
1A \ B = 3 B \A = 2 A ∩ B = 1

2A = 4 B = 3 A ∩ B = 1

3



A B

1 0

1 0

1 0

1 1

0 1

0 1



4 A = {a, b, c, d}
B = {a, e, f }

5

A Ac

B 1 2
Bc 3 0

eulerr under the hood

Johan larsson

February 5, 2018

1 Introduction

eulerr relies on an extensive machinery to turn user input into a

pretty Euler diagram. Little of this requires any tinkering from the

user. To make that happen, however, eulerr needs to make several

well-formed decisions about the design of the diagram on behalf of

the user, which is not a trivial task.

This document outlines the implementation of eulerr from input

to output. It is designed to be an evolving documentation on the

innards of the program.

2 Input

Euler diagrams present relationships between sets, wherefore the

data must describe these relationships, either directly or indirectly.

eulerr allows several alternatives for this data, namely,

• intersections and relative complements1,

• unions and identities2,

• a matrix of binary (or boolean) indices3,

• a list of sample spaces4, or

• a two- or three-way table5.

As an additional feature for the matrix form, the user may supply

a factor variable with which to split the data set before fitting the

diagram, which sometimes improves diagrams where the set rela-

tionships vary across categories.

Whichever type of input is provided, eulerr will translate it to the

first and second types, intersections and relative complements and

unions and identities, which will be used in the steps to come.

The Euler diagram is then fit in two steps: first, an initial layout

is formed with circles using only the sets’ pairwise relationships.

Second, this layout is fine-tuned taking all 2N − 1 intersections into

consideration.

1

3 Initial layout

d i j

O i j

r i
r j

Figure 1. The circle–circle over-
lap is computed as a function of
the discs’ separation (di j), radii
(ri , r j), and area of overlap (Oi j).

6 According to the documenta-
tion, optimize() consists of a
“combination of golden section
search and successive parabolic
interpolation.”

3 Initial layout

For our initial layout, we adopt a constrained version of multi-

dimensional scaling (MDS) that has been adapted from venn.js [1],

which in turn is a modification of an algorithm used in venneuler [2].

In it, we consider only the pairwise intersections between sets, at-

tempting to position their respective shapes so as to minimize the

difference between the separation between their centers required

to obtain an optimal overlap and the actual overlap of the shapes in

the diagram.

This problem is unfortunately intractable for ellipses, being that

there is an infinite number of ways by which we can position two

ellipses to obtain a given overlap. Thus, we restrict ourselves to

circles in our initial layout, for which we can use the circle–circle

overlap formula (1) to numerically find the required distance, d , for

each pairwise relationship.

Oi j = r
2

i arccos

(
d2i j + r

2

i − r 2j

2di jri

)

+ r 2j arccos

(
d2i j + r

2

j − r 2i

2di jr j

)

−

1

2

√
(−di j + ri + r j)(di j + ri − r j)(di j − ri + r j)(di j + ri + r j), (1)

where ri and r j are the radii of the circles representing the i
th and

jth sets respectively, Oi j their overlap, and di j their separation.

Setting ri =
√
Fi/π , where Fi is the size of the ith set, we are able to

obtain d numerically using the squared difference between O and

the desired overlap as loss function (2),

L(di j) =
(
Oi j − (Fi ∩ Fj)

)2
, for i < j ≤ n, (2)

which we optimize using optimize()6 from stats.

For a two-set combination, this is all we need to plot an exact dia-

gram, given that we now have the two circles’ radii and separation

and may place the circles arbitrarily as long as their separation, d ,

remains the same. This is not, however, the case with more than

two sets.

With three or more sets, the circles need to be arranged so that

they interfere minimally with one another. In some cases, the set

configuration allows this to be accomplished flawlessly, but often,

compromises must me made. As is often the case in this context,

this turns out to be another optimization problem. It can be tackled

in many ways; eulerr’s approach is based on a method developed

by Frederickson [3], which the author describes as constrained

multi-dimensional scaling.

The algorithm tries to position the circles so that the separation be-

tween each pair of circles matches the separation required from (2).

2

3 Initial layout

7 The current development ver-
sion of R features a fix for this
bug; eulerr will be updated to
use (5) as soon as it is introduced
in a stable version of R.

If the two sets are disjoint, however, the algorithm is indifferent

to the relative locations of those circles as long as they do not in-

tersect. The equivalent applies to subset sets: as long as the circle

representing the smaller set remains within the larger circle, their

locations are free to vary. In all other cases, the loss function (3) is

the residual sums of squares of the optimal separation of circles, d ,

that we found in (1), and the actual distance in the layout we are

currently exploring.

L(h,k) =
∑

1≤i<j≤N




0 Fi ∩ Fj = ∅ and Oi j = 0

0 (Fi ⊆ Fj or Fi ⊇ Fj) and Oi j = 0
((
hi − hj

)2
+

(
ki − kj

)2 − d2i j

)2
otherwise

. (3)

The analytical gradient (4) is retrieved as usual by taking the deriva-

tive of the loss function,

®∇f (hi) =
N∑

j=1




®0 Fi ∩ Fj = ∅ and Oi j = 0

®0 (Fi ⊆ Fj or Fi ⊇ Fj) and Oi j = 0

4
(
hi − hj

) ((
hi − hj

)2
+

(
ki − kj

)2 − d2i j

)
otherwise,

(4)

where ®∇f (ki) is found as in (4) with hi swapped for ki (and vice

versa).

The Hessian (5) for our loss function is given next. However, be-

cause the current release of R suffers from a bug7 causing the an-

alytical Hessian to be updated improperly, the current release of

eulerr instead relies on the numerical approximation of the Hes-

sian offered by the optimizer.

H (h,k) =
∑

1≤i<j≤N



4

(
(hi−hj)2+(ki−kj)2−d2

i j

)
+8(hi−hj)2 · · · 8(hi−hj)(ki−kj)

.

.

.
. . .

.

.

.

8(ki−kj)(hi−hj) · · · 4

(
(hi−hj)2+(ki−kj)2−d2

i j

)
+8(ki−kj)2



. (5)

Note that the constraints given in (3) and (4) still apply to each

element of (5) and have been omitted for convenience only.

We optimize (3) using the nonlinear optimizer nlm() from the R

core package stats. The underlying code for nlm() was written

by Schnabel et al. [4]. It was ported to R by Saikat DebRoy and

the R Core team [5] from a previous FORTRAN to C translation

by Richard H. Jones. nlm() consists of a system of Newton-type

algorithms and performs well for difficult problems [6].

The initial layout outlined above will sometimes turn up perfect

diagrams, but only reliably so when the diagram is completely

determined by its pairwise intersections. More pertinently, we have

not yet considered the higher-order intersections in our algorithm

and neither have we approached the problem of using ellipses—as

we set out to do.

3

4 Final layout

4 Final layout

We now need to account for all the sets’ intersections and, conse-

quently, all the overlaps in the diagram. The goal is to map each

area uniquely to a subset of the data from the input and for this

purpose we will use the sets’ intersections and the relative comple-

ments of these intersections, for which we will use the shorthand ω.

We introduced this form in Section 2, but now define it rigorously

in Definition 1.

Definition 1. For a family of N sets, F = F1, F2, . . . , FN , and their

n = 2
N − 1 intersections, we define ω as the intersections of these sets

and their relative complements, such that

ω1 = F1 \
N⋂

i=2

Fi

ω2 =

2⋂

i=1

Fi \
N⋂

i=3

Fi

.

.

.

ωn =

N⋂

i=1

Fi

with
n∑

i=1

ωi =

N⋃

j=1

Fi .

Analogously to ω, we also introduce the &-operator, such that

Fi&Fj = (Fi ∩ Fj) \ (Fi ∩ Fj)c.

The fitted diagram’s area-equivalents for ω will be defined as A, so

that an exact diagram requires that ωi = Ai for i = 1, 2, . . . , 2
N − 1,

where N is the number of sets in the input.

In Section 3, we restricted ourselves to circles but now extend our-

selves also to ellipses. From now on, we abandon the practice of

treating circles separately—they are only a special case of ellipses,

and, hence, everything that applies to an ellipse does so equally for

a circle.

4.1 Intersecting ellipses

We now need the ellipses’ points of intersections. eulerr’s ap-

proach to this is outlined in Richter-Gebert [7] and based in pro-

jective, as opposed to Euclidean, geometry.

To collect all the intersection points, we naturally need only to

consider two ellipses at a time. The canonical form of an ellipse is

given by

[(x − h) cosϕ + (y − k) sinϕ]2
a2

+

[(x − h) sinϕ − (y − k) cosϕ]2
b2

= 1,

4

4 Final layout

φ

a

b h,k

Figure 2. A rotated ellipse with
semimajor axis a, semiminor axis
b, rotation ϕ, and center h,k .

8 The circle, parabola, and hyper-
bola are the other types of conics.

where ϕ is the counter-clockwise angle from the positive x-axis to

the semi-major axis a, b is the semi-minor axis, and h,k are the x-

and y-coordinates, respectively, of ellipse’s center (Figure 2).

However, because an ellipse is a conic8 it can be represented in

quadric form,

Ax2 + Bxy +Cy2
+ Dx + Ey + F = 0

that in turn can be represented as a matrix,



A B/2 D/2
B/2 C E/2
D/2 E/2 F


,

which is the form we need to intersect our ellipses. We now pro-

ceed to

1. form three degenerate conics from a linear combination of

the two ellipses we wish to intersect,

2. split one of these degenerate conics into two lines, and

3. intersect one of the ellipses with these lines, yielding 0 to 4

intersection points points (Figure 3).

(a) Our objective is two intersect these

two ellipses.

(b) Three degenerate conics (orange,

teal, and blue) are formed from the

linear combination of our two ellipses.

(c) One of the degenerate conics is

split it into two lines and intersected

with one of the ellipses to yield four

intersection points.

Figure 3. The process used to intersect two ellipses, here yielding four points. This figure was inspired by an
example from Richter-Gebert [7].

4.2 Overlap areas

Using the intersection points of a set of ellipses that we retrieved

in Section 4.1, we can now find the overlap of these ellipses. We are

only interested in the points that are contained within all of these

ellipses, which together form a geometric shape consisting of a

convex polygon, the sides of which are made up of straight lines

between consecutive points, and a set of elliptical arcs—one for

each pair of points (Figure 4).

5

4 Final layout

Figure 4. The overlap area be-
tween three ellipses is the sum of
a convex polygon (in grey) and
2–3 ellipse segments (in blue).

θ
0

θ
1

a

b

Figure 5. The elliptical segment
in blue is found by first subtract-
ing the elliptical sector from (a, 0)
to θ0 from the one from (a, 0)
to θ1 and then subtracting the
triangle part (in grey).

We continue by ordering the points around their centroid. It is then

trivial to find the area of the polygon section since it is always con-

vex [8]. Now, because each elliptical segment is formed from the

arcs that connect successive points, we can establish the segments’

areas algorithmically [9]. For each ellipse and its related pair of

points (located at angles θ0 and θ1 from the semimajor axis), we

proceed to find its area by

1. centering the ellipse at (0, 0),
2. normalizing its rotation, which is not needed to compute the

area,

3. integrating the ellipse over [0,θ0] and [0,θ1], producing ellip-

tical sectors F (θ0) and F (θ1),
4. subtracting the smaller (F (θ0)) of these sectors from the larger

(F (θ0), and
5. subtracting the triangle section to finally find the segment

area,

F (θ1) − F (θ0) −
1

2
|x1y0 − x0y1 | ,

where F (θ) = a

b

[
θ − arctan

((b − a) sin 2θ
b + a + (b − a) cos 2θ

)]
.

This procedure is illustrated in Figure 5. Note that there are situ-

ations where this algorithm is altered, such that when the sector

angle ranges beyond π—we refer the interested reader to Eberly [9].

Finally, the area of the overlap is then obtained by adding the area

of the polygon and all the elliptical arcs together.

Note that this does not yet give us the areas that we require, namely

A: the area-equivalents to the set intersections and relative comple-

ments from Definition 1. For this, we must decompose the overlap

6

4 Final layout

9 1 out of approximately 7000 in
our simulations.

ω

A

0

1

2

3

0 1 2 3

X

Y

Z

X&Y

X&Z

Y&Z
X&Y&Z

Figure 6. Optimizing via stress is
analogous to least-squares linear
regression through the origin. ω
is the set of unique quantities in
the input (Definition 1) and A the
respective areas in the diagram.

areas so that each area maps uniquely to a subspace of the set con-

figuration. This, however, is simply a matter of transversing down

the hierarchy of overlaps and subtracting the higher-order overlaps

from the lower-order ones. For a three-set relationship of sets A, B,

and C , for instance, this means subtracting the A ∩ B ∩ C overlap

from the A ∩ B one to retrieve the equivalent of (A ∩ B) \C .
The exact algorithm may in rare instances9, break down, the cul-

prit being numerical precision issues that occur when ellipses are

tangent or completely overlap. In these cases, the algorithm will

approximate the area of the involved overlap by

1. spreading points across the ellipses using Vogel’s method (see

Section 6.1 for a brief introduction),

2. identifying the points that are inside the intersection via the

inequality

[(x − h) cosϕ + (y − k) sinϕ]2
a2

+

[(x − h) sinϕ − (y − k) cosϕ]2
b2

< 1,

where x and y are the coordinates of the sampled points, and

finally

3. approximating the area by multiplying the proportion of

points inside the overlap with the area of the ellipse.

With this in place, we are now able to compute the areas of all

intersections and their relative complements, ω, up to numerical

precision.

4.3 Final optimization

We feed the initial layout computed in Section 3 to the optimizer—

once again we employ nlm() from stats but now also provide the

option to use ellipses rather than circles, allowing the “circles” to

rotate and the relation between the semiaxes to vary, altogether

rendering five parameters to optimize per set and ellipse (or three if

we restrict ourselves to circles). For each iteration of the optimizer,

the areas of all intersections are analyzed and a measure of loss

returned. The loss we use is the same as that in venneuler [2],

namely stress, ∑n
i=1(Ai − βωi)2∑n

i=1Ai

, (6)

where

β =

∑n
i=1Aiωi∑n
i=1ω

2

i

.

This is equivalent to linear regression through the origin, where β

is the slope of the regression line (Figure 6).

7

5 Goodness of fit

10We conducted thorough bench-
marking, that we opt not to re-
port here, to decide upon an algo-
rithm for this step.

11 The choice of if and when this
last-ditch optimizer is activated
is left to the user via simple com-
mands to the main function of the
package.

4.4 Last-ditch optimization

If the fitted diagram is still inexact after the procedure in Sec-

tion 4.3, we offer a final step in which we pass the parameters on

to a last-ditch optimizer. The weapon of choice10 is a differential

evolution algorithm from the R package RcppDE [10]—a port of the

DEoptim package [11] from C to C++.

The solutions offered by RcppDE often avoid local minima but

may be inefficient in local search regions; this shortcoming can be

remedied by fine tuning with a local optimizer [12]—once more, we

rely on nlm() to serve this purpose.

By default, this last-ditch step is activated only when we have a

three-set diagram with ellipses and a diagError (7) above 0.00111

The reason being that the method is considerably more computa-

tionally intensive.

5 Goodness of fit

Every Euler diagram must be investigated for its adequacy in rep-

resenting the input. Exact Euler diagrams are not always possible

When eulerr cannot find a perfect solution, it offers an approx-

imate one instead, the adequacy of which has to be measured

in a standardized way. For this purpose we adopt two measures:

stress [2], which is also the loss metric we use in our final optimiza-

tion step and is used in venneuler, as well as diagError [13], which

is used by eulerAPE.

The stress metric is not easily grasped but can be transformed into

a rough analogue of the correlation coefficient via r =
√
1 − stress2.

diagError, meanwhile, is given by

max
i=1,2, ...,n

����
ωi∑n
i=1ωi

− Ai∑n
i=1Ai

���� , (7)

which is the maximum absolute difference of the proportion of any

ω to the respective unique area of the diagram.

6 Plo�ing

Once we have ascertained that our Euler diagram fits well, we can

turn to visualizing the solution. For this purpose, eulerr relies

on the grid graphics system [5] and offers intuitive and granular

control over the output.

Plotting the ellipses is straightforward using the parametrization of

a rotated ellipse,

[
x

y

]
=

[
h + a cosθ

k + b sinθ

]
, where θ ∈ [0, 2π], a,b > 0.

8

6 Plotting

42

Figure 7. The method eulerr uses
to locate an optimal position for
a label in three steps from top to
bottom: first, we spread sample
points on one of the ellipses and
pick one inside the intersection of
interest, then we begin moving it
numerically, and finally place our
label.

Most users will also prefer to label the ellipses and their intersec-

tions with text and this, however, is considerably more involved.

6.1 Labeling

Labeling the ellipses is complicated since the shapes of the inter-

sections often are irregular, lacking well-defined centers; we know

of no analytical solution to this problem. As usual, however, the

next-best option turns out to be a numerical one. First, we locate a

point that is inside the required region by spreading points across

the discs involved in the set intersection. To distribute the points,

we use a modification of Vogel’s method [14, 15] adapted to ellipses.

Vogel’s method spreads points across a disc using

pk =

[
ρk
θk

]
=

[
r

√
k
n

π (3 −
√
5)(k − 1)

]

for k = 1, 2, . . . ,n. (8)

In our modification, we scale, rotate, and translate the points formed

in (8) to match the candidate ellipse. We rely, as before, on projec-

tive geometry to carry out the transformations in one go:

p ′ =



x ′

y ′

1


=



1 0 h

0 1 k

0 0 1





cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1





a 0 0

0 b 0

0 0 1





x̂

ŷ

1


,

where h,k translates, ϕ rotates, and a,b stretches the ellipse.

After we spread our points throughout the ellipse and find a point,

p ′i , that is contained in our desired intersection, we proceed to op-

timize its position numerically. The position we are looking for is

that which maximizes the distance to the closest ellipse in our dia-

gram to provide as much margin as possible for the label. This is a

maximization problem with a loss function equal to

L(x ,y) = min
i=1,2, ...,N

f (x ,y,hi ,ki ,ai ,bi ,ϕi) (9)

where f is the function that determines the distance from a point

(x ,y) to the ellipse defined by h,k,a,b and ϕ.

Similarly to fitting Euler diagrams in the general case, there ap-

pears to be no analytical solution to computing the distance from

a point to an ellipse. The numerical solution we use has been de-

scribed by Eberly [16] and involves solving the roots to a quartic

polynomial via a robust bisection optimizer.

To optimize the location of the label, we employ a version of the

Nelder–Mead method [17], which has been translated from aMatlab

code by Kelley [18] and adapted for eulerr to ensure that it con-

verges quickly and that the simplex remains within the intersection

boundaries (since we want the local maximum). The method is

visualized in Figure 7.

9

7 Normalizing dispered layouts

6.2 Aesthetics

Euler diagrams display both quantitative and qualitative data. The

quantitative aspect is the quantities or sizes of the sets depicted in

the diagram and is visualized by the relative sizes, and possibly the

labels, of the areas of the shapes—this is the main focus of this pa-

per. The qualitative aspects, meanwhile, consist of the mapping of

each set to some quality or category, such as having a certain gene

or not. In the diagram, these qualities can be separated through any

of the following aesthetics:

• color,

• border type,

• text labelling,

• transperancy,

• patterns,

or a combination of these. The main purpose of these aethetics

is to separate out the different ellipses so that the audience may

interpret the diagram with ease and clarity.

Among these aesthetics, the best choice (from a viewer perspective)

appears to be color [19], which provides useful information without

extraneous chart junk [20]. The issue with color, however, is that it

cannot be perceived perfectly by all—8% of men and 0.4% of women

in European Caucasian countries, for instance, suffer the most

common form, red–green color deficiency [21]. Moreover, color is

often printed at a premium in scientific publications and adds no

information to a diagram of two shapes.

For these reasons, eulerr defaults to distinguishing ellipses with

color using a color palette generated via the R package qualpalr [22],

which automatically generates qualitative color palettes based on

a perceptual model of color vision that optionally caters to color

vision deficiency. This palette has been manually modified to fullfil

our other objectives of avoiding using colors for two sets. The first

eight colors of the pallete are visualized in Figure 8.

7 Normalizing dispered layouts

If there are disjoint clusters of ellipses, the optimizer will often

spread these out more than is necessary, wasting space in our di-

agram. To tackle this, we use a SKYLINE-BL rectangle packing

algorithm [23] designed specifically for eulerr. In it, we surround

each ellipse cluster with a bounding box, pack these boxes into a

bin of appropriate size and aspect ratio, and adjust the coordinates

of the ellipses in the clusters to compact our diagram. As a bonus,

this increases the chance of having similar layouts for different

function calls.

10

7 Normalizing dispered layouts

1

2

3

4

5

6

7

8

Figure 8. The eight first colors of
the default color palette.

11

References

References

[1] Ben Frederickson. venn.js: area proportional
Venn and Euler diagrams in JavaScript, November
2016. URL https://github.com/benfred/venn.js.
original-date: 2013-05-09T17:13:20Z.

[2] L. Wilkinson. Exact and approximate area-
proportional circular Venn and Euler diagrams.
IEEE Transactions on Visualization and Computer

Graphics, 18(2):321–331, February 2012. ISSN 1077-
2626. doi: 10.1109/TVCG.2011.56.

[3] Ben Frederickson. A better algorithm for area
proportional venn and euler diagrams, June 2015.
URL http://www.benfrederickson.com/better-

venn-diagrams/.

[4] Robert B. Schnabel, John E. Koonatz, and Barry E.
Weiss. A modular system of algorithms for uncon-
strained minimization. ACM Trans Math Softw, 11
(4):419–440, December 1985. ISSN 0098-3500. doi:
10.1145/6187.6192.

[5] R Core Team. R: A Language and Environment

for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna, Austria, 2017. URL
https://www.R-project.org/.

[6] John C. Nash. Nonlinear parameter optimization

using R tools. Wiley, Chichester, West Sussex, 1
edition, May 2014. ISBN 978-1-118-56928-3.

[7] Jürgen Richter-Gebert. Perspectives on Projective

Geometry: A Guided Tour Through Real and Com-

plex Geometry. Springer, Berlin, Germany, 1 edition,
February 2011. ISBN 978-3-642-17286-1.

[8] Darel R. Finley. Ultra-easy algorithm with C code
sample. http://alienryderflex.com/polygon_area/,
December 2006. URL http://alienryderflex.

com/polygon_area/.

[9] David Eberly. The area of intersecting
ellipses, November 2016. URL https://

www.geometrictools.com/Documentation/

AreaIntersectingEllipses.pdf.

[10] Dirk Eddelbuettel. RcppDE: Global Optimiza-

tion by Differential Evolution in C++, 2016. URL
https://CRAN.R-project.org/package=RcppDE. R
package version 0.1.5.

[11] Katherine M. Mullen, David Ardia, David L. Gil,
Donald Windover, and James Cline. DEoptim: An
R package for global optimization by differential
Evolution. Journal of Statistical Software, 40(6),
April 2011. doi: 10.18637/jss.v040.i06. URL https:

//www.jstatsoft.org/article/view/v040i06.

[12] Yang Xiang, Sylvain Gubian, Brian Suomela, and
Julia Hoeng. Generalized simulated annealing for
global optimization: the GenSA package. The

R Journal, 5(1):13–28, June 2013. URL https:

//journal.r-project.org/archive/2013/RJ-

2013-002/index.html.

[13] Luana Micallef and Peter Rodgers. eulerAPE:
drawing area-proportional 3-Venn diagrams using
ellipses. PLOS ONE, 9(7):e101717, July 2014. ISSN
1932-6203. doi: 10.1371/journal.pone.0101717.

[14] Mary K. Arthur. Point picking and distributing on
the disc the sphere. Final ARL-TR-7333, US Army
Research Laboratory, Weapons and Materials Re-
search Directorate, Abedeen, USA, July 2015. URL
www.dtic.mil/get-tr-doc/pdf?AD=ADA626479.

[15] H. Vogel. A better way to construct the sunflower
head. Mathematical Biosciences, 44(3-4):179–189,
1979. doi: 10.1016/0025-5564(79)90080-4.

[16] Eberly. Distance from a point to an ellipse,
an ellipsoid, or a hyperellipsoid, November
2016. URL https://www.geometrictools.com/

Documentation/DistancePointEllipseEllipsoid.

pdf.

[17] J. A. Nelder and R. Mead. A simplex method for
function minimization. The Computer Journal, 7
(4):308–313, January 1965. ISSN 0010-4620. doi:
10.1093/comjnl/7.4.308. URL https://academic.

oup.com/comjnl/article/7/4/308/354237/A-

Simplex-Method-for-Function-Minimization.

[18] C. T. Kelley. Iterative methods for optimization.
Number 18 in Frontiers in applied mathematics.
Society for Industrial and Applied Mathematics,
Philadelphia, USA, 1 edition, 1999. ISBN 0-89871-
433-8.

[19] Andrew Blake. The impact of graphical choices on

the perception of Euler diagrams. Ph.D. dissertation,
Brighton University, Brighton, UK, February 2016.
URL http://eprints.brighton.ac.uk/15754/1/

main.pdf.

[20] Edward R. Tufte. The visual display of quantitative

information. Graphics Press, Cheshire, CT, USA, 2
edition, May 2001. ISBN 978-1-930824-13-3.

[21] Jennifer Birch. Worldwide prevalence of red-green
color deficiency. Journal of the Optical Society of
America. A, Optics, Image Science, and Vision, 29(3):
313–320, March 2012. ISSN 1520-8532.

12

https://github.com/benfred/venn.js
http://www.benfrederickson.com/better-venn-diagrams/
http://www.benfrederickson.com/better-venn-diagrams/
https://www.R-project.org/
http://alienryderflex.com/polygon_area/
http://alienryderflex.com/polygon_area/
https://www.geometrictools.com/Documentation/AreaIntersectingEllipses.pdf
https://www.geometrictools.com/Documentation/AreaIntersectingEllipses.pdf
https://www.geometrictools.com/Documentation/AreaIntersectingEllipses.pdf
https://CRAN.R-project.org/package=RcppDE
https://www.jstatsoft.org/article/view/v040i06
https://www.jstatsoft.org/article/view/v040i06
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html
www.dtic.mil/get-tr-doc/pdf?AD=ADA626479
https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
https://academic.oup.com/comjnl/article/7/4/308/354237/A-Simplex-Method-for-Function-Minimization
https://academic.oup.com/comjnl/article/7/4/308/354237/A-Simplex-Method-for-Function-Minimization
https://academic.oup.com/comjnl/article/7/4/308/354237/A-Simplex-Method-for-Function-Minimization
http://eprints.brighton.ac.uk/15754/1/main.pdf
http://eprints.brighton.ac.uk/15754/1/main.pdf

References

[22] Johan Larsson. qualpalr: Automatic Gener-

ation of Qualitative Color Palettes, 2016. URL
https://cran.r-project.org/package=qualpalr.
R package version 0.3.1.

[23] Jukka Jylänki. A thousand ways to pack the bin
– a practical approach to two-dimensional rect-
angle bin packing, February 2010. URL http:

//clb.demon.fi/files/RectangleBinPack.pdf.

13

https://cran.r-project.org/package=qualpalr
http://clb.demon.fi/files/RectangleBinPack.pdf
http://clb.demon.fi/files/RectangleBinPack.pdf

	Introduction
	Input
	Initial layout
	Final layout
	Intersecting ellipses
	Overlap areas
	Final optimization
	Last-ditch optimization

	Goodness of fit
	Plotting
	Labeling
	Aesthetics

	Normalizing dispered layouts
	References

