
Fitting Generalized Linear Mixed-Effects Model
Trees

Marjolein Fokkema
Universiteit Leiden

Achim Zeileis
Universität Innsbruck

Abstract

This vignette briefly introduces the glmertree package for fitting a wide range of
generalized linear mixed-effects model trees (GLMM trees or glmertrees). In hands-on
(artificial) examples, emphasis is given to the special cases of fitting GLMM trees with
constant fits in the terminal nodes and detecting treatment-subgroup interactions in clus-
tered data.

Keywords: recursive partitioning, mixed-effects model trees, decision trees.

1. Introduction
Generalized linear mixed-effects model trees (GLMM trees or glmertrees) have recently been
proposed by Fokkema, Smits, Zeileis, Hothorn, and Kelderman (2018) for detecting treatment-
subgroup interactions in clustered datasets. Using a hands-on (artificial) example, this vi-
gnette describes how to fit such GLMM trees: Section 3 will describe how to assess main and
interaction effects of a categorical variable (treatment) on a continuous response (treatment
outcome). But first, Section 2 will describe how to fit (G)LMM trees with constant fits in the
terminal nodes. The R package glmertree can be used to detect predictors and moderators
in a wide range of generalized linear mixed-effects models.
GLMM trees estimate a global random-effects model, using all training observations. The
fixed-effects model is estimated locally: the dataset is partitoned with respect to additional
covariates or partitioning variables and a fixed-effects model is estimated in each cell of the
partition. The glmertree package makes use of the partykit package (Hothorn and Zeileis
2015) to find the partition and the lme4 package (Bates, Mächler, Bolker, and Walker 2015)
to fit the mixed-effects model.
The current stable release version of the package from the Comprehensive R Archive Network
(CRAN) can be installed via:

R> install.packages("glmertree")

Alternatively, the current development version can be installed from R-Forge:

R> install.packages("glmertree", repos = "http://R-Forge.R-project.org")

After installation, the package can be loaded as follows:

R> library("glmertree")

2 Generalized Linear Mixed-Effects Model Trees

The main functions in the glmertree package are lmertree(), for continuous outcome vari-
ables, and glmertree(), for binary or count outcome variables. In what follows, we will focus
on the special cases of fitting mixed-effects trees with constant fits in the terminal nodes to
clustered data and detection of treatment-subgroup interactions in clustered data.

2. Fitting (G)LMM trees with constant fits in the terminal nodes
For this example, we will make use of an artificially generated dataset of N = 3, 739 young
people who received treatment at one of 13 mental-health service providers. Potential pre-
dictor variables are demographic variables and case characteristics. The response variable
is a treatment outcome, as measured by a mental-health difficulties score at follow-up, cor-
rected for the baseline assessment, where higher values relect poorer treatment outcome. The
dataset includes two continuous covariates (age and impact); four binary covariates (gender,
emotional, autism and conduct), an indicator for service provider (cluster_id) and a con-
tinuous variable reflecting treatment outcome (outcome):

R> data("MHserviceDemo", package = "glmertree")
R> summary(MHserviceDemo)

age impact gender emotional autism
Min. : 4.80 Min. :-8.300 female:1837 no :1692 no :3409
1st Qu.: 9.20 1st Qu.: 2.200 male :1902 yes:2047 yes: 330
Median :11.30 Median : 4.200
Mean :11.46 Mean : 4.149
3rd Qu.:13.60 3rd Qu.: 6.000
Max. :23.60 Max. :13.500

conduct cluster_id outcome
no :2979 13 : 308 Min. :-1.9000
yes: 760 6 : 300 1st Qu.:-0.5000

2 : 299 Median :-0.1000
12 : 296 Mean :-0.1271
7 : 295 3rd Qu.: 0.2000
3 : 293 Max. : 1.8000
(Other):1948

The main functions in the glmertree package are lmertree(), for continuous outcome vari-
ables, and glmertree(), for binary or count outcome variables. Both functions require the
user to specify at least two arguments: formula and data.
With the left hand side of the model formula (preceding the tilde symbol), we specify the
outcome variable. The right hand side consists of three parts, separated by vertical bars: The
first part specifies the subgroup-specific fixed-effect model, which consists only of an intercept
in this example; the second part specifies the random effects and the third part specifies the
potential partitioning variables:

R> lmmt <- lmertree(outcome ~ 1 | cluster_id | age + gender + emotional +
+ autism + impact + conduct, data = MHserviceDemo)

Marjolein Fokkema, Achim Zeileis 3

age
p < 0.001

1

≤ 9.1 > 9.1

emotional
p < 0.001

2

no yes

Node 3 (n = 427)

−2

−1

0

1

2
●
●

●

●

●

●

gender
p < 0.001

4

female male

Node 5 (n = 259)

−2

−1

0

1

2

●

●
●

Node 6 (n = 229)

−2

−1

0

1

2

●

autism
p < 0.001

7

no yes

Node 8 (n = 2571)

−2

−1

0

1

2

●

●●

●●

●●

●
●●
●
●●●●

●
●

●

Node 9 (n = 253)

−2

−1

0

1

2
●

●

Figure 1: Linear mixed-effects model tree.

We specified only a single variable in the random-effects part, resulting in estimation of a
random intercept with respect to cluster_id. More complex random effects can also be
specified: for example, specifying the random-effects part as (1 + age | cluster) would
yield a model with a random intercept as well as a random slope for age with respect to
cluster. The brackets are necessary to protect the vertical bars in the formulation of the
random effects.
Alternatively, using the glmertree() function, a tree may be fitted to binary (family =
binomial, default) or count response variables (family = poisson). Therefore, a binomial
GLMM tree for a dichotomized response could be obained by:

R> glmmt <- glmertree(factor(outcome > 0) ~ 1 | cluster_id | age + gender +
+ emotional + autism + impact + conduct,
+ data = MHserviceDemo, family = "binomial")

Using the plot method, we can plot the resulting tree and random effects:

R> plot(lmmt)

Using the argument which, we can also specify which part of the model should be plot-
ted: which = "tree" plots only the tree, which = "ranef" plots only the predicted random
effects and which = "all" (the default) plots the tree as well as the random effects.
The plotted tree is depicted in Figure 1. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control

4 Generalized Linear Mixed-Effects Model Trees

cluster_id

3

8

10

11

9

13

6

4

1

2

5

7

12

−0.2 −0.1 0.0 0.1 0.2

●

●

●

●

●

●

●

●

●

●

●

●

●

(Intercept)

Figure 2: Random effects.

for multiple testing, the p-values are Bonferroni corrected, by default. This can be turned
off by adding bonferroni = FALSE to the function call, yielding a less conservative criterion
for the parameter stability tests, but note that this will increase the likelihood of overfitting.
The significance level α equals .05 by default, but a different value, say for example .01, can
be specified by including alpha = .01 in the function call.
The plotted tree shows that there are five subgroups: node 3 indicates that for patients with
lower age and no emotional disorder, as well as for patients with higher age and autistic
disorder, somewhat higher values for the response are observed. Thus, for these patients,
poorer treatment outcomes are predicted. Somewhat better treatment outcomes are observed
for those with lower age, an emotional disorder and female gender, and for those with higher
age and no autistic disorder. The best treatment outcomes are observed among those with
lower age, emotional disorder and male gender.
The predicted random effects are plotted in Figure 2. On average, patients at service provider
12 appear to have poorer outcomes, while patients at service provider 3 appear to have more
favorable outcomes.
To obtain numerical results, print, coef and ranef methods are available (results omitted):

R> print(lmmt)
R> coef(lmmt)
R> ranef(lmmt)

To obtain predicted values, the predict method can be used:

R> predict(lmmt, newdata = MHserviceDemo[1:10,])

1 2 3 4 5 6
0.08412602 0.25068474 0.25594172 0.15131909 0.34498973 0.30241507

Marjolein Fokkema, Achim Zeileis 5

7 8 9 10
0.25353372 0.11452905 0.15131909 0.16260310

When newdata is not specified, predictions for the training observations are returned, by
default. Random effects can be excluded from the predictions by adding re.form = NA. This
is useful, for example, when newdata is specified, but the new observations do not have a
cluster indicator or are from new clusters:

R> predict(lmmt, newdata = MHserviceDemo[1:10, -7], re.form = NA)

1 2 3 4 5 6
0.19073560 0.19073560 0.19073560 0.19073560 0.19073560 0.19073560

7 8 9 10
0.09927958 0.19073560 0.19073560 0.19073560

2.1. Inspecting residuals

Residuals of the fitted GLMM tree can be obtained with the residuals method. This can
be useful for assessing potential misspecification of the model (e.g., heteroscedasticity):

R> resids <- residuals(lmmt)
R> preds <- predict(lmmt)
R> plot(MHserviceDemo$cluster_id, resids)
R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 3. The first plot does not indicate substantial
variation in error variances across levels of the random effects. The second plot of fitted values
against residuals also does not reveal a pattern indicating model misspecification.

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

1 2 3 4 5 6 7 8 9 10 11 12 13

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Cluster

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ●●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Predicted values

R
es

id
ua

ls

Figure 3: Residuals of the fitted linear mixed-effects model tree.

6 Generalized Linear Mixed-Effects Model Trees

3. Detecting treatment-subgroup interactions in clustered data
The model in the terminal nodes can easily be extended to accomodate additional predictor
variables. This may be particularly helpful when the interest is in the detection of moder-
ators. For example, in the detection of treatment-subgroup interactions, where the effect of
treatment on the response variable may be moderated by one or more additional covariates.
To illustrate, we will use an artificial motivating dataset from Fokkema et al. (2018), which
can be recreated using the code provided in Appendix A, or can be loaded as follows:

R> data("DepressionDemo", package = "glmertree")
R> summary(DepressionDemo)

depression treatment cluster age
Min. : 3.00 Treatment 1:78 Min. : 1.0 Min. :18
1st Qu.: 7.00 Treatment 2:72 1st Qu.: 3.0 1st Qu.:39
Median : 9.00 Median : 5.5 Median :45
Mean : 9.12 Mean : 5.5 Mean :45
3rd Qu.:11.00 3rd Qu.: 8.0 3rd Qu.:52
Max. :16.00 Max. :10.0 Max. :69

anxiety duration depression_bin
Min. : 3.00 Min. : 1.000 0:78
1st Qu.: 8.00 1st Qu.: 5.000 1:72
Median :10.00 Median : 7.000
Mean :10.26 Mean : 6.973
3rd Qu.:12.00 3rd Qu.: 9.000
Max. :18.00 Max. :17.000

The dataset includes seven variables: A continuous response variable (depression), a pre-
dictor variable for the linear model (treatment), three potential partitioning variables (age,
anxiety, duration), an indicator for cluster (cluster) and a binarized response variable
(depression_bin).
With the left hand side of the model formula (preceding the tilde symbol), we specify the
outcome variable. The right hand side consists of three parts, separated by vertical bars: The
first part specifies the predictor variable(s) of the (generalized) linear model, the second part
specifies the random effects and the third part specifies the potential partitioning variables:

R> lmm_tree <- lmertree(depression ~ treatment | cluster |
+ age + duration + anxiety, data = DepressionDemo)

Note that in the example above, the partitioning variables are continuous, but (ordered)
categorical partitioning variables may also be specified. Also, we specified only a single
variable in the random-effects part, resulting in estimation of a random intercept with respect
to cluster. More complex random effects can also be specified: for example, specifying the
random-effects part as (1 + age | cluster) would yield a model with a random intercept
as well as a random slope for age with respect to cluster. The brackets are necessary to
protect the vertical bars in the formulation of the random effects.
Alternatively, using the glmertree() function, a tree may be fitted to binary (family =
binomial, default) or count response variables (family = poisson). Therefore, a binomial
GLMM tree for the dichotomized response depression_bin could be obained by:

Marjolein Fokkema, Achim Zeileis 7

duration
p < 0.001

1

≤ 8 > 8

anxiety
p < 0.001

2

≤ 10 > 10

Node 3 (n = 53)

●

●

Treatment 1 Treatment 2

2

17
Node 4 (n = 54)

●
●

Treatment 1 Treatment 2

2

17
Node 5 (n = 43)

●

●

●

Treatment 1 Treatment 2

2

17

Figure 4: Linear mixed-effects model tree.

R> glmm_tree <- glmertree(depression_bin ~ treatment | cluster |
+ age + duration + anxiety, data = DepressionDemo, family = binomial)

Using the plot method, we can plot the resulting tree and random effects:

R> plot(lmm_tree)

Using the argument which, we can also specify which part of the model should be plot-
ted: which = "tree" plots only the tree, which = "ranef" plots only the predicted random
effects and which = "all" (the default) plots the tree as well as the random effects.
The plotted tree is depicted in Figure 4. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control
for multiple testing, the p-values are Bonferroni corrected, by default. This can be turned
off by adding bonferroni = FALSE to the function call, yielding a less conservative criterion
for the parameter stability tests, but note that this will increase the likelihood of overfitting.
The significance level α equals .05 by default, but a different value, say for example .01, can
be specified by including alpha = .01 in the function call.
The plotted tree shows that there are three subgroups with differential treatment effectiveness:
node 3 indicates that for patients with lower duration and lower anxiety, Treatment 1 leads
to lower post-treatment depression. Node 4 indicates that for patients with lower duration
and higher anxiety, both treatments yield more or less the same expected outcome. Node 5
indicates, that for patients with higher duration, Treatment 2 leads to lower post-treatment
depression.

8 Generalized Linear Mixed-Effects Model Trees

cluster

4

2

1

5

6

3

7

8

9

10

−1.0 −0.5 0.0 0.5 1.0 1.5

●

●

●

●

●

●

●

●

●

●

(Intercept)

Figure 5: Random effects.

The predicted random effects are plotted in Figure 5. On average, patients from cluster
10 have somewhat higher expected post-treatment depression scores, whereas patients from
cluster 4 have somewhat lower expected post-treatment depression scores.
To obtain numerical results, print, coef and ranef methods are available:

R> print(lmm_tree)

Linear mixed model tree

Model formula:
depression ~ treatment | age + duration + anxiety

Fitted party:
[1] root
| [2] duration <= 8
| | [3] anxiety <= 10: n = 53
| | (Intercept) treatmentTreatment 2
| | 7.458519 4.183184
| | [4] anxiety > 10: n = 54
| | (Intercept) treatmentTreatment 2
| | 8.612009 0.513343
| [5] duration > 8: n = 43
| (Intercept) treatmentTreatment 2
| 11.098602 -4.584979

Number of inner nodes: 2
Number of terminal nodes: 3

Marjolein Fokkema, Achim Zeileis 9

Number of parameters per node: 2
Objective function (residual sum of squares): 520.2838

Random effects:
$cluster

(Intercept)
1 -0.30964507
2 -0.34154680
3 -0.06755161
4 -0.57675846
5 -0.15247332
6 -0.08761728
7 0.12905558
8 0.22500977
9 0.26125771
10 0.92026948

with conditional variances for "cluster"

R> coef(lmm_tree)

(Intercept) treatmentTreatment 2
3 7.458519 4.183184
4 8.612009 0.513343
5 11.098602 -4.584979

R> ranef(lmm_tree)

$cluster
(Intercept)

1 -0.30964507
2 -0.34154680
3 -0.06755161
4 -0.57675846
5 -0.15247332
6 -0.08761728
7 0.12905558
8 0.22500977
9 0.26125771
10 0.92026948

with conditional variances for "cluster"

To obtain predicted values, the predict method can be used:

R> predict(lmm_tree, newdata = DepressionDemo[1:7,])

10 Generalized Linear Mixed-Effects Model Trees

1 2 3 4 5 6 7
10.777967 11.554671 7.158594 9.045116 11.280676 8.816419 11.883481

When newdata is not specified, predictions for the training observations are returned, by
default. Random effects can be excluded from the predictions by adding re.form = NA. This
is useful, for example, when newdata is specified, but the new observations do not have a
cluster indicator or are from new clusters:

R> predict(lmm_tree, newdata = DepressionDemo[1:7, -3], re.form = NA)

1 2 3 4 5 6 7
11.087612 11.622223 7.500141 9.112668 11.622223 8.591409 11.622223

3.1. Inspecting residuals

Residuals of the fitted GLMM tree can be obtained with the residuals method. This can
be useful for assessing potential misspecification of the model (e.g., heteroscedasticity):

R> resids <- residuals(lmm_tree)
R> preds <- predict(lmm_tree)
R> plot(factor(DepressionDemo$cluster), resids)
R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 6. The first plot does not indicate substantial
variation in error variances across levels of the random effects. The second plot of fitted values
against residuals also does not reveal a pattern indicating model misspecification.

●

●

1 2 3 4 5 6 7 8 9 10

−
4

−
2

0
2

4

Cluster

R
es

id
ua

ls

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

6 7 8 9 10 11 12

−
4

−
2

0
2

4

Predicted values

R
es

id
ua

ls

Figure 6: Residuals of the fitted linear mixed-effects model tree.

Marjolein Fokkema, Achim Zeileis 11

References

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” doi:10.18637/jss.v067.i01.

Fokkema M, Smits N, Zeileis A, Hothorn T, Kelderman H (2018). “Detecting Treatment-
Subgroup Interactions in Clustered Data with Generalized Linear Mixed-Effects Model
Trees.” Behavior Research Methods, 50(5). URL https://link.springer.com/article/
10.3758/s13428-017-0971-x.

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in
R.” Journal of Machine Learning Research, 16, 3905–3909. URL http://www.jmlr.org/
papers/v16/hothorn15a.html.

A. R code for generating artificial motivating dataset
Generate the predictor variables and error term:

R> set.seed(123)
R> treatment <- rbinom(n = 150, size = 1, prob = .5)
R> duration <- round(rnorm(150, mean = 7, sd = 3))
R> anxiety <- round(rnorm(150, mean = 10, sd = 3))
R> age <- round(rnorm(150, mean = 45, sd = 10))
R> error <- rnorm(150, 0, 2)

Generate the random intercepts:

R> cluster <- error + rnorm(150, 0, 6)
R> rand_int <- sort(rep(rnorm(10, 0, 1), each = 15))
R> rand_int[order(cluster)] <- rand_int
R> error <- error - rand_int
R> cluster[order(cluster)] <- rep(1:10, each = 15)

Generate treatment subgroups:

R> node3t1 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 0, -2, 0)
R> node3t2 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 1, 2, 0)
R> node5t1 <- ifelse(duration > 8 & treatment == 0, 2.5, 0)
R> node5t2 <- ifelse(duration > 8 & treatment == 1, -2.5, 0)

Generate the continuous and dichotomized outcome variable:

R> depression <- round(9 + node3t1 + node3t2 + node5t1 + node5t2 +
+ .4 * treatment + error + rand_int)
R> depression_bin <- factor(as.numeric(depression > 9))

Make treatment indicator a factor and collect everything in a data frame:

http://dx.doi.org/10.18637/jss.v067.i01
https://link.springer.com/article/10.3758/s13428-017-0971-x
https://link.springer.com/article/10.3758/s13428-017-0971-x
http://www.jmlr.org/papers/v16/hothorn15a.html
http://www.jmlr.org/papers/v16/hothorn15a.html

12 Generalized Linear Mixed-Effects Model Trees

R> treatment <- factor(treatment, labels = c("Treatment 1", "Treatment 2"))
R> DepressionDemo <- data.frame(depression, treatment, cluster,
+ age, anxiety, duration, depression_bin)

Affiliation:
Marjolein Fokkema
Department of Methods & Statistics, Intitute of Psychology
Universiteit Leiden
Wassenaarseweg 52
2333 AK Leiden, The Netherlands
E-mail: m.fokkema@fsw.leidenuniv.nl
URL: http://www.marjoleinfokkema.nl/

Achim Zeileis
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: https://eeecon.uibk.ac.at/~zeileis/

mailto:m.fokkema@fsw.leidenuniv.nl
http://www.marjoleinfokkema.nl/
mailto:Achim.Zeileis@R-project.org
https://eeecon.uibk.ac.at/~zeileis/

	Introduction
	Fitting (G)LMM trees with constant fits in the terminal nodes
	Inspecting residuals

	Detecting treatment-subgroup interactions in clustered data
	Inspecting residuals

	R code for generating artificial motivating dataset

