
Using the doRNG package

doRNG package – Version 1.2.2

Renaud Gaujoux

March 29, 2012

Research reproducibility is an issue of concern, in particular in bioinformatics [3, 7, 4]. Some
analyses require multiple independent runs to be performed, or are amenable to a split-and-reduce
scheme. For example, some optimisation algorithms are run multiple times from different random
starting points, and the result that achieves the least approximation error is selected. The foreach
package1 [1] provides a very convenient way to perform parallel computations, with different
parallel environments such as MPI or Redis, using a transparent loop-like syntax:

load and register parallel backend for multicore computations

library(doParallel)

Loading required package: foreach

Loading required package: iterators

Loading required package: codetools

Loading required package: parallel

cl <- makeCluster(2)

registerDoParallel(cl)

perform 5 tasks in parallel

x <- foreach(i = 1:5) %dopar% {
i + runif(1)

}
unlist(x)

[1] 1.471 2.295 3.888 4.229 5.366

For each parallel environment a backend is implemented as a specialised %dopar% operator,
which performs the setup and pre/post-processing specifically required by the environment (e.g.
export of variable to each worker). The foreach function and the %dopar% operator handle the
generic parameter dispatch when the task are split between worker processes, as well as the reduce
step – when the results are returned to the master worker.

When stochastic computations are involved, special random number generators must be used
to ensure that the separate computations are indeed statistically independent – unless otherwise
wanted – and that the loop is reproducible. Standard %dopar% loops are not reproducible:

with standard %dopar%: foreach loops are not reproducible

set.seed(123)

res <- foreach(i=1:5) %dopar% { runif(3) }

set.seed(123)

res2 <- foreach(i=1:5) %dopar% { runif(3) }

identical(res, res2)

1http://cran.r-project.org/package=foreach

1

http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=foreach

[1] FALSE

A random number generator commonly used to achieve reproducibility is the combined multiple-
recursive generator from L’Ecuyer [5]. This generator can generate independent random streams,
from a 6-length numeric seed. The idea is then to generate a sequence of random stream of the
same length as the number of iteration (i.e. tasks) and use a different stream when computing
each one of them.

The doRNG package2 [2] provides convenient ways to implement reproducible parallel foreach
loops, independently of the parallel backend used to perform the computation. We illustrate its
use, showing how non-reproducible loops can be made reproducible, even when tasks are not
scheduled in the same way in two separate set of runs, e.g. when the workers do not get to
compute the same number of tasks or the number of workers is different.

1 The %dorng% operator

The doRNG package defines a new operator, %dorng%, to be used with foreach loops, instead of
the standard %dopar%. Lops that use this operator are de facto reproducible.

load the doRNG package

library(doRNG)

Loading required package: methods

using %dorng%: loops _are_ reproducible

set.seed(123)

res <- foreach(i=1:5) %dorng% { runif(3) }
set.seed(123)

res2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(res, res2)

[1] TRUE

The actual random seed used for the first loop iteration is stored as attribute ’RNG’ in the
result:

attr(res, "RNG")

[1] 407 642048078 81368183 -2093158836 506506973 1421492218 -1906381517

The following iterations are seeded recursively calling the nextRNGStream function from the
parallel package3 [6], hence creating a sequence of seeds for statistically independent RNG streams.

The initial seed can also be passed via an option to the %dorng% operator, and be a single
numeric (as for set.seed), or a 6 or 7-length numeric which is used as the initial seed for L’Ecuyer’s
RNG or value for .Random.seed4 respectively:

use a single numeric as a seed

res3 <- foreach(i = 1:5, .options.RNG = 123) %dorng% {

runif(3)

}

identical(res3, res)

2http://cran.r-project.org/package=doRNG
3http://cran.r-project.org/package=parallel
4Note that the RNG type is always required to be the "L’Ecuyer-CMRG".

2

http://cran.r-project.org/package=doRNG
http://cran.r-project.org/package=parallel
http://cran.r-project.org/package=doRNG
http://cran.r-project.org/package=parallel

[1] TRUE

use complete .Random.seed

res4 <- foreach(i = 1:5, .options.RNG = attr(res, "RNG")) %dorng%

{

runif(3)

}

identical(res4, res)

[1] TRUE

use a 6-length numeric

s <- foreach(i = 1:5, .options.RNG = 1:6) %dorng% {

runif(3)

}

attr(s, "RNG")

[1] 407 1 2 3 4 5 6

An important feature of %dorng% loops is that their result is independent of the underlying
parallel physical settings. Two separate runs seeded with the same value will always produce
the same results. Whether they use the same number of worker processes, parallel backend or
task scheduling does not influence the final result. This also applies to computations performed
sequentially with the the doSEQ backend. The following code illustrates this using 2 or 3 workers.

res_2workers <- foreach(i = 1:5, .combine = rbind, .options.RNG = 123) %dorng%
{

c(pid = Sys.getpid(), val = runif(1))

}

stop previous cluster (that uses 2 workers)

stopCluster(cl)

create cluster with 3 workers

cl <- makeCluster(3)

registerDoParallel(cl)

res_3workers <- foreach(i = 1:5, .combine = rbind, .options.RNG = 123) %dorng%
{

c(pid = Sys.getpid(), val = runif(1))

}

task schedule is different

pid <- rbind(res1 = res_2workers[, 1], res2 = res_3workers[,
1])

storage.mode(pid) <- "integer"

pid

result.1 result.2 result.3 result.4 result.5

res1 19358 19367 19358 19358 19358

res2 19380 19389 19398 19380 19389

results are identical

identical(res_2workers[, 2], res_3workers[, 2])

[1] TRUE

3

2 Seamless convertion of %dopar% into reproducibile loops

The doRNG package also provides a way to convert %dopar% loops into reproducible loops without changing
their actual definition. It is useful to quickly ensure the reproducibility of existing code or functions whose
definition is not accessible (e.g. from other packages). This is achieved by registering the doRNG backend:

registerDoRNG(123)

res_dopar <- foreach(i = 1:5) %dopar% {
runif(3)

}
identical(res_dopar, res)

[1] TRUE

attr(res_dopar, "RNG")

[1] 407 642048078 81368183 -2093158836 506506973 1421492218 -1906381517

3 Reproducibility of multiple loops

Sequences of multiple loops are reproducible, whether using the %dorng% operator or the registered doRNG

backend:

set.seed(456)

s1 <- foreach(i=1:5) %dorng% { runif(3) }
s2 <- foreach(i=1:5) %dorng% { runif(3) }
the two loops do not use the same streams: different results

identical(s1, s2)

[1] FALSE

but the sequence of loops is reproducible as a whole

set.seed(456)

r1 <- foreach(i=1:5) %dorng% { runif(3) }
r2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(r1, s1) && identical(r2, s2)

[1] TRUE

one can equivalently register the doRNG backend and use %dopar%
registerDoRNG(456)

r1 <- foreach(i=1:5) %dopar% { runif(3) }
r2 <- foreach(i=1:5) %dopar% { runif(3) }
identical(r1, s1) && identical(r2, s2)

[1] TRUE

Cleanup

stopCluster(cl)

4

Session information

R version 2.14.2 (2012-02-29)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_ZA.UTF-8 LC_NUMERIC=C LC_TIME=en_ZA.UTF-8

[4] LC_COLLATE=en_ZA.UTF-8 LC_MONETARY=en_ZA.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_ZA.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] methods parallel stats graphics grDevices utils datasets base

other attached packages:

[1] doRNG_1.2.2 doParallel_1.0.0 foreach_1.3.5 codetools_0.2-8 iterators_1.0.5

[6] knitr_0.4

loaded via a namespace (and not attached):

[1] compiler_2.14.2 digest_0.5.2 evaluate_0.4.1 formatR_0.3-4 highlight_0.3.1

[6] parser_0.0-14 plyr_1.7.1 Rcpp_0.9.10 stringr_0.6 tools_2.14.2

References

[1] Revolution Analytics. foreach: Foreach looping construct for R, 2012. R package version 1.3.5.

[2] Renaud Gaujoux. doRNG: Generic Reproducible Parallel Backend for foreach Loops, 2010. R package
version 1.2.2.

[3] Torsten Hothorn and Friedrich Leisch. Case studies in reproducibility. Briefings in bioinformatics,
January 2011.

[4] John P A Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin Cui, Aed́ın C Culhane,
Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta,
Michael Nitzberg, Grier P Page, Enrico Petretto, and Vera Van Noort. The reproducibility of lists of
differentially expressed genes in microarray studies. Nature Genetics, 41(2):149–155, 2008.

[5] Pierre L’Ecuyer. Good parameters and implementations for combined multiple recursive random
number generators. Operations Research, 47(1), 1999.

[6] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[7] Victoria C Stodden. The Digitization of Science: Reproducibility and Interdisciplinary Knowledge
Transfer, 2011.

5

	The %dorng% operator
	Seamless convertion of %dopar% into reproducibile loops
	Reproducibility of multiple loops

