
R package gdistance: distances and routes on
geographical grids (version 1.1-3)

Jacob van Etten

May 24, 2012

1 Introduction

This vignette describes gdistance, an R package which provides func-
tionality to calculate various distance measures and routes in heterogeneous
geographic spaces represented as grids. Distances are fundamental to geospa-
tial analysis (Tobler 1970). The most commonly used geographic distance
measure is the great-circle distance, which represents the shortest line be-
tween two points, taking into account the curvature of the earth. However,
the great-circle distance does not correspond very well to expected travel
time/effort between two points. Travel time and the real distance travelled
depend on the means of transport, the mode of route-finding, and the char-
acteristics of landscapes and infrastructure. The great-circle distance could
be considered as referring to a special case: goal-directed movement with
no obstacles, ‘as the crow flies’. Other distance measures are needed when
travel is not (or less) goal-directed and landscape characteristics affect move-
ment in a spatially heterogeneous way. Package gdistance was created to
calculate distances and determine routes using geographical grids (rasters)
to represent landscape heterogeneity. It provides the following distance and
route calculations.

• The least-cost distance mimics route finding ‘as the fox runs’, taking
into account obstacles and the local ‘friction’ of the landscape.

• A second type of route-finding is the random walk, which has no prede-
termined destination (a ‘drunkard’s walk’). Resistance distance reflects
the average travel time from origin to goal of the (Brownian) random
walk (McRae 2006).

1

2 gdistance: geographic distances and routes

• ‘Randomised shortest paths’ are an intermediate form between shortest
paths and Brownian random walks, introduced by Saerens et al. (2009).

The functionality of gdistance corresponds to other software like ArcGIS
Spatial Analyst, GRASS GIS (r.cost, r.walk functions), and CircuitScape
(random walk / resistance distance). The gdistance package also contains
specific functionality for geographical genetic analyses. The package imple-
ments measures to model dispersal histories first presented by Van Etten
and Hijmans (2010). Section 10 below introduces with an example how
gdistance can be used in geographical genetics.

2 Raster basics

Package gdistance uses functionality from a number of other R packages.
The most important among these packages is raster. The raster package is
memory-efficient and user-friendly. It provides comprehensive geographical
grid functionality.

To use gdistance and to understand the details of this vignette, the
reader has to be familiar with the basic functionality of raster. The following
code shows how to make a raster.

> library(raster)

> r <- raster(ncol=3,nrow=3)

> r[] <- 1:ncell(r)

> r

class : RasterLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : in memory

min value : 1

max value : 9

layer name : layer

In the first line, we create a simple raster with 3 columns and 3 rows. In
the second line, we assign the values 1 to 9 as the grid values. We see that the
resulting object holds the grid values and geographic data. This is an object
of the class RasterLayer, which holds only one layer of grid data. There
are other classes which allow more than one layer of data: RasterStack and

Jacob van Etten 3

RasterBrick. Collectively these classes are referred to as Raster*. The use
of classes in R makes it possible to construct objects that hold different types
of data together in the different slots. The main advantage of using these
classes is that data that goes together remains coherent. Because of this,
operations that are geographically incorrect (like, for instance, adding the
values of two rasters of different projections) can be detected by the software
and throw the pertinent error. The package gdistance also uses these classes
(S4) to construct objects.

One important thing to know about raster is how grid data are stored
internally in Raster* objects. Cell numbers in rasters go from left to right
and from top to bottom. The 3 x 3 raster we just created would have the
cell numbers in the order shown in Figure 1.

−150 −100 −50 0 50 100 150

−
50

0
50

2

4

6

8

1 2 3

4 5 6

7 8 9

Figure 1: Cell numbers of a 3 x 3 raster

This is the code used to make Figure 1.

> plot(r)

> text(r)

3 Transition* classes

Distances and other measures are calculated in various steps. Rather
than calculating the distances directly from the Raster* objects, we create an

4 gdistance: geographic distances and routes

intermediate object that contain a transition matrix, based on the grid values.
This gives us a lot of flexibility to represent the local distances between cells
in the grid. The central classes in gdistance are TransitionLayer and
TransitionStack. Most operations have an object of one of these classes
either as input and sometime also as their output.

Transition* objects can be constructed from an object of class Raster*.
The class Transition* takes the necessary geographic references (projection,
resolution, extent) from the original Raster* object. It also contains a matrix
which represents a transition from one cell to another in the grid. Each row
and column in the matrix represents a cell in the original Raster* object.
Row/column 1 in the transition matrix corresponds to cell 1 in the original
raster, and so on. For instance, the raster we just created would produce a 9
x 9 transition matrix with rows/columns numbered from 1 to 9 (see Figure
2 below).

Normally, we work with transition matrices that represent the conduc-
tance between cells1. Using conductance values may be a bit confusing at
first, as other software generally uses friction surfaces to calculate distances.
Also, the resulting distances represent accumulated friction or cost, making
the use of conductance somewhat counterintuitive.

In fact, the relation between conductance and friction is straightforward:
conductance is the reciprocal of friction (1/friction). It is not strange to use
the word conductance in this context or to use resistance as a synonym for
friction. There is an analogy between random walks on geographical grids
and electrical current in a mesh of resistors (Chandra et al. 1996, McRae et
al. 2008). Some algorithms in gdistance are based on this analogy.

The main advantage of using conductance is that it makes it possible
to use computer memory very efficiently, using so-called sparse matrices.
Sparse matrices only record the non-zero values and information about their
location in the matrix. In most cases, cells are connected only with adjacent
cells. Consequently, a conductance matrix contains only a small fraction of
non-zero values, which occupy much less memory in a sparse matrix than in
a dense matrix. The package gdistance makes use of sparse matrix classes
and methods from the package Matrix, which gives access to fast procedures
implemented in the C language.

The construction of a Transition* object from a Raster* object is
straightforward. We can define an arbitrary function to calculate the con-
ductance values from the values of each pair of cells to be connected. Here,
we use the raster created earlier and set all values to unit. We then create a

1‘Permeability’ is a synonym of conductance. Impedance, resistance, cost and friction
are used interchangeably to denote the contrary.

Jacob van Etten 5

TransitionLayer object. The transition value between each pair of cells is
the mean of the two cell values.

> library(gdistance)

> r[] <- 1

> tr1 <- transition(r, transitionFunction=mean, directions=8)

We set the directions argument to value 8. This connects all adjacent
cells in 8 directions. Cells can also be connected in 4 or 16 connections. In
chess terms, setting directions to 4 connects all cells with all possible one-cell
rook movements (producing ‘Manhattan’ distances), while setting directions
to 8 connects with one-cell queen movements. With 16 directions, all cells
are connected with both one-cell queen movements and knight movements.
This can make distance calculations more accurate2.

If we inspect the object we created, we see that the resulting TransitionLayer
object keeps much information from the original RasterLayer object.

> tr1

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dsCMatrix

It is also possible to create asymmetric matrices, in which the conductance
from i to j is not always the same as the conductance from j back to i.
This is relevant, among other things, for modelling travel in hilly terrain,
as shown in Example 1 below. On the same slope, a downslope traveler
experiences less resistance than an upslope traveler. In this case, the function
to calculate conductance values is non-commutative: f(i, j) 6= f(j, i). To
make an asymmetric transition matrix, the symm argument in transition

needs to be set to FALSE.

> r[] <- runif(9)

> ncf <- function(x) max(x) - x[1] + x[2]

> tr2 <- transition(r, ncf, 4, symm=FALSE)

> tr2

2Connecting in 16 directions was inspired by the function r.cost in GRASS 6, and the
documentation of this function illustrates nicely why connecting in 16 directions can in-
crease the accuracy of the calculations http://grass.itc.it/grass64/manuals/html64_
user/r.cost.html. Also, see the section on distance transforms in de Smith et al. (2009).

http://grass.itc.it/grass64/manuals/html64_user/r.cost.html
http://grass.itc.it/grass64/manuals/html64_user/r.cost.html

6 gdistance: geographic distances and routes

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dgCMatrix

The sparse matrix class dsCMatrix is symmetric and holds only half of the
non-zero matrix values in memory. The class dgCMatrix holds an asymmetric
matrix.

Different mathematical operations can be done with Transition* ob-
jects. This makes it possible to flexibly model different components of land-
scape friction.

> tr3 <- tr1*tr2

> tr3 <- tr1+tr2

> tr3 <- tr1*3

> tr3 <- sqrt(tr1)

Operations with more than one object require that the different objects have
the same resolution and extent.

Also, it is possible to extract and replace values in the matrix using in-
dices.

> tr3[cbind(1:9,1:9)] <- tr2[cbind(1:9,1:9)]

> tr3[1:9,1:9] <- tr2[1:9,1:9]

> tr3[1:5,1:5]

5 x 5 sparse Matrix of class "dgCMatrix"

[1,] . 0.1812036 0.5707326 0.05399385 .

[2,] 1.582368 . 0.9602616 . 0.1669381

[3,] 1.192839 0.1812036 . . .

[4,] 1.709578 . . . 0.2798824

[5,] . 0.1954690 . 0.05399385 .

The functions adjacency and adjacencyFromTransition can be used to
create indices. Example 1 in section 7 below gives an example.

Some functions require that Transition* objects do not contain any
isolated ‘clumps’, islands that are not connected to the rest of the raster
cells. This can be avoided when creating Transition* objects, for instance

Jacob van Etten 7

by giving conductance values between all adjacent cells a small minimum
value. It can be checked visually if there are any clumps. There are several
ways to visualize a Transition* object. For the first method, you can extract
the transition matrix with function transitionMatrix. This gives a sparse
matrix which can be vizualized with function image. This shows the rows
and columns of the transition matrix and indicates which has a non-zero
value, which represents a connection between cells (Figure 1).

> image(transitionMatrix(tr1))

Dimensions: 9 x 9
Column

R
ow

2

4

6

8

2 4 6 8

Figure 2: Visualizing a TransitionLayer with function image()

Figure 2 shows which cells are connected to each other. You may wonder
why even cell 1 is connected to 5 different cells, as this cell is located in
the upper left corner of the original grid. This is explained by the extent
of the grid. Since it covers the whole world, the outer meridians (180 and
-180 degrees) touch each other. The software takes this into account and as
a result the cells in the extreme left column are connected to the extreme
right column.

Figure 2 shows which cells contain non-zero values, but gives no fur-
ther information about levels of conductance. This can be visualized by
transforming the transition matrix back into a raster. To summarize the
information in transition matrix, we can take means or sums across rows or
columns, for instance. You can do this with function raster. Applied to a

8 gdistance: geographic distances and routes

TransitionLayer, this function converts it to a RasterLayer. For the differ-
ent options see method?raster("TransitionLayer"). The default, shown
in Figure 3, takes the column-wise means of the non-zero values. All these
forms of transformation unavoidably cause information loss, of course.

> plot(raster(tr3))

−150 −100 −50 0 50 100 150

−
50

0
50

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Figure 3: Visualizing a TransitionLayer using the function raster()

4 Correcting inter-cell conductance values

The function transition calculates transition values based on the val-
ues of adjacent cells in the input raster. However, the centres of diagonally
connected cells are more remote from each other than in the case of orthogo-
nally connected cells. Secondly, on equirectangular (lonlat) projection grids,
W-E connections are longer at the equator and become shorter towards the
poles. Therefore, the values in the matrix need to be corrected for these two
types of distortion. Both types of distortion can be corrected by dividing
each conductance matrix value between the inter-cell distance. This is what
function geoCorrection does for us.

> tr1C <- geoCorrection(tr1, type="c", multpl=FALSE)

> tr2C <- geoCorrection(tr2, type="c", multpl=FALSE)

Jacob van Etten 9

For random walks on longlat grids, there is an additional consideration to
be made. The number of connections in N-S direction remains equal when
moving from the equator to the poles. This is problematic, because random
walks can be seen as analogous to electrical current through a networks of
resistors. The inter-cell connections should be thought of as parallel resistors.
Moving away from the equator, the inter-meridian space each individual re-
sistor bridges becomes narrower, tending to zero at the poles. Therefore, the
N-S resistance between parallels should decrease when moving away from the
equator. The function geoCorrection corrects this distortion by multiplying
the N-S transition values with the cosine of the average latitude of the cell
centres. This is done with function geoCorrection, by setting the argument
type to "r".

> r3 <- raster(ncol=36, nrow=18)

> r3 <- setValues(r3, runif(36*18))

> tr3 <- transition(r3, mean, 4)

> tr3C <- geoCorrection(tr3, type="c", multpl=FALSE, scl=TRUE)

> tr3R <- geoCorrection(tr3, type="r", multpl=FALSE, scl=TRUE)

The argument scl is set to TRUE to get reasonable values. If the values
are too large, the distance calculation algorithms will not work well.

When similar Transition* objects with equal resolution and extent need
to be corrected repetitively, computational effort may be reduced by prepar-
ing an object that only needs to be multiplied with the Transition* object to
produce a corrected version of it. The following is equivalent to the previous
procedure.

> CorrMatrix <- geoCorrection(tr3, type="r", multpl=TRUE, scl=TRUE)

> tr3R <- tr3 * CorrMatrix

Object trCorr1Matrix is only calculated once. It can be multiplied with
Transition* objects, as long as they have the same extent, resolution, and
directions of cell connections. We need to take special care that the geo-
correction multiplication matrix (tr1CorrMatrix) contains all non-zero val-
ues that are present in the Transition* object with which it will be multi-
plied (tr1)3.

3A good alternative is to use geoCorrection(mulpl=FALSE) with a Transition* object
with cells connected with value 1.

10 gdistance: geographic distances and routes

5 Calculating distances

Only now that we have the corrected Transition* object we can calculate
distances between points. It is important to note that all distance functions
require a Transition* object with conductance values, even though distances
will be expressed in 1/conductance (friction or resistance) units (see section
3).

To calculate distances, we need to have the coordinates of point locations.
This is done by creating a two-column matrix of coordinates. Functions will
also accept a SpatialPoints object or, if there is only one point, a vector of
length two.

> sP <- cbind(c(-100, 100, -100), c(-50, 50, 50))

Calculating a distance matrix is straightforward now.

> costDistance(tr3C, sP)

1 2

2 31.48473

3 17.82182 17.52757

> commuteDistance(tr3R, sP)

1 2

2 6913.495

3 5876.758 5742.390

> rSPDistance(tr3R, sP, sP, theta=1e-12, totalNet="total")

[,1] [,2] [,3]

[1,] 0.000 3920.350 2959.759

[2,] 3901.618 0.000 2874.381

[3,] 3689.239 3622.593 0.000

The costDistance function gives a symmetric or asymmetric distance
matrix, depending on the TransitionLayer that is used as input.

Commute distance represents the random walk commute time, e.g. the
number of cells traversed on the trip (Chandra et al. 1996).

rSPDistance gives the cost incurred during the same walk (theta ap-
proaches zero, so the walk is nearly random). By summing the off-diagonal
elements (Dij + Dji), we obtain the commute costs 4.

4In this case, the commute costs are only slightly higher than (and proportional to)
the commute distances. This is because the TransitionLayer tr3R has been scaled, making
most of the transition costs unit, except for diagonal connections and W-E connections
away from the equator.

Jacob van Etten 11

6 Dispersal paths

To determine dispersal paths with a random element, we use the function
passage. This function can be used for both random walks and randomised
shortest paths. The function calculates the number of passages through cells
before arriving in the destination cell. Either the total or net number of
passages can be calculated. The net number of passages is the number of
passages that are not reciprocated by a passage in the opposite direction (see
also the previous section).

Figure 4 shows the probability of passage through each cell, assuming
randomised shortest paths with the parameter theta set to 3.

> origin <- SpatialPoints(cbind(0, 0))

> rSPraster <- passage(tr3C, origin, sP[3,], theta=3)

> plot(rSPraster)

−150 −100 −50 0 50 100 150

−
10

0
−

50
0

50
10

0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Probability of passage

12 gdistance: geographic distances and routes

7 Path overlap and non-overlap

One of the specific uses, for which package gdistance was created, is to
look at trajectories coming from the same source (van Etten and Hijmans
2010).

The degree of coincidence of two trajectories can be visualized by multi-
plying the probabilities of passage (Figure 5). With a more complex formula,
we can approximate the non-overlapping part of the trajectory (Figure 6).

> r1 <- passage(tr3C, origin, sP[1,], theta=1)

> r2 <- passage(tr3C, origin, sP[3,], theta=1)

> rJoint <- r1 * r2

> plot(rJoint)

−150 −100 −50 0 50 100 150

−
10

0
−

50
0

50
10

0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Overlapping part of the two routes

> rDiv <- max(max(r1, r2) * (1 - min(r1, r2)) - min(r1, r2), 0)

With the function pathInc we can calculate measures of path overlap
and non-overlap for a large number of points. These measures can be used
to predict patterns of diversity if these are due to dispersal from a single
common source (van Etten and Hijmans 2010). If the argument type contains
two elements (divergent and joint), the result is a list of distances matrices.

Jacob van Etten 13

> plot(rDiv)

−150 −100 −50 0 50 100 150

−
10

0
−

50
0

50
10

0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Non-overlapping part of the two routes

> pathInc(tr3C, origin, sP)

$function1layer1

1 2

2 1.533285

3 1.647547 1.682989

$function2layer1

1 2

2 35.24048

3 30.23401 28.43547

8 Example 1: Hiking around Maunga Whau

The previous examples were somewhat theoretical, based on randomly
generated values. More realistic examples serve to illustrate the various uses
that can be given to this package.

Determining the fastest route between two points in complex terrain is
useful for hikers. Tobler’s Hiking Function provides a rough estimate for the

14 gdistance: geographic distances and routes

the maximum hiking speed given the slope of the terrain (Tobler 1993). The
maximum speed of off-path hiking (in m/s) is:

speed = exp(-3.5 * abs(slope + 0.05))

Note that the function is not symmetric around 0 (see Figure 7).

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

slope

sp
ee

d
(m

/s
)

Figure 7: Tobler’s Hiking Function

We use the Hiking Function to determine the shortest path to hike around
the volcano Maunga Whau (Auckland, New Zealand). First, we read in the
altitude data for the volcano. This is a geo-referenced version of the“volcano”
data available in Base R datasets (see ?volcano for more information).

> r <- raster(system.file("external/maungawhau.grd",

+ package="gdistance"))

The Hiking Function requires the slope as input.

slope = difference in height / distance travelled

The units of height and distance should be identical. Here, we use meters
for both. We calculate the height differences between cells first. Then we use
the function geoCorrection() to divide by the distance between cells.

Jacob van Etten 15

> heightDiff <- function(x){x[2] - x[1]}

> hd <- transition(r,heightDiff,8,symm=FALSE)

> slope <- geoCorrection(hd, scl=FALSE)

Subsequently, we calculate the speed. We need to exercise special care, be-
cause the matrix values between non-adjacent cells is 0, but the slope between
these cells is not 0! Therefore, we need to restrict the calculation to adjacent
cells. We do this by creating an index for adjacent cells (adj) with the func-
tion adjacency(). Using this index, we extract and replace adjacent cells,
without touching the other values.

> adj <- adjacency(x = r, fromCells = 1:ncell(r),

+ toCells = 1:ncell(r), directions=8)

> speed <- slope

> speed[adj] <- exp(-3.5 * abs(slope[adj] + 0.05))

Now we have calculated the speed of movement between adjacent cells. We
are close to having the final conductance values. Attainable speed is a mea-
sure of the ease of crossing from one cell to another on the grid. However, we
also need to take into account the distance between cell centres. Travelling
with the same speed, a diagonal connection between cells takes longer to cross
than a straight connection. Therefore, we use the function geoCorrection()

again!

> x <- geoCorrection(speed, scl=FALSE)

This gives our final ”conductance” values.
What do these ”conductance”values mean? The function geoCorrection

divides the values in the matrix with the distance between cell centres. So,
with our last command we calculated this:

conductance = speed / distance

This looks a lot like a measure that we are more familiar with:

travel time = distance / speed

In fact, the conductance values we have calculated are the reciprocal of travel
time.

1 / travel time = speed / distance = conductance

Maximizing the reciprocal of travel time is exactly equivalent to minimizing
travel time!

16 gdistance: geographic distances and routes

2667400 2667600 2667800 2668000

64
78

80
0

64
79

00
0

64
79

20
0

64
79

40
0

100

120

140

160

180

A

B

Figure 8: Quickest hiking routes around Maunga Whau

Now we define two coordinates, A and B, and determine the paths be-
tween them. We test if the quickest path from A to B is the same as the
quickest path from B back to A.

> A <- c(2667670,6479000)

> B <- c(2667800,6479400)

> AtoB <- shortestPath(x, A, B, output="SpatialLines")

> BtoA <- shortestPath(x, B, A, output="SpatialLines")

> plot(r)

> lines(AtoB, col="red", lwd=2)

> lines(BtoA, col="blue")

> text(A[1]-10,A[2]-10,"A")

> text(B[1]+10,B[2]+10,"B")

A small part of the A-B (red) and B-A (blue) lines in the figure do not
overlap. This is a consequence of the asymmetry of the Hiking Function.

Jacob van Etten 17

9 Example 2: Geographical genetics

The direct relation between genetic and geographic distances is known as
isolation by distance (Wright 1943). Recent work has expanded this relation-
ship to random movement in heterogeneous landscapes (McRae 2006). Also,
the geography of dispersal routes can explain observed geospatial patterns
of genetic diversity. For instance, diffusion from a single origin (Africa) ex-
plains much of the current geographical patterns of human genetic diversity
(Ramachandran 2005). As a result, the mutual genetic distance between a
pair of humans from different parts from the globe depends on the extent
they share their prehistoric migration history.

Within a single continent, however, human genetic diversity may have to
do with more recent events. Let’s look at diversity in Europe, using the data
presented by Balaresque et al. (2010). Within Europe, genetic diversity is
often thought to be a result of the migration of early Neolithic farmers from
Anatolia (Turkey) to the west.

First we read in the data, including the coordinates of the populations
(Figure 9) and mutual genetic distances.

> Europe <- raster(system.file("external/Europe.grd",

+ package="gdistance"))

> Europe[is.na(Europe)] <- 0

> data(genDist)

> data(popCoord)

> pC <- as.matrix(popCoord[c("x","y")])

Then we create three geographical distance matrices. The first corre-
sponds to the great-circle distance between populations. The second is the
least-cost distance between locations. Travel is restricted to the land mass.
The third is the resistance distance (using the same conductance matrix),
which is related to the random-walk commute time between points (Chandra
et al. 1996, McRae 2006).

> geoDist <- pointDistance(pC, longlat=TRUE)

> geoDist <- as.dist(geoDist)

> Europe <- aggregate(Europe,3)

> tr <- transition(Europe, mean, directions=8)

> trC <- geoCorrection(tr, "c", scl=TRUE)

> trR <- geoCorrection(tr, "r", scl=TRUE)

> cosDist <- costDistance(trC,pC)

> resDist <- commuteDistance(trR, pC)

> cor(genDist,geoDist)

18 gdistance: geographic distances and routes

−20 −10 0 10 20 30 40

30
40

50
60

70

0.0

0.2

0.4

0.6

0.8

1.0

DK

EN1

EN2

FR1

FR2

FR3

FR4

FR7

GE

GE1

GR

IR

IT1
IT2

NL

SB

SP2

SP4

SP5

SP6

TK1 TK2TK3

Figure 9: Map of genotyped populations

Jacob van Etten 19

[1] 0.5962655

> cor(genDist,cosDist)

[1] 0.5889319

> cor(genDist,resDist)

[1] 0.1921278

Interestingly, the great-circle distance between points turns out to be the
best predictor of genetic distance. The other distance measures incorporate
more information about the geographic space in which geneflow takes place,
but do not improve the prediction. But how well does a wave of expansion
from Anatolia explain the spatial pattern?

> origin <- unlist(popCoord[22,c("x","y")])

> pI <- pathInc(trC, origin=origin, from=pC,

+ functions=list(overlap))

> cor(genDist,pI[[1]])

[1] -0.6560192

At least at first sight, the overlap of dispersal routes explain the spatial
pattern better than any of the previous measures. The negative sign of the
last correlation coefficient was expected, as more overlap in routes is associ-
ated with lower genetic distance. While additional work would be needed to
improve predictions and compare the different models more rigorously, the
promise of dispersal modelling with gdistance is clear.

10 Final remarks

Questions about the use of gdistance can be posted on the r-sig-geo email
list. Bug reports and requests for additional functionality can be mailed to
jacobvanetten@yahoo.com.

11 References

Balaresque P., et al. 2010. A predominantly Neolithic origin for European
paternal lineages. PLoS Biology 8(1): e1000285.

20 gdistance: geographic distances and routes

Chandra, et al. 1996. The electrical resistance of a graph captures its com-
mute and cover times Computational Complexity 6(4), 312-340.

de Smith, M.J., M.F. Goodchild, and P.A. Longley. 2009. Geospatial Anal-
ysis. Matador. 3rd edition.

McRae B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.
McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to

model connectivity in ecology, evolution, and conservation. Ecology
89:2712-2724.

Ramachandran S., et al. 2005. Support from the relationship of genetic and
geographic distance in human populations for a serial founder effect
originating in Africa. PNAS 102: 15942–15947.

Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-
path problems: two related models. Neural Computation, 21(8):2363-
2404.

Tobler W. 1970. A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46(2): 234-240.

Tobler W. 1993. Three Presentations on Geographical Analysis and Mod-
eling. http://www.ncgia.ucsb.edu/Publications/Tech_Reports/

93/93-1.PDF

van Etten, J., and R.J. Hijmans. 2010. A geospatial modelling approach in-
tegrating archaeobotany and genetics to trace the origin and dispersal
of domesticated plants. PLoS ONE 5(8): e12060.

Wright, S. 1943. Isolation by distance. Genetics 28: 114–138.

http://www.ncgia.ucsb.edu/Publications/Tech_Reports/93/93-1.PDF
http://www.ncgia.ucsb.edu/Publications/Tech_Reports/93/93-1.PDF

	Introduction
	Raster basics
	Transition* classes
	Correcting inter-cell conductance values
	Calculating distances
	Dispersal paths
	Path overlap and non-overlap
	Example 1: Hiking around Maunga Whau
	Example 2: Geographical genetics
	Final remarks
	References

