANY

Dist r ibut ionSymmetry Funct ionSymmetry

N o S y m m e t r y El l ipt ica lSymmetry NonSymmetr ic EvenSymmetr ic OddSymmetr ic

Spher ica lSymmetry

Figure 7: Inheritance relations and slots of the corresponding (sub-)classes for Symmetry where we do not

repeat inherited slots
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4.2 Model Classes

Based on class Distribution and its subclasses we define classes for families of probabil-
ity measures. So far, we specialised this to parametric families of probability measures;
confer Figure 8. But it would also be possible to derive subclasses for other (e.g., semi-
parametric) families of probability measures. In case of L2-differentiable (i.e., smoothly
parameterized) parametric families we introduce several additional slots, in particular the
slot L2deriv which is of class EuclRandVarList. Hence, package "distrMod" depends on
package "RandVar" [4].

ProbFamily

+name: character

+distribution: Distribution

+distrSymm: DistributionSymmetry

+props: character

ParamFami ly

+param: ParamFamParameter

+modifyParam: function

L2ParamFami ly

+L2deriv: EuclRandVarList

+L2deriv.fct: function

+L2derivSymm: FunSymmList

+L2derivDistr: DistrList

+L2derivDistrSymm: DistrSymmList

+FisherInfo: PosSemDefSymmMatrix

+FisherInfo.fct: function

L2GroupParamFami ly

+LogDeriv: function

L2LocationFamily L2ScaleFamily L2LocationScaleFamily

Figure 8: Inheritance relations and slots of the corresponding (sub-)classes for ProbFamily where we do

not repeat inherited slots
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4.3 Parameter in a parametric family: class ParamFamParameter

In many applications, it is not the whole parameter of a parametric family which is of
interest, but rather parts of it, while the rest of it either is known and fixed or has to be
estimated as a nuisance parameter; in other situations, we are interested in a (smooth)
transformation of the parameter. This all is realized in a class design for the parameter
of a parametric family —class ParamFamParameter, the formal class of a slot of class
ParamFamily. It has slots name (the name of the parameter), main (the interesting aspect

P a r a m e t e r

+name: character

ParamFamParamete r

+main: numeric

+nuisance: OptionalNumeric

+fixed: OptionalNumeric

+trafo: MatrixorFunction

Figure 9: Inheritance relations and slots of ParamFamParameter where we do not repeat inherited slots

of the parameter), nuisance an unknown part of the parameter of secondary interest, but
which has to be estimated, for instance for confidence intervals, and fixed a known and
fixed part of the parameter. Besides these it also has a slot trafo which also sort of arises
in class Estimate.

trafo realizes partial influence curves; i.e.; we are only interested is some possibly lower
dimensional smooth (not necessarily linear or even coordinate-wise) aspect/transformation
τ of the parameter θ.

To be coherent with the corresponding nuisance implementation, we make the following
convention:

The full parameter θ is split up coordinate-wise in a main parameter θ′ and a nuisance
parameter θ′′ (which is unknown, too, hence has to be estimated, but only is of secondary
interest) and a fixed, known part θ′′′.

Without loss of generality, we restrict ourselves to the case that transformation τ only
acts on the main parameter θ′ — if we want to transform the whole parameter, we only
have to assume both nuisance parameter θ′′ and fixed known part of the parameter θ′′′

have length 0.

To the implementation: Slot trafo can either contain a (constant) matrix Dθ or a
function

τ : Θ′ → Θ̃, θ 7→ τ(θ)
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mapping main parameter θ′ to some range Θ̃.
If slot value trafo is a function, besides τ(θ), it will also return the corresponding

derivative matrix ∂
∂θ τ(θ). More specifically, the return value of this function theta is a list

with entries fval, the function value τ(θ), and mat, the derivative matrix.
In case trafo is a matrix D, we interpret it as such a derivative matrix ∂

∂θ τ(θ), and,
correspondingly, τ(θ) is the linear mapping τ(θ) = Dθ.

According to the signature, method trafo will return different return value types. For
signatures Estimate,missing, Estimate,ParamFamParameter, and ParamFamily,ParamFamParameter,
it will return a list with entries fct, the function τ , and mat, the matrix ∂

∂θ τ(θ). function τ
will then return the list list(fval, mat) mentioned above. For signatures ParamFamily,missing
and ParamFamParameter,missing, it will just return the corresponding matrix.

4.4 Risk Classes

The risk classes are up to now (i.e, version 2.0) not used inside of the distr-family. They
are however used in the RobASt-family [4]. We distinguish between various finite-sample
and asymptotic risks; confer Figure 12. The bias and norm classes given in Figure 10 and
Figure 11, respectively, occur as slots of the risk classes.

BiasType

+name: character

symmetr icBias onesidedBias

+sign: numeric

asymmetr icBias

+nu: numeric

Figure 10: Inheritance relations and slots of the corresponding (sub-)classes for BiasType where we do

not repeat inherited slots
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NormType

+name: character

+fct: function

In foNorm

QFNorm

+QuadForm: PosSemDefSymmMatrix

Sel fNorm

Figure 11: Inheritance relations and slots of the corresponding (sub-)classes for NormType where we do

not repeat inherited slots

RiskType

+type: character

fiRiskasRisk

asCov trAsCov asRiskwithBias

+biastype: BiasType

+normtype: NormType

fiCov trFiCov f iHampel

+bound: numeric

f iMSE fiUnOvShoot

+width: numeric

fiBias

asHampel

+bound: numeric

asBias asGRisk

asMSE asUnOvShoot

+width: numeric

asSemivar

Figure 12: Inheritance relations and slots of the corresponding (sub-)classes for RiskType where we do

not repeat inherited slots
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4.5 Minimum Criterion Estimation

The S4-classes and methods defined inside of our distr-family enable us to define general
functions for the computation of minimum criterion estimators – in particular, minimum
distance and maximum likelihood (i.e., minimum negative log-likelihood) estimators. The
main function for this purpose is MCEstimator. As an example we can use the negative
log-likelihood as criterion; i.e., compute the maximum likelihood estimator.

> have.distrMod ← suppressWarnings(require("distrMod"))
> if (have.distrMod ){
+ library(distrMod)
+ x ← rgamma (50, scale = 0.5, shape = 3)
+ G ← GammaFamily(scale = 1, shape = 2)
+ negLoglikelihood ← function(x, Distribution ){
+ res ← -sum(log(Distribution@d(x)))
+ names(res) ← "Negative Log -Likelihood"
+ return(res)
+ }
+ MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)

+ }

Evaluations of Minimum criterion estimate:
------------------------------------------
An object of class "Estimate"
generated by call
MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)

samplesize: 50
estimate:

scale shape
0.48409787 3.19465893
(0.09985117) (0.60852773)
asymptotic (co)variance (multiplied with samplesize):

scale shape
scale 0.4985128 -2.805688
shape -2.8056883 18.515300
Criterium:

58.07473

The user can specialize the behavior of MCEstimator on two layers: instance-individual or
class-individual.

Using the first layer, we may specify model-individual starting values / search intervals
by slot startPar of class ParamFamily, pass on special control parameters to functions
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optim / optimize by a ... argument in function MCEstimator, and we may enforce
valid parameter values by specifying function slot makeOKPar of class ParamFamily; also
one can specify a penalty value penalizing invalid parameter values. E.g.; in case of the
censored Poisson distribution family in demo censoredPois to this package these functions
are defined as

> ## search interval for reasonable parameters

> startPar ← function(x,...) c(. Machine$double.eps ,max(x))
> ## what to do in case of leaving the parameter domain

> makeOKPar ← function(param) {if(param <=0) return (. Machine$double.eps)

+ return(param)}

In some situations, one would rather like to define rules for groups of models or to
be even more flexible; this can be achieved using the class-individual layer: We may use
method dispatch to find the “right” function to determine the MC estimator; to this end
subclasses to class L2ParamFamily have to be defined, which has alread been done, e.g. in
case of class PoisFamily. In general these sub classes will not have any new slots. E.g.;
the code to define class PoisFamily simply is

> setClass("PoisFamily", contains = "L2ParamFamily")

For group models, like the location scale model, there may be additional slots and
intermediate classes. E.g.,

> setClass("NormLocationFamily", contains = "L2LocationFamily")

Then, for these subclasses, particular methods may be defined; so far, in package
"distrMod" we have particular validParameter methods for classes ParamFamily, L2ScaleFamily,
L2LocationFamily, and L2LocationScaleFamily. E.g.; the code to signature L2ScaleFamily
simply is

> setMethod("validParameter", signature(object = "L2ScaleFamily"),
+ function(object , param , tol=. Machine$double.eps){
+ if(is(param ,"ParamFamParameter"))
+ param ← main(param)
+ if(!all(is.finite(param ))) return(FALSE)
+ if(length(param)!=1) return(FALSE)

+ return(param > tol)})

To move the whole model from one parameter value to the other, so far we have
modifyModel methods for classes L2ParamFamily, L2LocationFamily, L2ScaleFamily,
L2LocationScaleFamily, GammaFamily, and ExpScaleFamily, where the second argument
to dispatch on so for has to be of class ParamFamParameter. E.g.; the code to signature
model="GammaFamily" is
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> setMethod("modifyModel", signature(model = "GammaFamily",
+ param = "ParamFamParameter"),
+ function(model , param , ...){
+ M ← modifyModel(as(model , "L2ParamFamily"), param = param ,
+ .withCall = FALSE)
+ M@L2derivSymm ← FunSymmList(OddSymmetric(SymmCenter =
+ prod(main(param))),
+ NonSymmetric ())
+ class(M) ← class(model)
+ return(M)

+ })

We also allow for particular methods within function MCEstimator, as therein we call
method mceCalc; so far there only is a method for signature(x="numeric", PFam="ParamFamily")
Similarly, and more important, the same technique is applied for the wrapper function
MLEstimator.

In case of the maximum likelihood estimator as well as in case of minimum distance
(MD) estimation there are the function MLEstimator and MDEstimator which provide
user-friendly interfaces to MCEstimator. Hence, the maximum likelihood estimator and for
instance the Kolmogorov MD estimator can more easily be computed as follows.

> if (have.distrMod ){
+ MLEstimator(x = x, ParamFamily = G)
+ MDEstimator(x = x, ParamFamily = G, distance = KolmogorovDist)

+ }

Evaluations of Minimum Kolmogorov distance estimate:
----------------------------------------------------
An object of class "Estimate"
generated by call
MDEstimator(x = x, ParamFamily = G, distance = KolmogorovDist)

samplesize: 50
estimate:

scale shape
0.4335175 3.3531460
Criterium:
Kolmogorov distance

0.05917414

Within MLEstimator, we call method mleCalc, which then dispatches according to its argu-
ments x and PFam as in case of method mceCalc. So far x must inherit from class numeric,
and there are particular methods for argument PFam of classes ParamFamily, BinomFamily,
PoisFamily, NormLocationFamily, NormScaleFamily, and NormLocationScaleFamily.
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More specifically, mleCalc must have an extra ... argument to cope with different
callings from MLEstimator; additional arguments are possible of course. The return
value must be a list with prescribed structure; to this end function meRes() is helpful
which produces this structure. E.g. the mleCalc-method for signature(x="numeric",
PFam="NormScaleFamily") is

> setMethod("mleCalc", signature(x = "numeric", PFam = "NormScaleFamily"),
+ function(x, PFam , ...){
+ theta ← sd(x); mn ← mean(distribution(PFam))
+ ll ← -sum(dnorm(x, mean=mn, sd = theta , log=TRUE))
+ names(ll) ← "neg.Loglikelihood"
+ crit.fct ← function(sd)
+ -sum(dnorm(x, mean=mn , sd = sd, log=TRUE))
+ param ← ParamFamParameter(name = "scale parameter",
+ main = c("sd"=theta))
+ if(!hasArg(Infos)) Infos ← NULL
+ return(meRes(x, theta , ll, param , crit.fct , Infos = Infos))

+ })

We also provide a coercion to class mle from package "stats4", hence making profiling
by the profile-method therein possible. In order to be able to do so, we need to fill a
functional slot criterion.fct of class MCEstimate. In many examples this is straightfor-
ward, but in higher dimensions, helper function get.criterion.fct can be useful, e.g. it
handles the general case for signature(PFam="ParamFamily").

The results of our computations in functionsMCEstimator, MDEstimator, and MLEstimator
are objects of S4-class MCEstimate which inherits from S4-class Estimate. The definitions
are given in Figure 13. For class MCEstimate, we have a method confint, which produces

Est imate

+name: character

+estimate: ANY

+samplesize: numeric

+asvar: OptionalMatrix

+Infos: matrix

+estimate.call: call

+nuis.idx: OptionalNumeric

+trafo: list

+untransformed.estimate: ANY

+untransformed.asvar: OptionalMatrix

MCEst imate

+criterion: numeric

Figure 13: Inheritance relations and slots of the corresponding (sub-)classes for Estimate where we do

not repeat inherited slots

confidence intervals (of class Confint). For class Confint as well as for class Estimate we
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have particular show and print methods where you may scale the output by setting global
options with distrModOptions, see also subsection 5.3. As example consider the following:

> ## some transformation

> mtrafo ← function(x){
+ nms0 ← c("scale","shape")
+ nms ← c("shape","rate")
+ fval0 ← c(x[2], 1/x[1])
+ names(fval0) ← nms
+ mat0 ← matrix( c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,
+ dimnames = list(nms ,nms0))
+ list(fval = fval0 , mat = mat0)}
> set.seed (123)
> x ← rgamma (50, scale = 0.5, shape = 3)
> ## parametric family of probability measures

> G ← GammaFamily(scale = 1, shape = 2, trafo = mtrafo)
> ## MLE

> res ← MLEstimator(x = x, ParamFamily = G)

> print(res , digits = 4, show.details="maximal")

Evaluations of Maximum likelihood estimate:
-------------------------------------------
An object of class "Estimate"
generated by call
MLEstimator(x = x, ParamFamily = G)

samplesize: 50
estimate:

shape rate
2.8676 2.3152
(0.5435) (0.4795)
asymptotic (co)variance (multiplied with samplesize):

shape rate
shape 14.77 11.92
rate 11.92 11.50
untransformed estimate:

scale shape
0.43193 2.86756
(0.08946) (0.54347)
asymptotic (co)variance of untransformed estimate (multiplied with samplesize):

scale shape
scale 0.4001 -2.224
shape -2.2244 14.768
Transformation of main parameter:
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function(x){
nms0 <- c("scale","shape")
nms <- c("shape","rate")
fval0 <- c(x[2], 1/x[1])
names(fval0) <- nms
mat0 <- matrix( c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))
list(fval = fval0, mat = mat0)}

Trafo / derivative matrix:
scale shape

shape 0.00 1
rate -5.36 0
Criterium:
negative log-likelihood

48.97

> print(res , digits = 4, show.details="medium")

Evaluations of Maximum likelihood estimate:
-------------------------------------------
An object of class "Estimate"
generated by call
MLEstimator(x = x, ParamFamily = G)

samplesize: 50
estimate:

shape rate
2.8676 2.3152
(0.5435) (0.4795)
asymptotic (co)variance (multiplied with samplesize):

shape rate
shape 14.77 11.92
rate 11.92 11.50
Criterium:
negative log-likelihood

48.97

> print(res , digits = 4, show.details="minimal")
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Evaluations of Maximum likelihood estimate:
-------------------------------------------

shape rate
2.8676 2.3152
(0.5435) (0.4795)

> ci ← confint(res)

> print(ci , digits = 4, show.details="maximal")

A[n] asymptotic (CLT-based) confidence interval:
2.5 % 97.5 %

shape 1.802 3.933
rate 1.375 3.255
Type of estimator: Maximum likelihood estimate
samplesize: 50
Call by which estimate was produced:
MLEstimator(x = x, ParamFamily = G)
Transformation of main parameter by which estimate was produced:
function(x){

nms0 <- c("scale","shape")
nms <- c("shape","rate")
fval0 <- c(x[2], 1/x[1])
names(fval0) <- nms
mat0 <- matrix( c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))
list(fval = fval0, mat = mat0)}

Trafo / derivative matrix at which estimate was produced:
scale shape

shape 0.00 1
rate -5.36 0

> print(ci , digits = 4, show.details="medium")

A[n] asymptotic (CLT-based) confidence interval:
2.5 % 97.5 %

shape 1.802 3.933
rate 1.375 3.255
Type of estimator: Maximum likelihood estimate
samplesize: 50
Call by which estimate was produced:
MLEstimator(x = x, ParamFamily = G)
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> print(ci, digits = 4, show.details="minimal")

A[n] asymptotic (CLT-based) confidence interval:
2.5 % 97.5 %

shape 1.802 3.933
rate 1.375 3.255

> ## some profiling

> par(mfrow=c(2,1))

> plot(profile(res))

2.0 2.5 3.0 3.5 4.0 4.5

0.
0

1.
0

2.
0

shape

z

2.1 2.2 2.3 2.4 2.5 2.6 2.7

0.
0

1.
0

2.
0

rate

z
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5 Options

5.1 Options for "distr"

Analogously to the options command in R you may specify a number of global “constants”
to be used within the package. These include

• DefaultNrFFTGridPointsExponent: the binary logarithm of the number of grid-
points used in FFT —default 12

• DefaultNrGridPoints: number of grid-points used for a continuous variable —
default 4096

• DistrResolution: the finest step length that is permitted for a grid for a discrete
variable —default 1e−06

• RtoDPQ.e: For simulational determination of d, p and q, 10RtoDPQ.e random variables
are simulated —default 5

• TruncQuantile: to work with compact support, random variables are truncated to
their lower/upper TruncQuantile-quantile —default 1e−05.
From version 1.9 on, for ε = TruncQuantile, we use calls of form q(X)(eps,
lower.tail = FALSE) instead of q(X)(1-eps) to gain higher precision.

• warningSim: controls whether a warning issued at printing/showing a Distribution
object the slots of which have been filled starting with simulations —default TRUE

• warningArith: controls whether a warning issued at printing/showing a Distribution
object produced by arithmetics operating on distributions —default TRUE

• withgaps: controls whether in the return value of arithmetic operations the slot
gaps of an the AbscontDistribution part is filled automatically based on empirical
evaluations via setgaps —default TRUE

• simplifyD: controls whether in the return value of arithmetic operations there is a
call to simplifyD or not —default TRUE

• DistrCollapse: logical; in convolving discrete distributions, shall support points
with distance smaller than DistrResolution be collapsed; default value: TRUE

• withSweave: logical; is code run in Sweave (then no new graphic devices are opened);
default value: FALSE

All current options may be inspected by distroptions() and modified by
distroptions("<options-name>"=<value>).
As options, distroptions("<options-name>") returns a list of length 1 with the value of
the corresponding option, so here, just as getOption, getdistrOption("<options-name>")
will be preferable, which only returns the value.

68



5.2 Options for "distrEx"

Up to version 0.4-4 we used the function distrExOptions(arg = "missing", value =
-1) to manage some global options for "distrEx", i.e.:
distrExOptions() returns a list of these options, distrExOptions(arg=x) returns option
x, and distrExOptions(arg=x,value=y) sets the value of option x to y.
From version 1.9 on, we use a mechanism analogue to the distroptions/getdistrOption
commands: You may specify certain global output options to be used within the package
with distrExoptions/getdistrExOption. These include

• MCIterations: number of Monte-Carlo iterations used for crude Monte-Carlo inte-
gration.

• GLIntegrateTruncQuantile: If integrate fails and there are infinite integration
limits, the function GLIntegrate is called inside of distrExIntegrate with the corre-
sponding quantiles GLIntegrateTruncQuantile resp. 1-GLIntegrateTruncQuantile
as finite integration limits.

• GLIntegrateOrder: The order used for the Gauß-Legendre integration inside of
distrExIntegrate.

• ElowerTruncQuantile: The lower limit of integration used inside of E which corre-
sponds to the ElowerTruncQuantile-quantile.

• EupperTruncQuantile: The upper limit of integration used inside of E which corre-
sponds to the (1-ElowerTruncQuantile)-quantile.

• ErelativeTolerance: The relative tolerance used inside of E when calling
distrExIntegrate.

• m1dfLowerTruncQuantile: The lower limit of integration used inside of m1df which
corresponds to the m1dfLowerTruncQuantile-quantile.

• m1dfRelativeTolerance: The relative tolerance used inside of m1df when calling
distrExIntegrate.

• m2dfLowerTruncQuantile: The lower limit of integration used inside of m2df which
corresponds to the m2dfLowerTruncQuantile-quantile.

• m2dfRelativeTolerance: The relative tolerance used inside of m2df when calling
distrExIntegrate.
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5.3 Options for "distrMod"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrModoptions/
getdistrModOption. These include

• use.generalized.inverse.by.default which is a logical variable giving the default
value for argument generalized of our method solve in package "distrMod". This
argument decides whether our method solve is to use generalized inverses if the
original solve-method from package "base" fails; if the option is set to FALSE, in
case of failure, and unless argument generalized is not explicitely set to TRUE, solve
will throw an error as is the "base"-method behavior. The default value of thie option
is TRUE.

• show.details which controls the detailedness for method show for objects of classes
of the "distrXXX" family of packages. Possible values are

– "maximal": all information is shown

– "minimal": only the most important information is shown

– "medium": somewhere in the middle; see actual show-methods for details.

The default value is "maximal".

5.4 Options for "distrSim"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrSimoptions/
getdistrSimOption. These include

• MaxNumberofPlottedObs the maximal number of observation plotted in a plot of an
object of class Dataclass; defaults to 4000

• MaxNumberofPlottedObsDims: the maximum number of observations to be plotted
in a plot of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofPlottedRuns: the maximum number of runs to be plotted in a plot of
an object of class Dataclass and descendants (one run/panel); defaults to 6.

• MaxNumberofSummarizedObsDims: the maximum number of observations to be sum-
marized of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofSummarizedRuns: the maximum number of runs to be summarized of
an object of class Dataclass and descendants; defaults to 6.
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5.5 Options for "distrTEst"

Just as with to the distroptions/getdistrOption commands you may specify certain
global output options to be used within the package with distrTEstoptions/
getdistrTEstOption. These include

• MaxNumberofPlottedEvaluations: the maximal number of evaluations to be plotted
in a plot of an object of class EvaluationList; defaults to 6

• MaxNumberofPlottedEvaluationDims: the maximal number of evaluation dimen-
sions to be plotted in a plot of an object of class Evaluation; defaults to 6

• MaxNumberofSummarizedEvaluations: the maximal number of evaluations to be
summarized of an object of class EvaluationList; defaults to 15

• MaxNumberofPrintedEvaluations: the maximal number of evaluations printed of
an object of class EvaluationList; defaults to 15

6 Startup Messages

For the management of startup messages, from version 1.7, we use package "startupmsg":
When loading/attaching packages "distr", "distrEx", "distrSim", or "distrTEst" for
each package a disclaimer is displayed.

You may suppress these start-up banners/messages completely by setting
options("StartupBanner"="off") somewhere before loading this package by library
or require in your R-code / R-session.

If option "StartupBanner" is not defined (default) or setting
options("StartupBanner" = NULL) or options("StartupBanner" = "complete") the
complete start-up banner is displayed.

For any other value of option "StartupBanner" (i.e., not in c(NULL, "off", "complete"))
only the version information is displayed.

The same can be achieved by wrapping the library or require call into either
onlytypeStartupMessages(<code>, atypes="version") or
suppressStartupMessages(<code>).

7 System/version requirements, license, etc.

7.1 System requirements

As our package is completely written in R, there are no dependencies on the underlying
OS; of course, there is the usual speed gain possible on recent machines. We have tested
our package on a Pentium II with 233 MHz, on Pentium III’s with 0.8–2.1 GHz, and on an
Athlon with 2.5 GHz giving a reasonable performance.
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7.2 Required version of R

Contrary to the hardware required, if you want to use library or require to use "distr"
within R code, you need at least R Version 1.8.1, as we make use of name space operations
only available from that version on; also, the command setClassUnion, which is used in
some sources, is only available from that version on.
On the other hand, if the package may be pasted in by source, the code works with R from
version 1.7.0 on —but without using name-spaces, which is only available from 1.8.0 on.
Due to some changes in R from version 1.8.1 to 1.9.0 and from 1.9.1 to 2.0.0, we have
to provide different zip/tar.gz-Files for these versions.
Versions of "distr" from version number 1.5 onwards are only supplied for R Version 2.0.1
patched and later. After a reorganization, versions of "distr" from version number 1.6
onwards are only supplied for R Version 2.2.0 patched and later.

7.3 Dependencies

In package "distr", from version 2.0, we make use of D1ss from Martin Mächler’s package
"sfsmisc". In package "distrEx", we need Alec Stephenson’s package "evd" for the
extreme value distributions implemented therein. In package "distrSim", and conseqently
also in package "distrTEst" we use Paul Gilbert’s package "setRNG" to be installed from
CRAN for the control of the seed of the random number generator in our simulation classes.
More precisely, for our version ≤ 1.6 we need his version < 2006.2-1, and for our version
≥ 1.7 we need his version ≥ 2006.2-1.

From package version 1.7/0.4-3 on, we also need package "startupmsg" by the first
of the present authors, which also is available on CRAN.

7.4 License

This software is distributed under the terms of the GNU GENERAL PUBLIC LICENSE
Version 2, June 1991, confer
http://www.gnu.org/copyleft/gpl.html

8 Details to the implementation

• As the normal distribution is closed under affine transformations, we have overloaded
the corresponding methods.

• For the general convolution algorithm for univariate probability distribution function-
s/densities by means of FFT, which we use in the overloaded "+"-operator, confer [5].

• Exact convolution methods are implemented for the normal, the Poisson, the bino-
mial, the negative binomial, the Gamma (and the Exp), and the χ2 distribution
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• Exact formulae for scale transformations are implemented for the Exp-/Gamma-
distribution, the Weibull and the log-normal distribution (the latter two from version
1.9 on).

• Exact formulae for affine linear transformations are available for the normal, the
logistic and the Cauchy distribution (the latter two from version 1.9 on).

• Instances of any class transparent to the user are initialized by
<classname>([<slotname>=<value>,...]) where except for class DataClass in
package "distrSim" all classes have default values for all their slots; in DataClass,
the slot Data has to be specified.

• Multiplication (and Division) is implemented as corresponding exponentials of the
convolution of the logarithms (evaluated separately for positive and negative parts).

• Exponentiation also uses the exp-log trick.

• Multiplication, Exponentation, and Min/Maximum of an AbscontDistribution and
a DiscreteDistribution as an intermediate step produce a UnivarMixingDistribution,
with one mixing component for each element of the support of the DiscreteDistribution.
As a last step, this UnivarMixingDistribution is then “flattened”.

• As suggested in [3] all slots are accessed and modified by corresponding accessor- and
replacement functions —templates for which were produced by standardMethods.

We strongly discourage the use of the @-operator to modify or even access
slots r, d, p, and q, confer Example 12.7.

9 A general utility

Following [3], the programmer of S4-classes should provide accessor and replacement func-
tions for the inspection/modification of any newly introduced slot. This can be quite a
task when you have a lot of classes/slots. As these functions all have the same structure,
it would be nice to automatically generate templates for them. Faced with this problem
in developing this package, Thomas Stabla has written such a utility, standardMethods
—which the authors of this package recommend for any developer of S4-classes. For more
details, see ?standardMethods.

10 Odds and Ends

10.1 What should be done and what we could do —for version >2.0

• application of analytic FourierTransforms instead of FFT where appropriate —perhaps
also to be controlled by a parameter/option
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• use the q-slot applied to runif in simplifyr for continuous distributions

• further exact formulae for binary arithmetic operations like "*"

• goodness of fit tests for distribution-objects

• defining a subgroup of Math2 of invertible binary operators

10.2 What should be done but for which we lack the know-how

• multivariate distributions

• conditional distributions

• copula
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12 Examples

12.1 12-fold convolution of uniform (0, 1) variables

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/NormApprox.R

This example shows how easily we may get the distribution of the sum of 12 i.i.d. ufo(0, 1)–variables
minus 6— which was used as a fast generator of N (0, 1)–variables in times when evaluations of exp,
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log, sin and tan were expensive, confer [7], example C, p. 163. The user should not be confused by
expressions like U+U: this does not mean 2U but rather convolution of two independent identically
distributed random variables.

> require(distr)
> N ← Norm (0,1)
> U ← Unif (0,1)
> U2 ← U + U
> U4 ← U2 + U2
> U8 ← U4 + U4
> U12 ← U4 + U8
> NormApprox ← U12 - 6
> x ← seq(-4 ,4,0.001)
> opar ← par()
> par(mfrow = c(2,1))
> plot(x, d(NormApprox )(x),
+ type = "l",
+ xlab = "",
+ ylab = "Density",
+ main = "Exact and approximated density")
> lines(x, d(N)(x),
+ col = "red")
> legend("topleft",
+ legend = c("NormApprox", "Norm (0,1)"),
+ fill = c("black", "red"))
> plot(x, d(NormApprox )(x) - d(N)(x),
+ type = "l",
+ xlab = "",
+ ylab = "\"black\" - \"red\"",
+ col = "darkgreen",
+ main = "Error")
> lines(c(-4,4), c(0,0))

> par(opar)
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12.2 Comparison of exact convolution to FFT for normal distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ConvolutionNormalDistr.R

This example illustrates the exactness of the numerical algorithm used to compute the convolution:
We know that L(A + B) = N (5, 13) — if the second argument of N is the variance

> require(distr)
> ## initialize two normal distributions

> A ← Norm(mean=1, sd=2)
> B ← Norm(mean=4, sd=3)
> ## convolution via addition of moments

> AB ← A+B
> ## casting of A,B as absolutely continuous distributions

> ## that is, ``forget '' that A,B are normal distributions
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> A1 ← as(A, "AbscontDistribution")
> B1 ← as(B, "AbscontDistribution")
> ## for higher precision we change the global variable

> ## "TruncQuantile" from 1e-5 to 1e-8

> oldeps ← getdistrOption("TruncQuantile")
> eps ← 1e-8
> distroptions("TruncQuantile" = eps)
> ## support of A1+B1 for FFT convolution is

> ## [q(A1)( TruncQuantile),

> ## q(B1)( TruncQuantile , lower.tail = FALSE)]

>
> ## convolution via FFT

> AB1 ← A1+B1
> #############################

> ## plots of the results

> #############################

> par(mfrow=c(1,3))
> low ← q(AB)(1e-15)
> upp ← q(AB)(1e-15, lower.tail = FALSE)
> x ← seq(from = low , to = upp , length = 10000)
> ## densities

> plot(x, d(AB)(x), type = "l", lwd = 5)
> lines(x , d(AB1)(x), col = "orange", lwd = 1)
> title("Densities")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## cdfs

> plot(x, p(AB)(x), type = "l", lwd = 5)
> lines(x , p(AB1)(x), col = "orange", lwd = 1)
> title("CDFs")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## quantile functions

> x ← seq(from = eps , to = 1-eps , length = 1000)
> plot(x, q(AB)(x), type = "l", lwd = 5)
> lines(x , q(AB1)(x), col = "orange", lwd = 1)
> title("Quantile functions")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## Since the plots of the results show no

> ## recognizable differencies , we also compute

> ## the total variation distance of the densities

> ## and the Kolmogorov distance of the cdfs

>
> ## total variation distance of densities

> total.var ← function(z, N1, N2){
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+ 0.5*abs(d(N1)(z) - d(N2)(z))
+ }
> dv ← integrate(total.var , lower=-Inf , upper=Inf , rel.tol=1e-8, N1=AB, N2=AB1)

> cat("Total variation distance of densities :\t")

Total variation distance of densities:

> print(dv) # 4.25e-07

4.250016e-07 with absolute error < 1.8e-09

> ### meanwhile realized in package "distrEx"

> ### as TotalVarDist(N1,N2)

>
> ## Kolmogorov distance of cdfs

> ## the distance is evaluated on a random grid

> z ← r(Unif(Min=low , Max=upp ))(1e5)
> dk ← max(abs(p(AB)(z)-p(AB1)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk , "\n")

Kolmogorov distance of cdfs: 7.269299e-07

> # 2.03e-07

>
> ### meanwhile realized in package "distrEx"

> ### as KolmogorovDist(N1,N2)

>
> ## old distroptions

> distroptions("TruncQuantile" = oldeps)
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12.3 Comparison of FFT to RtoDPQ

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/ComparisonFFTandRtoDPQ.R

This example illustrates the exactness (or rather not–so–exactness) of the simulational default
algorithm used to compute the distribution of transformations of group math.

> require(distr)
> ################################

> ## Comparison 1 - FFT and RtoDPQ

> ################################

>
> N1 ← Norm (0,3)
> N2 ← Norm (0,4)
> rnew1 ← function(n) r(N1)(n) + r(N2)(n)
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> X ← N1 + N2
> # exact formula -> N(0,5)

> Y ← N1 + as(N2, "AbscontDistribution")
> # appoximated with FFT

> Z ← new("AbscontDistribution", r = rnew1)
> # appoximated with RtoDPQ

>
> # density -plot

>
> x ← seq ( -15 ,15 ,0.01)
> plot(x, d(X)(x),
+ type = "l",
+ lwd = 3,
+ xlab = "",
+ ylab = "density",
+ main = "Comparison 1",
+ col = "black")
> lines(x, d(Y)(x),
+ col = "yellow")
> lines(x, d(Z)(x),
+ col = "red")
> legend("topleft",
+ legend = c("Exact", "FFT -Approximation",
+ "RtoDPQ -Approximation"),
+ fill = c("black", "yellow", "red"))
> ############################################

> ## Comparison 2 - "Exact" Formula and RtoDPQ

> ############################################

>
> B ← Binom(size = 6, prob = 0.5) * 10
> N ← Norm()
> rnew2 ← function(n) r(B)(n) + r(N)(n)
> Y ← B + N
> # "exact" formula

> Z ← new("AbscontDistribution", r = rnew2)
> # appoximated with RtoDPQ

>
> # density -plot

>
> x ← seq(-5,65,0.01)
> plot(x, d(Y)(x),
+ type = "l",
+ xlab = "",
+ ylab = "density",
+ main = "Comparison 2",
+ col = "black")
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> lines(x, d(Z)(x),
+ col = "red")
> legend("topleft",
+ legend = c("Exact", "RtoDQP -Approximation"),

+ fill = c("black", "red"))
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12.4 Comparison of exact and approximate stationary regressor distri-
bution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/StationaryRegressorDistr.R

Another illustration for the use of package "distr". In case of a stationary AR(1)–model, for
non–normal innovation distribution, the stationary distribution of the observations must be ap-
proximated by finite convolutions. That these approximations give fairly good results for approx-
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imations down to small orders is exemplified by the Gaussian case where we may compare the
approximation to the exact stationary distribution.

> require(distr)
> ## Approximation of the stationary regressor

> ## distribution of an AR(1) process

> ## X_t = phi X_{t-1} + V_t
> ## where V_t i.i.d N(0,1) and phi\in(0,1)

> ## We obtain

> ## X_t = \sum_{j=1}^\ infty phi^j V_{t-j}
> ## i.e., X_t \sim N(0,1/(1-phi ^2))
> phi ← 0.5
> ## casting of V as absolutely continuous distributions

> ## that is, ``forget '' that V is a normal distribution

> V ← as(Norm(), "AbscontDistribution")
> ## for higher precision we change the global variable

> ## "TruncQuantile" from 1e-5 to 1e-8

> oldeps ← getdistrOption("TruncQuantile")
> eps ← 1e-8
> distroptions("TruncQuantile" = eps)
> ## Computation of the approximation

> ## H=\sum_{j=1}^n phi^j V_{t-j}
> ## of the stationary regressor distribution

> ## (via convolution using FFT)

> H ← V
> n ← 15
> ## may take some time

> ### switch off warnings [would be issued due to

> ### very unequal variances ...]

> old.warn ← getOption("warn")
> options("warn" = -1)
> for(i in 1:n){Vi ← phi^i*V; H ← H + Vi }
> options("warn" = old.warn)
> ## the stationary regressor distribution (exact)

> X ← Norm(sd=sqrt(1/(1-phi ^2)))
> #############################

> ## plots of the results

> #############################

> par(mfrow=c(1,3))
> low ← q(X)(1e-15)
> upp ← q(X)(1e-15, lower.tail = FALSE)
> x ← seq(from = low , to = upp , length = 10000)
> ## densities

> plot(x, d(X)(x),type = "l", lwd = 5)
> lines(x , d(H)(x), col = "orange", lwd = 1)
> title("Densities")
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> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## cdfs

> plot(x, p(X)(x),type = "l", lwd = 5)
> lines(x , p(H)(x), col = "orange", lwd = 1)
> title("CDFs")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## quantile functions

> x ← seq(from = eps , to = 1-eps , length = 1000)
> plot(x, q(X)(x),type = "l", lwd = 5)
> lines(x , q(H)(x), col = "orange", lwd = 1)
> title("Quantile functions")
> legend( "topleft",
+ legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## Since the plots of the results show no

> ## recognizable differencies , we also compute

> ## the total variation distance of the densities

> ## and the Kolmogorov distance of the cdfs

>
> ## total variation distance of densities

> total.var ← function(z, N1, N2){
+ 0.5*abs(d(N1)(z) - d(N2)(z))
+ }
> dv ← integrate(f = total.var , lower = -Inf ,
+ upper = Inf , rel.tol = 1e-7,
+ N1=X, N2=H)

> cat("Total variation distance of densities :\t")

Total variation distance of densities:

> print(dv) # ~ 5.0e-06

2.091632e-05 with absolute error < 5.7e-08

> ### meanwhile realized in package "distrEx"

> ### as TotalVarDist(N1,N2)

>
>
> ## Kolmogorov distance of cdfs

> ## the distance is evaluated on a random grid

> z ← r(Unif(Min=low , Max=upp ))(1e5)
> dk ← max(abs(p(X)(z)-p(H)(z)))

> cat("Kolmogorov distance of cdfs:\t", dk , "\n")
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Kolmogorov distance of cdfs: 1.120186e-05

> # ~2.5e-06
>
> ### meanwhile realized in package "distrEx"

> ### as KolmogorovDist(N1,N2)

>
>
> ## old distroptions

> distroptions("TruncQuantile" = oldeps)
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12.5 Truncation and Huberization/winsorization

has been integrated to the package itself, see section 3.8
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12.6 Distribution of minimum and maximum of two independent random
variables

has been integrated to the package itself, see section 3.8

12.7 Instructive destructive example

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/destructive.R

> ##########################################################

> ## Demo: Instructive destructive example

> ##########################################################

> require(distr)
> ## package "distr" encourages

> ## consistency but does not

> ## enforce it---so in general

> ## d o n o t m o d i f y

> ## slots d,p,q,r!
>
> N ← Norm()
> B ← Binom()
> N@d ← B@d

> plot(N, lwd = 3)
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12.8 A simulation example

needs packages "distrSim"/"distrTEst"

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/SimulateandEstimate.R

> have.distrTEst ← suppressWarnings(require(distrTEst ))
> ### also loads distrSim

> if (have.distrTEst)
+ { sim ← new("Simulation",
+ seed = setRNG(),
+ distribution = Norm(mean = 0, sd = 1),
+ filename="sim_01",
+ runs = 1000,
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+ samplesize = 30)
+
+ contsim ← new("Contsimulation",
+ seed = setRNG(),
+ distribution.id = Norm(mean = 0, sd = 1),
+ distribution.c = Norm(mean = 0, sd = 9),
+ rate = 0.1,
+ filename="contsim_01",
+ runs = 1000,
+ samplesize = 30)
+
+ simulate(sim)
+ simulate(contsim)
+
+ print(sim)
+ summary(contsim)
+ plot(contsim)
+ } else {
+ cat("\n functionality not (yet) available; ")
+ cat("you have to install package \"distrTEst\" first.\n")

+ }

filename of Simulation: sim_01
Seed: Kind: Mersenne-Twister

Normal Kind: Inversion
first 6 numbers: 1635409154 -0519020138 0383807185

0917289334 0999594824 0755616855
number of runs: 1000
dimension of the observations: 1
size of sample: 30
object was generated by version: 1.9
Distribution:
Distribution Object of Class: Norm
mean: 0
sd: 1
name of simulation: contsim_01
rate of contamination: 0.100000
real Data:
dimension of the observations: 1
number of runs: 1000
size of sample: 30
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> have.distrTEst ← suppressWarnings(require("distrTEst"))
> if (have.distrTEst)
+ { psim ← function(theta ,y,m0){
+ mean(pmin(pmax(-m0, y - theta), m0))
+ }
+ mestimator ← function(x, m = 0.7) {
+ uniroot(f = psim ,
+ lower = -20,
+ upper = 20,
+ tol = 1e-10,
+ y = x,
+ m0 = m,
+ maxiter = 20)$root
+ }
+
+ result.id.mean ← evaluate(sim , mean)
+ result.id.mest ← evaluate(sim , mestimator)
+ result.id.median ← evaluate(sim , median)
+
+
+ result.cont.mean ← evaluate(contsim , mean)
+ result.cont.mest ← evaluate(contsim , mestimator)
+ result.cont.median ← evaluate(contsim , median)
+
+ elist ← EvaluationList(result.cont.mean ,
+ result.cont.mest ,
+ result.cont.median)
+
+ print(elist)
+ summary(elist)
+ plot(elist , cex = 0.7, las = 2)
+ } else {
+ cat("\n functionality not (yet) available; ")
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+ cat("you have to install package \"distrTEst\" first.\n")

+ }

An EvaluationList Object
name of Evaluation List: a list of "Evaluation" objects
name of Dataobject: object
name of Datafile: contsim_01
----------------------------------
An Evaluation Object
estimator: mean
Result: 'data.frame': 1000 obs. of 2 variables:
$ mean.id: num -0.0207 0.0453 0.0259 0.0357 0.0562 ...
$ mean.re: num 0.370 0.244 -0.243 -0.119 0.768 ...
----------------------------------
An Evaluation Object
estimator: mestimator
Result: 'data.frame': 1000 obs. of 2 variables:
$ mstm.id: num -0.12097 0.07503 0.00958 -0.11170 -0.00998 ...
$ mstm.re: num -0.1061 0.0843 0.0968 -0.1071 0.2346 ...
----------------------------------
An Evaluation Object
estimator: median
Result: 'data.frame': 1000 obs. of 2 variables:
$ medn.id: num -0.1147 0.0520 0.0188 -0.1361 -0.2055 ...
$ medn.re: num -0.0449 0.0520 0.0922 -0.1361 0.2292 ...
name of Evaluation List: a list of "Evaluation" objects
name of Dataobject: object
name of Datafile: contsim_01
----------------------------------
name of Evaluation: object
estimator: mean
Result:

mean.id mean.re
Min. :-0.631972 Min. :-1.77518
1st Qu.:-0.119414 1st Qu.:-0.36959
Median :-0.009219 Median :-0.01502
Mean :-0.003697 Mean :-0.01512
3rd Qu.: 0.122659 3rd Qu.: 0.31638
Max. : 0.678129 Max. : 2.66958
----------------------------------
name of Evaluation: object
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estimator: mestimator
Result:

mstm.id mstm.re
Min. :-0.668594 Min. :-0.801157
1st Qu.:-0.139717 1st Qu.:-0.155832
Median :-0.009166 Median :-0.006478
Mean :-0.004723 Mean :-0.006237
3rd Qu.: 0.120341 3rd Qu.: 0.147719
Max. : 0.744287 Max. : 0.770694
----------------------------------
name of Evaluation: object
estimator: median
Result:

medn.id medn.re
Min. :-0.697893 Min. :-0.776439
1st Qu.:-0.156873 1st Qu.:-0.178822
Median :-0.001966 Median :-0.002736
Mean :-0.005605 Mean :-0.006292
3rd Qu.: 0.147137 3rd Qu.: 0.164611
Max. : 0.701003 Max. : 0.759162
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Output by plot/show-method for an object of class Evaluation

> result.cont.mest

An Evaluation Object

name of Dataobject: object

name of Datafile: contsim_01

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.12097 0.07503 0.00958 -0.11170 -0.00998 ...

$ mstm.re: num -0.1061 0.0843 0.0968 -0.1071 0.2346 ...

Output by summary-method for an object of class EvaluationList

> summary(elist)

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

----------------------------------

name of Evaluation: object
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estimator: mean

Result:

mean.id mean.re

Min. :-0.631972 Min. :-1.77518

1st Qu.:-0.119414 1st Qu.:-0.36959

Median :-0.009219 Median :-0.01502

Mean :-0.003697 Mean :-0.01512

3rd Qu.: 0.122659 3rd Qu.: 0.31638

Max. : 0.678129 Max. : 2.66958

----------------------------------

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.668594 Min. :-0.801157

1st Qu.:-0.139717 1st Qu.:-0.155832

Median :-0.009166 Median :-0.006478

Mean :-0.004723 Mean :-0.006237

3rd Qu.: 0.120341 3rd Qu.: 0.147719

Max. : 0.744287 Max. : 0.770694

----------------------------------

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.697893 Min. :-0.776439

1st Qu.:-0.156873 1st Qu.:-0.178822

Median :-0.001966 Median :-0.002736

Mean :-0.005605 Mean :-0.006292

3rd Qu.: 0.147137 3rd Qu.: 0.164611

Max. : 0.701003 Max. : 0.759162

In this example we present a standard robust simulation study that — in variations — arises in
almost every paper on Robust Statistics. We do this with the tools provided by our package. . .

12.9 Expectation of a given function under a given distribution

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/Expectation.R

This code is for illustration only; in the mean-time, the expectation- and variance operators implemented in

this example have been included to package "distrEx" where their functionality has further been extended.

As in examples 12.5 and 12.6, we illustrate the use of package "distr" by implementing a general
evaluation of expectation and variance under a given distribution.

> have.distrEx ← suppressWarnings(require("distrEx"))
> if (have.distrEx)
+ {
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+ # Example

+ id ← function(x) x
+ sq ← function(x) x^2
+
+ # Expectation and Variance of Binom (6 ,0.5)

+ B ← Binom(6, 0.5)
+ print(E(B, id))
+ print(E(B, sq) - E(B, id)^2)
+
+ # Expectation and Variance of Norm (1,1)

+ N ← Norm(1, 1)
+ print(E(N, id))
+ print(E(N, sq) - E(N, id)^2)
+ } else {
+ cat("\n functionality not (yet) available; ")
+ cat("you have to install package \"distrEx\" first.\n")

+ }

[1] 3
[1] 1.5
[1] 0.9999998
[1] 0.9999944

12.10 n-fold convolution of absolutely continuous distributions

Code also available under

http://www.uni-bayreuth.de/departments/math/org/

/mathe7/DISTR/nFoldConvolution.R

Might be useful for teaching the CLT: a straightforward implementation of the n–fold convolution
of an arbitrary implemented absolutely continuous distribution — to show accuracy of our method
we compare it to the exact formula valid for n-fold convolution of normal distributions.
From version 1.9 this is integrated to package "distr".

> ##########################################################

> ## Demo: n-fold convolution of absolutely continuous

> ## probability distributions

> ##########################################################

> require(distr)
> if(!isGeneric("convpow"))
+ setGeneric("convpow",
+ function(D1 ,...) standardGeneric("convpow"))
> ##########################################################

> ## Function for n-fold convolution
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> ## -- absolute continuous distribution --

> ##########################################################

>
> ##implentation of Algorithm 3.4. of

> # Kohl , M., Ruckdeschel , P., Stabla , T. (2005):

> # General purpose convolution algorithm for distributions

> # in S4-Classes by means of FFT.

> # Technical report , Feb. 2005. Also available in

> # http://www.uni -bayreuth.de/departments/math/org/mathe7/
> # /RUCKDESCHEL/pubs/comp.pdf
>
>
> setMethod("convpow",
+ signature(D1 = "AbscontDistribution"),
+ function(D1, N){
+ if((N < 1)||(!identical(floor(N), N)))
+ stop("N has to be a natural greater than 0")
+
+ m ← getdistrOption("DefaultNrFFTGridPointsExponent")
+
+ ##STEP 1

+
+ lower ← ifelse ((q(D1)(0) > - Inf), q(D1)(0),
+ q(D1)( getdistrOption("TruncQuantile")))
+ upper ← ifelse ((q(D1)(1) < Inf), q(D1)(1),
+ q(D1)( getdistrOption("TruncQuantile"), lower.tail = FALSE))
+
+ ##STEP 2

+
+ M ← 2^m
+ h ← (upper -lower)/M
+ if(h > 0.01)
+ warning(paste("Grid for approxfun too wide , ",
+ "increase DefaultNrFFTGridPointsExponent", sep=""))
+ x ← seq(from = lower , to = upper , by = h)
+ p1 ← p(D1)(x)
+
+ ##STEP 3

+
+ p1 ← p1[2:(M + 1)] - p1[1:M]
+
+ ##STEP 4

+
+ ## computation of DFT

+ pn ← c(p1, numeric ((N-1)*M))
+ fftpn ← fft(pn)
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+
+ ##STEP 5

+
+ ## convolution theorem for DFTs

+ pn ← Re(fft(fftpn^N, inverse = TRUE)) / (N*M)
+ pn ← (abs(pn) >= .Machine$double.eps)*pn
+ i.max ← N*M-(N-2)
+ pn ← c(0,pn[1:i.max])
+ dn ← pn / h
+ pn ← cumsum(pn)
+
+ ##STEP 6( density)

+
+ ## density

+ x ← c(N*lower ,seq(from = N*lower+N/2*h,
+ to = N*upper -N/2*h, by=h),N*upper)
+ dnfun1 ← approxfun(x = x, y = dn, yleft = 0, yright = 0)
+
+ ##STEP 7( density)

+
+ standardizer ← sum(dn[2:i.max]) + (dn[1]+dn[i.max +1]) / 2
+ dnfun2 ← function(x) dnfun1(x) / standardizer
+
+ ##STEP 6(cdf)

+
+ ## cdf with continuity correction h/2
+ pnfun1 ← approxfun(x = x+0.5*h, y = pn ,
+ yleft = 0, yright = pn[i.max +1])
+
+ ##STEP 7(cdf)

+
+ pnfun2 ← function(x) pnfun1(x) / pn[i.max+1]
+
+
+ ## quantile with continuity correction h/2
+ yleft ← ifelse (((q(D1)(0) == -Inf)|
+ (q(D1)(0) == -Inf)),
+ -Inf , N*lower)
+ yright ← ifelse (((q(D1)(1) == Inf)|
+ (q(D1)(1) == Inf)),
+ Inf , N*upper)
+ w0 ← options("warn")
+ options(warn = -1)
+ qnfun1 ← approxfun(x = pnfun2(x+0.5*h),
+ y = x+0.5*h, yleft = yleft , yright = yright)
+ qnfun2 ← function(x){

95



+ ind1 ← (x == 0)*(1: length(x))
+ ind2 ← (x == 1)*(1: length(x))
+ y ← qnfun1(x)
+ y ← replace(y, ind1[ind1 != 0], yleft)
+ y ← replace(y, ind2[ind2 != 0], yright)
+ return(y)
+ }
+ options(w0)
+
+ rnew = function(N) apply(matrix(r(e1)(n*N),
+ ncol=N), 1, sum)
+
+ return(new("AbscontDistribution", r = rnew ,
+ d = dnfun1 , p = pnfun2 , q = qnfun2 ))

+ })

[1] "convpow"

> ## initialize a normal distribution

> A ← Norm(mean=0, sd=1)
> ## convolution power

> N ← 10
> ## convolution via FFT

> AN ← convpow(as(A,"AbscontDistribution"), N)
> ## ... for the normal distribution , 'convpow ' has an "exact"

> ## method by version 1.9 so the as(.,.) is needed to

> ## see how the algorithm above works

>
> ## convolution exact

> AN1 ← Norm(mean=0, sd=sqrt(N))
> ## plots of the results

> eps ← getdistrOption("TruncQuantile")
> par(mfrow=c(1,3))
> low ← q(AN1)(eps)
> upp ← q(AN1)(eps , lower.tail = FALSE)
> x ← seq(from = low , to = upp , length = 10000)
> ## densities

> plot(x, d(AN1)(x), type = "l", lwd = 5)
> lines(x , d(AN)(x), col = "orange", lwd = 1)
> title("Densities")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## cdfs

> plot(x, p(AN1)(x), type = "l", lwd = 5)
> lines(x , p(AN)(x), col = "orange", lwd = 1)
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> title("CDFs")
> legend("topleft", legend=c("exact", "FFT"),
+ fill=c("black", "orange"))
> ## quantile functions

> x ← seq(from = eps , to = 1-eps , length = 1000)
> plot(x, q(AN1)(x), type = "l", lwd = 5)
> lines(x , q(AN)(x), col = "orange", lwd = 1)
> title("Quantile functions")
> legend("topleft",
+ legend = c("exact", "FFT"),

+ fill = c("black", "orange"))
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