The fastai library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at fast.ai
, and includes “out of the box” support for vision
, text
, tabular
, and collab
(collaborative filtering) models.
Grab the pets dataset and Specify folders:
URLs_PETS()
path = 'oxford-iiit-pet'
path_hr = paste(path, 'images', sep = '/')
path_lr = paste(path, 'crappy', sep = '/')
Prepare the input data by crappifying images:
bs = 10
size = 64
arch = resnet34()
get_dls = function(bs, size) {
dblock = DataBlock(blocks = list(ImageBlock, ImageBlock),
get_items = get_image_files,
get_y = function(x) {paste(path_hr, as.character(x$name), sep = '/')},
splitter = RandomSplitter(),
item_tfms = Resize(size),
batch_tfms = list(
aug_transforms(max_zoom = 2.),
Normalize_from_stats( imagenet_stats() )
))
dls = dblock %>% dataloaders(path_lr, bs = bs, path = path)
dls$c = 3L
dls
}
dls_gen = get_dls(bs, size)
See batch:
Define loss function and create unet_learner
:
wd = 1e-3
y_range = c(-3.,3.)
loss_gen = MSELossFlat()
create_gen_learner = function() {
unet_learner(dls_gen, arch, loss_func = loss_gen,
config = unet_config(blur=TRUE, norm_type = "Weight",
self_attention = TRUE, y_range = y_range))
}
learn_gen = create_gen_learner()
learn_gen %>% fit_one_cycle(2, pct_start = 0.8, wd = wd)
epoch train_loss valid_loss time
0 0.025911 0.035153 00:42
1 0.019524 0.019408 00:39