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1 Introduction

Package dl1sem implements inference functionalities for structural equation modelling with second-
order polynomial and gamma lag shapes (DLSEM, [Magrini et al. (2016)]). DLSEM is an exten-
sion of structural equation modelling (SEM) where a second-order polynomial or a gamma lag
shape is applied to each covariate in each regression model, in order to account for temporal
delays in the dependence relationships among variables. In this vignette, theory on structural
equation modelling with second-order polynomial and gamma lag shapes is provided in Section 2,
then the practical use of dlsem is illustrated in Section 3 through a fictitious impact assessment
problem.

2 Theory

Lagged instances of one or more quantitative covariates can be included in the classical linear
regression model to to account for temporal delays in their influence on the response:
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where y; is the value of the response variable at time ¢ and x;;_; is the value of the j-th covariate
at [ time lags before t. The set (8;,0, 8j,1,---,0j,r,) is denoted as the lag shape of the j-th covariate
and represents its effect on the response variable at different time lags.



Parameter estimation using ordinary least squares is inefficient because lagged instances of the
same covariate are typically highly correlated. Also, the lag shape of a covariate is completely
unrestricted, thus problems of interpretation may arise. Second-order polynomial and gamma lag
shapes can be used to solve these drawbacks [Baltagi (2008), Chapter 6]. Package dlsem includes
the endpoint-constrained quadratic lag shape:
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The endpoint-constrained quadratic lag shape is zero for a lag ! < a; —1 or [ > b; + 1, and
symmetric with mode equal to 6; at (a; + b;)/2. The quadratic decreasing lag shape decreases
from value 6; at lag a; to value 0 at lag b; according to a quadratic function. The gamma lag shape

is positively skewed with mode equal to 0; at (%‘leog(%)
lag, and value b; — a; as the lag width. A static regression coefficient is obtained if a; = b; = 0.
Since it is not expressed as a function of a; and b;, the gamma lag shape cannot reduce to a static
regression coefficent, but values a; and b; can be computed through numerical approximation.
A second-order polynomial or a gamma lag shape is monotonic in the sign, that is §;; is either

non-negative or non-positive for any j and .

. Value a; is denoted as the gestation

A linear regression model with second-order polynomial and gamma lag shapes is linear in param-

eters By, 01,..., 07, provided that the values of ay,...,ay,b1,...,bs are known. Thus, one can use
ordinary least squares to estimate parameters 3y, 61, ..., 8 for several models with different values
of ai,...,az,bi,...,bs, and then select the one with the lowest Akaike Information Criterion!.

In structural equation modelling (SEM), a linear regression model is applied to each variable and
all linear regression models define an acyclic directed graph (DAG). In such DAG, variables are
represented by nodes, a node receives a directed edge from another node if the variable represented
by the latter is a covariate in the regression model of the variable represented by the former, and
no directed cycles are present (see Figure 1). If a node receives a directed edge from another
node in the DAG, the former is called child of the latter, and the latter is called parent of the
former. A comprehensive review of SEM can be found in [Kline (2000)]. If the DAG has a causal
interpretation, a causal effect is associated to each edge, directed path or couple of variables
[Pear] (2012)]:

e the causal effect associated to each edge in the DAG is represented by the coeflicient of the
variable represented by the parent node in the regression model of the variable represented
by the child node;

e the causal effect associated to a directed path is represented by the product of the causal
effects associated to each edge in the path;

INeither the response variable nor the covariates must contain a trend in order to obtain unbiased estimates
[Granger and Newbold (1974)]. A reasonable procedure is to sequentially apply differentiation to all variables until
the Dickey-Fuller test rejects the hypothesis of unit root for all of them.



Figure 1: A directed acyclic graph for SEM. The regression model applied to variable V; has no
covariates, the regression models applied to variables V5 and V3 have V; as covariate, the regression
model applied to variable V; has V5 and V5 as covariates.

e the causal effect of a variable on another is represented by the sum of the causal effects
associated to each directed path connecting the two variables.

Often, the causal effect of a variable on another is termed overall causal effect, the causal effect
associated to a directed path made by a single edge is called direct effect, while the causal effects
associated to the other directed paths are denoted as indirect effects.

In distributed-lag structural equation modelling (DLSEM), each regression model is enhanced by
second-order polynomial and gamma lag shapes and the DAG does not explicitly include time
lags, but, if an edge connects two variables, then there must be at least one time lag where the
coeflicient of the variable represented by the parent node in the regression model of the variable
represented by the child node is non-zero. DLSEM can be employed to disentangle the causal
effect of any variable to another at different time lags by extending the rules above:

e The causal effect associated to each edge in the DAG at lag k is represented by the coefficient
at lag k of the variable represented by the parent node in the regression model of the variable
represented by the child node.

e The causal effect associated to a directed path at lag k is computed as follows:

1. denote the number of edges in the path as p;

2. enumerate all the possible p-uples of lags, one lag for each of the p edges, such that
their sum is equal to k;

3. for each p-uple of lags:

- for each lag in the p-uple, compute the coefficient associated to the corresponding
edge at that lag;

- compute the product of all these coefficients;
4. sum all these products.

e The causal effect of a variable on another at lag k is represented by the sum of the causal
effects at lag k associated to each directed path connecting the two variables.

A causal effect evaluated at a single lag is denoted as instantaneous causal effect. The cumulative
causal effect at a prespecified lag, say k, is obtained by summing all the instantaneous causal
effects for each lag up to k.



3 Distributed-lag structural equation modelling with dlsem

The practical use of package dlsem is illustrated through a fictitious impact assessment problem,
aiming at testing whether the influence through time of the number job positions in industry (proxy
of the industrial development) on the amount of greenhouse gas emissions (proxy of pollution) is
direct and/or mediated by the amount of private consumption. The analysis will be conducted on
the dataset industry, containing data for 10 immaginary regions in the period 1983-2015.

> data(industry)
> summary (industry)

Region Year Population GDP
Min. : 1.0 Min. 11983 Min. : 4763886 Min. : 95430
1st Qu.: 3.0 1st Qu.:1991 1st Qu.: 8320552 1st Qu.: 182835
Median : 5.5 Median :1998 Median :25494251 Median : 461110
Mean 5.5 Mean :1998 Mean : 32404815 Mean : 722088
3rd Qu.: 8.0 3rd Qu.:2006 3rd Qu.:56325617 3rd Qu.:1272378
Max. :10.0 Max. 12014 Max. 178317539 Max. :1901180
Job Consum Pollution
Min. : 1380 Min. : 31.96 Min. : 5715

1st Qu.: 48138 1st Qu.: 85.98 1st Qu.: 7906
Median : 90386 Median :101.79 Median :23918

Mean . 254451 Mean : 98.71 Mean 132329
3rd Qu.: 432675 3rd Qu.:114.30 3rd Qu.:45515
Max. : 1666585 Max. :173.53 Max. : 94038

3.1 The model code

The first step to perform DLSEM with dlsem is the specification of the model code encoding
the DAG relating variables, together with assumptions and constraints on the lag shape for each
variable. The DAG for the proposed problem is shown in Figure 2.

Figure 2: The DAG for the industrial development problem. ‘Job’: number of job positions in
industry. ‘Consum’: private consumption index. ‘Pollution’: amount of greenhouse gas emissions.

The model code must be a list of formulas, one for each regression model. In each formula, the
response and the covariates must be quantitative variables and operators quec( ), qdec( ) and
gamma( ) can be employed to specify, respectively, an endpoint-constrained quadratic, a quadratic
decreasing or a gamma lag shape. Operators quec( ) and qdec( ) have three arguments: the name
of the variable to which the lag shape is applied, the minimum lag with a non-zero coefficient (a;),
and the maximum lag with a non-zero coefficient (b;). Operator gamma( ) has three arguments:
the name of the variable to which the lag shape is applied, parameter ¢; and parameter ;. If none



of these two operators is applied to a variable, it is assumed that the coefficient associated to that
variable is 0 for time lags greater than 0 (no lag). The group factor and exogenous variables must
not be specified in the model code (see Subsection 3.3). The regression model for variables with no
covariates besides the group factor and exogenous variables can be omitted from the model code
(here, we could omit the regression model for the number of job positions). In this illustration, an
endpoint-constrained quadratic lag shape between 0 and 15 time lags is assumed for all variables:

> mycode <- list(

+ Job 7 1,

Consum~quec(Job,0,15),
Pollution~quec(Job,0,15)+quec(Consum,0,15)
)

+ + +

3.2 Control options

The second step to perform DLSEM with dlsem is the specification of control options. Control
options must be a named list containing one or more among several components. The key compo-
nent is adapt, a named vector of logical values where each value must refer to one response variable
and indicates whether values a; and b; for each lag shape in the regression model of that variable
must be selected on the basis of the best fit to data, instead of employing the ones specified in
the model code. If adaption is requested for a regression model, three further components are
taken into account: max.gestation, min.width, max.width and sign. Each of these three components
is a named list, where each component of the list must refer to one response variable and must
be a named vector including, respectively, the maximum gestation lag, the minimum lag width,
the maximum lag width and the sign (either '+’ for non-negative, or -’ for non-positive) of the
coefficients of one or more covariates. In this illustration, adaptation of lag shapes is performed
for all regression models with the following constraints: (i) maximum gestation lag of 3 years,
(ii) minimum lag width of 5 years, (iii) maximum lag width of 15 years, (iv) all coefficients with
non-negative sign

> mycontrol <- list(

+  adapt=c(Consum=T,Pollution=T),

max.gestation=list (Consum=c(Job=3) ,Pollution=c(Job=3,Consum=3)),
min.width=1ist (Consum=c(Job=5) ,Pollution=c(Job=5,Consum=>5)),

max.width=1list (Consum=c (Job=15) ,Pollution=c(Job=15,Consum=15)),

sign=1list (Consum=c(Job="+") ,Pollution=c(Job="+",6Consum="+"))

)

+ + 4+ + +

3.3 Estimation

Once the model code and control options are specified, the structural model can be estimated
from data using the command dlsem( ). The user can indicate a group factor to argument group
and one or more exogenous variables to argument exogenous. By indicating the group factor,
one intercept for each level of the group factor will be estimated in each regression model. By
indicating exogenous variables, they will be included as non-lagged covariates in each regression
model, in order to eliminate spurious effects due to differences between the levels of the group
factor. Each exogenous variable can be either qualitative or quantitative and its coefficient in each
regression model is 0 for time lags greater than 0 (no lag). Furthermore, the user can decide to
perform any number of the following operations:

o differentiation until the hypothesis of unit root is rejected by the Dickey-Fuller test for all
the quantitative variables (by setting argument uniroot.check to TRUE);

e apply the logarithmic transformation to all quantitative variables in order to interpret each
coefficient as an elasticity (by setting argument log to TRUE).



In this illustration, the region is indicated as the group factor, while population and gross domestic
product are indicated as exogenous variables. Also, we request differentiation until stationarity
and logarithmic transformation for all quantitative variables:

> mod0 <- dlsem(mycode,group="Region",exogenous=c("Population","GDP"),
+ data=industry,control=mycontrol,uniroot.check=T,log=T)

Checking stationarity...

Order 1 differentiation performed

Start estimation...

Estimating regression model 1/3 (Job)
Estimating regression model 2/3 (Consum)
Estimating regression model 3/3 (Pollution)
Estimation completed

Before estimating the structural model, missing values for quantitative variables are imputed using
the Expectation-Maximization algorithm [Dempster et al. (1977)]. After estimating the structural
model, the user can display the DAG where each edge is coloured according to the sign of its causal
effect (green for non-negative, red for non-positive). The result is shown in Figure 3: the group
factor and exogenous variables are omitted from the DAG.

> plot(mod0)

Figure 3: The DAG where each edge is coloured with respect to the sign of its causal effect. Green:
non-negative causal effect. Red: non-positive causal effect. Grey: not statistically significant
causal effect (does not apply in this example.

All edges result statistically significant, providing evidence that the influence of industrial devel-
opment on pollution is both direct and mediated by private consumption.

The user can also request the summary of estimation:

> summary (mod0)

$Job

Call:
"Job ~ Region+Population+GDP"

Residuals:
Min 1Q Median 3Q Max
-5.9062 -0.3286 -0.0015 0.2867 5.1155

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
factor(Region)l -0.057067 0.146386 -0.390 0.6969



factor(Region)2 -0.031308 0.146290 -0.214  0.8307
factor(Region)3 -0.021608 0.146294 -0.148 0.8827
factor(Region)4 -0.161189 0.146382 -1.101 0.2717
factor(Region)5 -0.017219 0.146289 -0.118 0.9064
factor(Region)6 -0.027642 0.146277 -0.189 0.8502
factor(Region)7 -0.005684 0.146293 -0.039 0.9690
factor(Region)8 -0.046469 0.146304 -0.318 0.7510
factor(Region)9 -0.078167 0.146327 -0.534 0.5936
factor(Region)10 -0.046289 0.146356 -0.316 0.7520
Population 37.503956 22.489366 1.668 0.0964 .
GDP -1.760618 1.981745 -0.888 0.3750
Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8144 on 298 degrees of freedom

(10 observations deleted due to missingness)
Multiple R-squared: 0.01926, Adjusted R-squared: -0.02023
F-statistic: 0.4877 on 12 and 298 DF, p-value: 0.9214

$Consum

Call:
"Consum ~ Regiont+quec(Job,0,6)+Population+GDP"

Residuals:
Min 1Q Median 3Q Max
-0.222080 -0.028044 0.000101 0.025323 0.303720

Coefficients:
Estimate Std. Error t value Pr(>|tl)
factor(Region)l -4.158e-05 1.223e-02 -0.003 0.99729

factor(Region)2 -1.257e-02 1.221e-02 -1.030 0.30403
factor(Region)3 5.516e-03 1.220e-02 0.452 0.65164
factor(Region)4  8.464e-03 1.238e-02 0.684 0.49484
factor(Region)5  7.123e-03 1.220e-02 0.584 0.55994
factor(Region)6  1.761e-02 1.220e-02  1.443 0.15045
factor(Region)7  2.013e-02 1.221e-02 1.649 0.10054
factor(Region)8 -2.325e-02 1.222e-02 -1.902 0.05836 .
factor(Region)9  7.496e-03 1.222e-02 0.613 0.54035
factor(Region)10 -5.894e-03 1.222e-02 -0.482 0.62993
thetaO_quec.Job  3.173e-02 1.533e-02 2.070 0.03954 *
Population -4.839e+00 1.729e+00 -2.798 0.00557 *x*
GDP -8.555e-01 1.553e-01 -5.510 9.35e-08 *xx
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06098 on 237 degrees of freedom

(70 observations deleted due to missingness)
Multiple R-squared: 0.1758, Adjusted R-squared: 0.1306
F-statistic: 3.889 on 13 and 237 DF, p-value: 1.017e-05

$Pollution

Call:
"Pollution ~ Region+quec(Job,1,11)+quec(Consum,1,6)+Population+GDP"

Residuals:
Min 1Q Median 3Q Max
-0.127137 -0.019349 -0.001778 0.018852 0.107878

Coefficients:
Estimate Std. Error t value Pr(>|t])
factor (Region)1 0.002500 0.007729 0.323 0.746698



factor(Region)?2 0.012827 0.008611 1.490 0.138019
factor(Region)3 -0.002839 0.007850 -0.362 0.718000
factor (Region)4 -0.001595 0.008365 -0.191 0.849031
factor(Region)5 -0.004498 0.008174 -0.550 0.582806
factor (Region)6 -0.017220 0.008739 -1.970 0.050278 .
factor(Region)7 -0.020123 0.009491 -2.120 0.035310 =*
factor(Region)8 0.022969 0.010492 2.189 0.029830 =*
factor (Region)9 -0.005865 0.007925 -0.740 0.460140
factor (Region) 10 0.007015 0.007845 0.894 0.372359
thetalO_quec.Job 0.037419 0.013294 2.815 0.005408 **
thetaO_quec.Consum 0.230538 0.063627 3.623 0.000375 *xx
Population -3.333542 1.604427 -2.078 0.039109 *
GDP 0.181482 0.093399 1.943 0.053516 .
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.03451 on 186 degrees of freedom
(120 observations deleted due to missingness)
Multiple R-squared: 0.167, Adjusted R-squared: 0.1043
F-statistic: 2.663 on 14 and 186 DF, p-value: 0.001446
The summary of estimation returns estimates of parameters 6; (j = 1,...,J). Instead, the com-

mand edgeCoeff( ) can be used to obtain estimates and confidence intervals of coeflicients at the
relevant time lags §;; (j =1,...,J;1=0,1,...):

> edgeCoeff (mod0)
$70°

Consum™~Job
Pollution™Job
Pollution~Consum

$-1°

Consum™Job
Pollution™Job
Pollution~Consum
$-2°

Consum™Job
Pollution™Job
Pollution~Consum

$°3°

Consum™Job
Pollution™Job
Pollution~Consum
$-4°

Consum™Job
Pollution™Job
Pollution~Consum
$°5°

Consum™Job
Pollution™Job
Pollution~Consum

$6°

2.5%

2.5%

.001264473
.003472057
.051835751

2.5%

.001580591
.006312831
.086392919

2.5%

.001685964
.008522322
.103671503

2.5%

.001580591
.010100529
.103671503

2.5%

.001264473
.011047454
.086392919

2.5%

50%

50%

.02379887
.01143358
.11291665

50%

.02974858
.02078834
.18819441

50%

.03173182
.02806425
225683330

50%

.02974858
.03326134
.22583330

50%

.02379887
.03637959
.18819441

50%

97.5

97.5%
.04633326
.01939511
.17399755

97.5Y%
.05791658
.03526384
.28999591

97.5%
.06177768
.04760618
34799509

97.5Y
.05791658
.05642214
.34799509

97.5%
.04633326
.06171172
.28999591

97.5

)

.0007376091 0.01388267 0.02702774
.0000000000 0.00000000 0.00000000
.0000000000 0.00000000 0.00000000

)



Consum™Job 0.0007376091 0.01388267 0.02702774
Pollution™Job 0.0113630955 0.03741900 0.06347491
Pollution™Consum 0.0518357514 0.11291665 0.17399755

$7

2.5% 507% 97.5%
Consum™Job 0.00000000 0.00000000 0.00000000
Pollution™Job 0.01104745 0.03637959 0.06171172
Pollution”Consum 0.00000000 0.00000000 0.00000000

$-8"

2.5% 50% 97.5%
Consum™~Job 0.00000000 0.00000000 0.00000000
Pollution~Job 0.01010053 0.03326134 0.05642214
Pollution~Consum 0.00000000 0.00000000 0.00000000

$°9°

2.5% 507 97.5%
Consum™Job 0.000000000 0.00000000 0.00000000
Pollution™Job 0.008522322 0.02806425 0.04760618
Pollution™Consum 0.000000000 0.00000000 0.00000000

$10°

2.5% 50% 97.5%
Consum™Job 0.000000000 0.00000000 0.00000000
Pollution~Job 0.006312831 0.02078834 0.03526384
Pollution~Consum 0.000000000 0.00000000 0.00000000

$-11°

2.5% 507 97.5Y%
Consum™Job 0.000000000 0.00000000 0.00000000
Pollution~Job 0.003472057 0.01143358 0.01939511
Pollution~Consum 0.000000000 0.00000000 0.00000000

3.4 Disentanglement of causal effects

Causal effects can be computed using the command causalEff( ). The user must specify one or more
starting variables (argument from) and the ending variable (argument to). Optionally, specific time
lags at which causal effects must be computed can be provided to argument lag, otherwise all the
relevant ones are considered. Also, the user can choose whether instantaneous (argument cumul
set to FALSE, the default) or cumulative (argument cumul set to TRUE) causal effects must be
returned. Here, the cumulative causal effect of the number of job positions on the amount of
greenhouse gas emissions is requested at time lags 0, 5, 10, 15 and 20:

> causalEff (mod0,from="Job",to="Pollution",lag=seq(0,20,by=5) ,cumul=T)

$~ Job*Consum*Pollution”

2.5% 50% 97.5%
0 0.00000000 0.00000000 0.00000000
5 0.02352582 0.05956822 0.09561063
10 0.07442555 0.16870198 0.26297841
15 0.07533235 0.17556950 0.27580664
20 0.07533235 0.17556950 0.27580664

$~Job*Pollution”

2.5% 50% 97.5%
0 0.00000000 0.0000000 0.0000000
5 0.03945519 0.1299271 0.2203990
10 0.08680142 0.2858396 0.4848778
15 0.09027348 0.2972732 0.5042729
20 0.09027348 0.2972732 0.5042729

$overall



0 0
5 0
10 0
15 0
20 0

The output of command causalEff is a list of matrices, each containing estimates and confidence
intervals of the causal effect associated to each path connecting the starting variables to the ending
variable at the requested time lags. Also, estimates and confidence intervals of the overall causal

2.5%

50%

.00000000 0.0000000 0.00
.06298101 0.1894953 0.31
.16122698 0.4545416 0.74
.16560583 0.4728427 0.78
.16560583 0.4728427 0.78

97.5%
00000
60096
78562
00796
00796

effect is shown in the component named overall.

Since the logarithmic trasformation was applied to all quantitative variables, causal effects above
are interpreted as elasticities, that is, for a 1% of job positions more, greenhouse gas emissions
are expected to grow by 0.47% after 20 years. Actually, the effect ends before 20 years, as the
cumulative causal effects after 15 and20 years are equal. The time lag up to which the effect is
non-zero can be found by running command causalEff without providing a value to argument lag:

> causalEff (mod0,from="Job",to="Pollution",cumul=T)

$~ Job*Consum*Pollution”

00 ~NO U WN - O

$~Jo

© 0O ~NO O WN - O

$ove

~NOo o WN - O
[eNeNoNeoleoNeNeoNe]

0
0
0
0
0
0
0
0.
0
0
0
0
0
0

2.5%
.0000000000
.0001902551
.0009067999
0046845282
.0121660315
0235258156
.0376661767
.0518065378
.0631663218
.0706478251
0744255535
0755226084
.0753323533
.0753323533

[eNeoNeoNoNeoNeoNoNoNoNeoNoNoNoNe)

b*Pollution”
2.5%
.000000000
.003472057
.009784888
.018307209
.028407739
.039455193
.050818288

.071966271
.080488593
.086801424
.090273481
.090273481
.090273481

rall

2.5%
.000000000
.003281802
.010691688
.022991738
.040573770
.062981008
.088484465
.113672280

[eNeoNeoNeoNoNeNoNe]

0
0
0
0
0
0
0
061865742 0.
0
0
0
0
0
0

.00000000
.01143358
.03222192
.06028617
.09354751
.12992710
.16734610
20372569
.23698702
.26505128
.28583961
.29727320
.29727320
.29727320

.00000000
.01300117
.03908943
.07812678
.12907943
.18949532
.255613085
.31972696

50%

0.000000000
0.001567585
0.006867514
0.017840608
0.035531922
0.059568222
0.
0
0
0
0
0
0
0

087784749

.116001275
.140037575
.157728890
.168701983
.174001913
.175569498
.175569498

50%

[eNeNeoNeoNeoNeoNeoNoNeoNoNolNoNeoNeo

50%

[eNeNeoNeNeoNeoNeoNe]

97 .5
.000000000
.003325425
.012828229
.030996688
.058897813
.095610629
.137903321
.180196013
.216908829
. 244809954
.262978413
272481217
.275806642
.275806642

[eleoNeoNeoNeoNeNoNeoNeoNeoNoNoNeoNeJ

97.5%

.00000000
.01939511
.05465895
.10226514
.15868728
.22039900
.28387391
.34558563
.40200777
.44961396
.48487780
.50427291
.50427291
.50427291

97.5%

.00000000
.02272054
.06748718
.13326182
.21758509
.31600963
42177723
.52578164

10



8 0.135132593
9 0.151136418
10 0.161226977
11 0.165796089
12 0.165605834
13 0.165605834

[eNeoNeoNeoNoNe]

.37702460 0.61891660
.42278016 0.69442391
.45454159 0.74785621
.47127511 0.77675413
.47284269 0.78007955
.47284269 0.78007955

The estimated lag shape associated to a path or to an overall causal effect can be displayed using
the command lagPlot( ). For instance, we can display the lag shape associated to each path
connecting the number of job positions to the amount of greenhouse gas emissions:

> lagPlot (modO,path="Job*Pollution")
> lagPlot (mod0,path="Job*Consum*Pollution")

or the lag shape associated to the overall causal effect of the number of job positions on the amount
of greenhouse gas emissions:

> lagPlot(mod0,from="Job",to="Pollution")

The resulting graphics are shown in Figure 4.

Job * Pollution Job * Consum * Pollution
lag shape lag shape

Coefficient
-0.02 0 0.0133 0.0333 0.0533
] Y B

-0.04

0.00888 0.0222 0.0355

Coefficient
|

-0.00888

-0.0266

Effective lags: 1 to 11
Cumulative coefficient: 0.29727
95% ClI: (0.090273, 0.50427)

Effective lags: 1 to 12
Cumulative coefficient: 0.17557
95% CI: (0.075332, 0.27581)

-0.0666

01 2 3 45 6 7 8 910 12 14

~0.0444

1 T T T T T T T T T T T T T T
0 1 2 3 45 6 7 8 9 10 12 14

Lag Lag

Pollution ~ Job
lag shape

0 0.0222 0.0555 0.0888

Coefficient

-0.0333

-0.0777

Effective lags: 1 to 12
Cumulative coefficient: 0.47284
95% Cl: (0.16561, 0.78008)
L e B B B e
0 1 2 3 45 6 7 8 9 10 12 14

-0.111

Lag

Figure 4: The estimated lag shape associated to each path connecting the number of job positions
to the amount of greenhouse gas emissions (upper panels) and to the overall causal effect (lower
panel). 95% confidence intervals are shown in grey.
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