Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.
In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting differents characteristics found in the target population), and demographic analysis combines the results.
For this example we will use the result from the assessment of a new total hip replacement previously described in vignette("d-non-homogeneous", "heemod")
.
The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.
For this example we will use the characteristics of 100 individuals, with varying sex and age, specified in the data frame tab_indiv
:
tab_indiv
## # A tibble: 100 × 2
## age sex
## <dbl> <int>
## 1 56 1
## 2 58 0
## 3 47 0
## 4 46 1
## 5 53 1
## 6 84 1
## 7 82 0
## 8 53 0
## 9 66 0
## 10 55 0
## # ... with 90 more rows
library(ggplot2)
ggplot(tab_indiv, aes(x = age)) +
geom_histogram(binwidth = 2)
res_mod
, the result we obtained from run_model()
in the Time-varying Markov models vignette, can be passed to update()
to update the model with the new data and perform the heterogeneity analysis.
res_h <- update(res_mod, newdata = tab_indiv)
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...
The summary()
method reports summary statistics for cost, effect and ICER, as well as the result from the combined model.
summary(res_h)
## Loading required namespace: Hmisc
## An analysis re-run on 100 parameter sets.
##
## * Unweighted analysis.
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 4.254235e+02 605.0062810 626.9720129 680.2159136
## standard - Effect 4.554756e+00 25.5696426 27.7806580 25.6344564
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 5.872463e+02 635.5509751 641.5229814 657.0514854
## np1 - Effect 4.561086e+00 25.8299343 27.9754765 25.8862442
## np1 - Cost Diff. -1.604799e+02 -110.7286273 14.5509685 -23.1644282
## np1 - Effect Diff. 6.330508e-03 0.1948185 0.2168686 0.2517877
## np1 - Icer -3.522349e+02 -316.4394659 72.7555976 422.9292860
## 3rd Qu. Max.
## standard - Cost 802.3426777 8.718854e+02
## standard - Effect 29.0749005 3.190192e+01
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 691.6140504 7.114056e+02
## np1 - Effect 29.5008365 3.214202e+01
## np1 - Cost Diff. 30.5446941 1.618227e+02
## np1 - Effect Diff. 0.3499204 4.556047e-01
## np1 - Icer 156.7853582 2.556236e+04
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'end'.
##
## Values:
##
## utility cost
## standard 25634.46 680215.9
## np1 25886.24 657051.5
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -23.16443 0.2517877 -91.99983 standard
The variation of cost or effect can then be plotted.
plot(res_h, result = "effect", binwidth = 5)
plot(res_h, result = "cost", binwidth = 50)
plot(res_h, result = "icer", type = "difference",
binwidth = 500)
plot(res_h, result = "effect", type = "difference",
binwidth = .1)
plot(res_h, result = "cost", type = "difference",
binwidth = 30)
The results from the combined model can be plotted similarly to the results from run_model()
.
plot(res_h, type = "counts")
Weights can be used in the analysis by including an optional column .weights
in the new data to specify the respective weights of each strata in the target population.
tab_indiv_w
## # A tibble: 100 × 3
## age sex .weights
## <dbl> <int> <dbl>
## 1 72 0 0.1340435
## 2 46 0 0.5686667
## 3 64 0 0.4968615
## 4 68 1 0.8405735
## 5 69 1 0.6578603
## 6 51 0 0.1789137
## 7 39 1 0.8216278
## 8 70 0 0.3986975
## 9 60 1 0.5536154
## 10 42 1 0.3197799
## # ... with 90 more rows
res_w <- update(res_mod, newdata = tab_indiv_w)
## Updating strategy 'standard'...
## Updating strategy 'np1'...
res_w
## An analysis re-run on 100 parameter sets.
##
## * Weigths distribution:
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03313 0.27929 0.56622 0.53068 0.75901 0.99950
##
## Total weight: 53.06804
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 565.3706618 605.0062810 629.468026 693.0127695
## standard - Effect 14.3082870 25.5711412 27.780658 26.5746917
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 624.7960167 635.5509751 642.202046 660.6193221
## np1 - Effect 14.4398232 25.8299343 27.975477 26.8415861
## np1 - Cost Diff. -164.8813733 -110.7286273 14.550969 -32.3934474
## np1 - Effect Diff. 0.1315362 0.1948185 0.221716 0.2668944
## np1 - Icer -354.3243137 -316.4394659 64.056585 732.2253043
## 3rd Qu. Max.
## standard - Cost 828.5434528 8.780434e+02
## standard - Effect 29.9639255 3.159866e+01
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 699.0605439 7.131620e+02
## np1 - Effect 30.4095470 3.183537e+01
## np1 - Cost Diff. 30.5446941 1.720588e+02
## np1 - Effect Diff. 0.3887769 4.653403e-01
## np1 - Icer 156.7853582 6.796322e+04
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'end'.
##
## Values:
##
## utility cost
## standard 26574.69 693012.8
## np1 26841.59 660619.3
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -32.39345 0.2668944 -121.3718 standard
Updating can be significantly sped up by using parallel computing. This can be done in the following way:
use_cluster()
functions (i.e. use_cluster(4)
to use 4 cores).close_cluster()
function.Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.