
hetGP: Heteroskedastic Gaussian Process Modeling

and Sequential Design in R

Mickaël Binois

Argonne National Laboratory
Robert B. Gramacy

Virginia Tech

Abstract

An increasing number of time-consuming simulators exhibit a complex noise structure
that depends on the inputs. For conducting studies with limited budgets of evaluations,
new surrogate methods are required in order to model simultaneously the mean and
variance fields. To this end, we present the hetGP package, implementing many recent
advances in Gaussian process modeling with input-dependent noise. First, we describe a
simple, yet efficient, joint modeling framework that relies on replication for both speed
and accuracy. Then we tackle the issue of leveraging replication and exploration in a
sequential manner for various goals, such as for obtaining a globally accurate model, for
optimization, or for contour finding. Reproducible illustrations are provided throughout.

Keywords: input-dependent noise, level-set estimation, optimization, replication, stochastic
kriging.

1. Introduction

Historically, computer experiments have been associated with deterministic black-box func-
tions; see, for example, Sacks, Welch, Mitchell, and Wynn (1989). Gaussian process (GP)
interpolators are the canonical model in this setting. Recently, determinism has become less
common for more complex simulators, e.g., those relying on agents. Stochastic simulation has
opened up many avenues for inquiry in the applied sciences. Data in geostatistics (Baner-
jee, Carlin, and Gelfand 2004) and machine learning (Rasmussen and Williams 2006), where
high-fidelity modeling also involves GPs, not only is noisy but frequently involves signal-to-
noise ratios that may be low or changing over the input space. In this context, whether for
stochastic simulation or for data from observational studies, more samples are needed in order
to isolate the signal, and learning the variance is at least as important as the mean. Yet GPs
buckle under the weight of even modestly big data. Moreover, few options for heteroskedastic
modeling exist.

Replication provides a powerful tool for separating signal from noise, yields computational
savings, and holds the potential to capture input-dependent dynamics in variance. In the
operations research community, stochastic kriging (SK; Ankenman, Nelson, and Staum 2010)
offers approximate methods that exploit large degrees of replication, coupling GP modeling
on the mean and the variance, likelihood, and method-of-moments-based inference, toward
efficient heteroskedastic modeling. Binois, Gramacy, and Ludkovski (2018a) provide similar
results but relaxing the necessity of having a large degree of replication, and places infer-

2 Heteroskedastic Gaussian Processes in R

ence fully within a likelihood framework. That methodology is the primary focus of the
implementation described here. Other approaches for achieving a degree of input-dependent
variance include quantile kriging (Plumlee and Tuo 2014); the use of pseudoinputs (Snelson
and Ghahramani 2005), also sometimes called a predictive process (Banerjee, Gelfand, Finley,
and Sang 2008); and (non-GP-based) tree methods (Pratola, Chipman, George, and McCul-
loch 2017a). Although the hetGP package has many aspects in common, and in some cases is
directly inspired by these approaches, none of these important methodological contributions
are, to our knowledge, coupled with an open source R implementation.

In the computer experiments and machine learning communities, sequential design of exper-
iments/active learning (e.g., Seo, Wallat, Graepel, and Obermayer 2000; Gramacy and Lee
2009) and Bayesian optimization (e.g., Snoek, Larochelle, and Adams 2012) are a primary
goal of modeling. The hetGP package provides hooks for learning and design to reduce pre-
dictive variance, organically determining the input-dependent degree of replication required
to efficiently separate signal from noise (Binois, Huang, Gramacy, and Ludkovski 2018b); for
Bayesian optimization; for contour finding (Lyu, Binois, and Ludkovski 2018), and for lep-
tokurtic responses (Shah, Wilson, and Ghahramani 2014; Chung, Binois, Gramacy, Moquin,
Smith, and Smith 2018). A description and examples are provided herein.

Although many R packages are available on CRAN for GP spatial and computer surro-
gate modeling (e.g., Erickson, Ankenman, and Sanchez 2017, provide a nice empirical review
and comparison), we are not aware of any others that provide an efficient approach to fully
likelihood-based coupled GP mean and variance modeling for heteroskedastic processes and,
moreover, that provide a comprehensive approach to sequential design in that context. The
tgp (Gramacy 2007; Gramacy and Taddy 2010) and laGP (Gramacy 2016) packages offer a
limited degree of nonstationary and heteroskedastic GP modeling features via partitioning,
which means they cannot capture smooth dynamics in mean and variance as hetGP can, nor
can they efficiently handle replication in the design. The DiceKriging (Roustant, Ginsbourger,
and Deville 2012) package is often used for SK experiments; however, users must preprocess
the data and calculate their own moment-based variance estimates. The mlegp package (Dan-
cik and Dorman 2008) offers a more hands-off SK experience, facilitating replicate detection,
but without coupled modeling and sequential design features. Other R packages include GPfit

(MacDonald, Ranjan, and Chipman 2015), which focuses expressly on deterministic modeling,
whereas those like kergp (Deville, Ginsbourger, and Durrande. 2018) target flexible covariance
kernels, including additive or qualitative versions, in the homoskedastic setting.

The remainder of this paper is organized as follows. Section 2 reviews hetGP’s approach to
ordinary (homoskedastic) GP regression, and linear algebra identities that enable substantial
speedups when the design has a high degree of replication. Section 3 covers hetGP’s latent
variance approach to joint GP likelihood-based inference to accommodate heteroskedastic
processes. Section 4 covers sequential design for hetGP models targeting reduction in predic-
tion error, Bayesian optimization, and contour finding. We conclude in Section 5 with a brief
summary and discussion.

2. Gaussian process modeling under replication

A computer experiment involves a function f(x) : x ∈ R
d → R requiring expensive simula-

tion to approximate a real-world (physical) relationship. An emulator f̂N is a regression or

Mickaël Binois, Robert B. Gramacy 3

response surface fit to input-output pairs (x1, y1), . . . , (xN , yN), where yi ∼ f(xi). Predictive
equations from f̂N , notated as f̂N (x′) for a new location x′, may serve as a cheap surrogate
for f(x′) at new inputs x′ for visualization, sensitivity analysis, optimization, and so forth.
The hetGP package targets thrifty GP surrogates for stochastic computer model simulations
whose variance and mean are both believed to vary nonlinearly.

Although our emphasis and vocabulary are tilted toward computer surrogate modeling through-
out, many of the techniques we describe are equally well suited to applications in machine
learning and geostatistics or anywhere else GP regression may be applied. Many of the meth-
ods presented here are inspired by advances in those areas. We begin by reviewing hetGP’s
approach to conventional, homoskedastic GP modeling and a linear algebra trick that enables
thrifty computation when the design involves a large degree of replication relative to the
number of unique sites where computer simulation responses are measured.

2.1. Gaussian process review

Gaussian process regression is a form of spatial modeling via multivariate normal (MVN)
distributions. In the computer surrogate modeling community, one commonly takes a mean-
zero GP formulation, moving all the modeling action to the covariance structure, which is
usually specified as a decreasing function of distance. The formulation below uses a scaled
separable (or anisotropic) Gaussian kernel.

YN ∼ NN (0, νKN) (1)

with KN = (Kθ(xi, xj) + τ2δi=j)1≤i,j≤N , and Kθ(·, ·) = exp

{

−
d
∑

k=1

(xk − x′
k)2

θk

}

Lengthscales θ = (θ1, . . . , θp) govern the rate of decay of correlation as a function of coordinate-
wise distance; scale ν adjusts the amplitude of YN realizations, and nugget τ2 implements
an iid (i.e., nonspatial) variance component for noisy data. Historically, when (almost ex-
clusively) modeling deterministic computer simulations, a zero nugget (τ2 = 0) is common,
although authors have argued that sometimes that can be inefficient (Gramacy and Lee 2012).
Other forms for the correlation kernel Kθ(·, ·) are common, and we shall discuss several oth-
ers and their “hyperparameters” in due course. In the computer experiments literature, one
commonly takes a mean of zero; however, parameterized extensions are common. Although
we shall mostly assume a mean of zero throughout for notational conciseness, extensions are
relatively straightforward. For example, the hetGP allows a constant mean to be estimated;
and in the heteroskedastic setup discussed further, this is how the mean variance is estimated.

GPs make popular surrogates because their predictions are accurate, have appropriate cov-
erage, and can interpolate when the nugget is zero. The beauty of GP modeling is evident
in the form of their predictive equations, which are a simple application of conditioning for
MVN joint distributions. Let DN = (XN , YN) denote the data. Generically, for covariance
structure Σ(·, ·), GP prediction Y (X) | DN at new locations X follows

Y (X) | DN ∼ Nn′(µ(X), Σ(X))

with

mean µ(X) = Σ(X , XN)Σ−1
N YN (2)

and variance Σ(X) = Σ(X ,X)−Σ(X , XN)Σ−1
N Σ(X , XN)⊤, (3)

4 Heteroskedastic Gaussian Processes in R

where Σ(X , XN) is an n′ × N matrix. These are the so-called kriging equations in spatial
statistics. They describe the best (minimizing MSPE) linear unbiased predictor (BLUP).

If the covariance structure is hyperparameterized, as it is in Equation (1), the multivariate
structure can emit a log likelihood that may be utilized for inference for unknown hyperpa-
rameters (ν, θ, τ2):

ℓ = log L = −N

2
log 2π − N

2
log ν − 1

2
log |KN | −

1

2ν
Y⊤

N K−1
N YN .

To maximize ℓ with respect to ν, say, one just differentiates and solves:

0
set
= ℓ′(ν) ≡ ∂ℓ

∂ν
= −N

2ν
+

1

2ν2
Y⊤

N K−1
N YN

ν̂ =
Y⊤

N K−1
N YN

N
.

The quantity ν̂ is like a mean residual sum of squares. Now, plugging ν̂ into ℓ gives the
so-called concentrated log-likelihood,

ℓ(τ2, θ) = −N

2
log 2π − N

2
log ν̂ − 1

2
log |KN | −

1

2ν̂
Y⊤

N K−1
N YN

= c− N

2
log YN K−1

N YN −
1

2
log |KN |.

Using the chain rule and that

∂K−1
N

∂φ
= −K−1

N

∂KN

∂φ
K−1

N and
∂ log |KN |

∂φ
= tr

{

K−1
N

∂KN

∂φ

}

yields closed-form expressions for the partial derivatives with respect to (θ1, . . . , θk) and τ2.
Unfortunately these cannot be set to zero and solved analytically. But numerical methods
are fairly good.

To illustrate, and to expose the essence of the implementation automated in the hetGP

package (but for more involved settings discussed momentarily), we provide the following
hand-coded example. The code block below implements the negative log-likelihood for pa-
rameters par, whose first ncol(X) settings correspond to the lengthscales θ, followed by the
nugget τ2.

R> library("hetGP")

R> nl <- function(par, X, Y) {

+ theta <- par[1:ncol(X)]

+ tau2 <- par[ncol(X) + 1]

+ n <- length(Y)

+ K <- cov_gen(X1 = X, theta = theta) + diag(tau2, n)

+ Ki <- solve(K)

+ ldetK <- determinant(K, logarithm = TRUE)$modulus

+ ll <- - (n / 2) * log(t(Y) %*% Ki %*% Y) - (1 / 2) * ldetK

+ return(-ll)

+ }

Mickaël Binois, Robert B. Gramacy 5

The gradient is provided by the code below.

R> gnl <- function(par, X, Y) {

+ n <- length(Y)

+ theta <- par[1:ncol(X)]; tau2 <- par[ncol(X) + 1]

+ K <- cov_gen(X1 = X, theta = theta) + diag(tau2, n); Ki <- solve(K)

+ KiY <- Ki %*% Y

+ dlltheta <- rep(NA, length(theta))

+ for(k in 1:length(dlltheta)) {

+ dotK <- K * as.matrix(dist(X[, k]))^2 / (theta[k]^2)

+ dlltheta[k] <- (n / 2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

+ sum(diag(Ki %*% dotK)) / 2

+ }

+ dlltau2 <- (n / 2) * t(KiY) %*% KiY / (t(Y) %*% KiY)

+ - sum(diag(Ki)) / 2

+ return(-c(dlltheta, dlltau2))

+ }

Consider a p = 2-dimensional input space and responses observed with noise, coded to the
unit square. The data-generating function coded below was introduced by (Gramacy and Lee
2009) to illustrate challenges in GP regression when the response surface is nonstationary.
(Heteroskedasticity is a form of nonstationarity; and although here the nonstationarity is in
the mean, Binois et al. (2018a, see Appendix C) showed that nevertheless hetGP methods can
offer an appropriate quantification of predictive uncertainty on this data.) In order to help
separate signal from noise, degree 2 replication is used. Replication is an important focus of
this manuscript, with further discussion in Section 2.2. Initial designs are Latin hypercube
samples, generated by using the lhs package (Carnell 2018).

R> library("lhs")

R> X <- randomLHS(40, 2)

R> X <- rbind(X, X)

R> X[, 1] <- (X[, 1] - 0.5) * 6 + 1

R> X[, 2] <- (X[, 2] - 0.5) * 6 + 1

R> y <- X[, 1] * exp(-X[, 1]^2 - X[, 2]^2) + rnorm(nrow(X), sd = 0.01)

Estimating hyperparameters is easy with optim, plugging in our negative log-likelihood (for
minimizing) and gradient. We use the L-BFGS-B method (via optim in R), which supports
bound constraints. For all parameters, we choose a small (nearly zero) lower bound. For
the lengthscales the upper bound is 10, which is much longer than the square of the longest
distance in the unit square (

√
2); and for the nugget τ2 we chose the marginal variance.)

R> Lwr <- sqrt(.Machine$double.eps)

R> Upr <- 10

R> out <- optim(c(rep(0.1, 2), 0.1 * var(y)), nl, gnl, method = "L-BFGS-B",

+ lower = Lwr, upper = c(rep(Upr, 2), var(y)), X = X, Y = y)

R> out$par

6 Heteroskedastic Gaussian Processes in R

[1] 0.734517891 1.520252804 0.009420701

Apparently, the lengthscale in x2 (θ2) is about 2× longer than for x1 (θ1). Interpreting these
estimated quantities is challenging and often not a primary focus of inference. What is impor-
tant is how to map to predictive quantities. Deriving those equations requires rebuilding the
covariance structure with estimated hyperparameters, decomposing the covariance structure,
and calculating ν̂.

R> K <- cov_gen(X, theta = out$par[1:2]) + diag(out$par[3], nrow(X))

R> Ki <- solve(K)

R> nuhat <- drop(t(y) %*% Ki %*% y / nrow(X))

Actual prediction requires a set of testing inputs. Below we design a regular grid in two
dimensions.

R> xx <- seq(-2, 4, length = 40)

R> XX <- as.matrix(expand.grid(xx, xx))

The code below extends that covariance structure to the testing inputs, both between them-
selves and with the training set.

R> KXX <- cov_gen(XX, theta = out$par[1:2]) + diag(out$par[3], nrow(XX))

R> KX <- cov_gen(XX, X, theta = out$par[1:2])

R> mup <- KX %*% Ki %*% y

R> Sigmap <- nuhat * (KXX - KX %*% Ki %*% t(KX))

Using those quantities, the code below generates the plots shown in Figure 1, illustrating the
resulting predictive surface.

R> sdp <- sqrt(diag(Sigmap))

R> par(mfrow = c(1,2))

R> cols <- heat.colors(128)

R> persp(xx, xx, matrix(mup, ncol = 40), theta = -30, phi = 30,

+ main = "mean surface", xlab = "x1", ylab = "x2", zlab = "y")

R> image(xx, xx, matrix(sdp, ncol = length(xx)), main = "variance",

+ xlab = "x1", ylab = "x2", col = cols)

R> points(X[, 1], X[, 2])

A characteristic feature of GP predictive or kriging surfaces is that the predictive variance is
lower at the training data sites and higher elsewhere. This is exemplified by the cooler/redder
heat colors near the open circles in the right panel, and hotter/whiter colors elsewhere. In
1D applications the error bars derived from predictive mean and variance surfaces take on
a sausage shape, being fat away from the training data sites and thin, or “pinched,” at the
training locations.

Many libraries, such as those cited in our introduction, offer automations of these proce-
dures. In this manuscript we highlight features of the hetGP package, which offers similar
calculations as a special case. The code below provides an illustration.

Mickaël Binois, Robert B. Gramacy 7

x1

x2

y

mean surface

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

4

variance

x1

x
2

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Example predictive surface from a GP. Open circles are the training locations.

R> fit <- mleHomGP(X, y, rep(Lwr, 2), rep(Upr, 2), known = list(beta0 = 0),

+ init = c(list(theta = rep(0.1, 2), g = 0.1 * var(y))))

R> c(fit$theta, fit$g)

[1] 0.723867950 1.570740488 0.008091318

These estimated parameters are nearly identical to the ones above, obtained “by hand.” There
are subtle differences between the objective and optimization being performed, which accounts
for the slight differences in higher significant digits. The hetGP package offers an S3 predict

method that can facilitate prediction exactly in the manner illustrated above; but rather than
duplicate Figure 1 here, we shall delay an illustration until later.

So, GPs are relatively simple to specify, and inference involves a few dozen lines of code to
define an objective (log-likelihood) and its gradient, and a library routine for optimization.
Where do the challenges lie? Increasingly, data in geostatistics, machine learning, and com-
puter simulation experiments involves signal-to-noise ratios that may be low and/or possibly
changing over the input space. Stochastic (computer) simulators, from physics, business, and
epidemiology, may exhibit both of those features simultaneously, but let’s start with the first
one first. With noisy processes, more samples are needed to isolate the signal. But GPs
buckle under the weight of even modestly big data. Evident in the equations above is the
need to decompose an N ×N matrix in order to obtain K−1

N and |KN |, at O(N3) cost. What
can be done?

2.2. Speedup from replication

Replication can be a powerful device for separating signal from noise and can yield computa-
tional savings as well. If Ȳ = (ȳ1, . . . , ȳn)⊤ collects averages of ai replicates at n≪ N unique

8 Heteroskedastic Gaussian Processes in R

locations x̄i

ȳi =
1

ai

ai
∑

j=1

y
(j)
i and σ̂2

i =
1

ai − 1

ai
∑

j=1

(y
(j)
i − ȳi)

2,

then the “unique-n” predictive equations are a BLUP:

µn(x) = νkn(x)⊤(νCn + Sn)−1Ȳn (4)

σ2
n(x) = νKθ(x, x)− ν2kn(x)⊤(νCn + Sn)−1kn(x), (5)

where kn(x) = (Kθ(x, x̄1), . . . , Kθ(x, x̄n))⊤, Sn = [σ̂2
1:n]A−1

n = Diag(σ̂2
1/a1, . . . , σ̂2

n/an), Cn =
(Kθ(x̄i, x̄j)1≤i,j≤n), and ai ≫ 1. This is the basis of the stochastic kriging predictor (Anken-
man et al. 2010), which is implemented as an option in the DiceKriging and mleGP packages
on CRAN. The simplicity of this setup is attractive. Basically, an independent moments-based
estimate of variance is used in lieu of the more traditional, likelihood-based (hyperparamet-
ric) alternative. This could be advantageous if the variance is changing throughout the input
space, as we shall discuss further in Section 3. Computationally, the advantage is readily
apparent. Only O(n3) matrix decompositions are required, which could represent a huge
savings compared with O(N3) if the degree of replication is high.

However, independent calculations also have their drawbacks, e.g., lacking the ability to
specify a priori that variance evolves smoothly over the input space. More fundamentally,
the numbers of replicates ai must be relatively large in order for the σ̂2

i values to be reliable.
Ankenman et al. (2010) recommend ai ≥ 10 for all i, which can be prohibitive. Thinking more
homoskedastically, so as not to get too far ahead of our Section 3 discussions, the problem with
this setup is that it does not emit a likelihood for inference for the other hyperparameters,
such as lengthscale θ and scale ν. This is because the Sn, ȳi and ai values do not constitute
a set of sufficient statistics, although they are close to being so.

The fix involves Woodbury linear algebra identities. Although these are not unfamiliar to
the spatial modeling community (see, e.g., Opsomer, Ruppert, Wand, Holst, and Hossler
1999; Banerjee et al. 2008; Ng and Yin 2012), we believe they have not been used toward
precisely this end until recently (Binois et al. 2018a). Here, the goal is to make the SK idea
simultaneously more general and more prescriptive, facilitating full likelihood-based inference.
Specifically, the Woodbury identities are

(D + UBV)−1 = D−1 −D−1U(B−1 + VD−1U)−1VD−1

|D + UBV| = |B−1 + VD−1U| × |B| × |D|.

To build KN = UCnV⊤ + D, we can take U = V⊤ = Diag(1a1,1, . . . , 1an,1) where 1k,l is
a k × l matrix of ones, D = τ2

IN (or later D = ΛN in the heteroskedastic setting with a
diagonal matrix of variances ΛN), and B = Cn.

Before detailing how the Woodbury maps to prediction (kriging) and likelihood identities for
O(n3) rather than O(N3) calculations, consider how it helps operate on the full covariance
structure KN via its unique-design counterpart Kn := Cn + τ2A−1

n . The example below
creates a matrix Xn with n = 50 unique (random) rows and then builds XN identical to Xn

except that four of its rows have been replicated a number of times, leading to a much bigger
N = 150 matrix.

Mickaël Binois, Robert B. Gramacy 9

R> n <- 50

R> Xn <- matrix(runif(2 * n), ncol = 2)

R> Xn <- Xn[order(Xn[, 1]),]

R> ai <- c(8, 27, 38, 45)

R> mult <- rep(1, n); mult[ai] <- c(25, 30, 9, 40)

R> XN <- Xn[rep(1:n, times = mult),]

R> N <- sum(mult)

The code below calculates the covariance matrices Kn and KN corresponding to Xn and XN ,
respectively. An arbitrary lengthscale of θ = 0.2 and nugget of τ2 = 0 is used.

R> KN <- cov_gen(XN, theta = 0.2)

R> Kn <- cov_gen(Xn, theta = 0.2)

Next, the code below builds the U matrix for use in the Woodbury formulas.

R> U <- c(1, rep(0, n - 1))

R> for(i in 2:n){

+ tmp <- rep(0, n)

+ tmp[i] <- 1

+ U <- rbind(U, matrix(rep(tmp, times = mult[i]), nrow = mult[i],

+ byrow = TRUE))

+ }

R> U <- U[, n:1]

Figure 2 shows these three matrices side by side, illustrating the mapping of Kn → U→ KN

with the choices of B and U = V⊤ described above. Note that in this case Cn = Kn since
the nugget is τ2 = 0.

R> layout(matrix(c(1, 2, 3), 1, 3, byrow = TRUE), widths = c(2, 1, 2))

R> par(mar = c(5, 4, 3, 2))

R> image(Kn, x = 1:n, y = 1:n, main = "unique-n: Kn", xlab = "1:n",

+ ylab = "1:n")

R> image(t(U), x = 1:n, y = 1:N, asp = 1, main = "U", xlab = "1:n",

+ ylab = "1:N")

R> image(KN, x = 1:N, y = 1:N, main = "full-N: KN", xlab = "1:N",

+ ylab = "1:N")

Not only is storage of Kn and U, which may be represented sparsely (or even implicitly),
more compact than KN , but the Woodbury formulas show how to calculate the requisite
inverse and determinants by acting on O(n2) quantities rather than O(N2). Pushing that
application of the Woodbury identities through to the predictive equations, via the mapping
νCN + SN = ν(CN + ΛN) ≡ ν(CN + τ2

IN) between SK and our more conventional notation,
yields the following predictive identities:

νkN (x)⊤(νCN + SN)−1Y = kn(x)⊤(Cn + ΛnA−1
n)Ȳ

νKθ(x, x)− ν2kN (x)⊤(νCN + SN)−1kN (x) = νKθ(x, x)− νkn(x)⊤(Cn + ΛnA−1
n)−1kn(x).

10 Heteroskedastic Gaussian Processes in R

10 20 30 40 50

1
0

2
0

3
0

4
0

5
0

unique−n: Kn

1:n

1
:n

0 20 40
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

U

1:n

1
:N

20 40 60 80 100 120 140

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

full−N: KN

1:N

1
:N

Figure 2: Example mapping of Kn → U→ KN through the Woodbury identities.

In words, the typical “full-N” predictive quantities may be calculated identically via “unique-
n” counterparts, with potentially dramatic savings in computational time and space. The
unique-n predictor is unbiased and minimizes MSPE by virtue of the fact that those properties
hold for the full-N one. No asymptotic or frequentist arguments are required. Crucially,
no minimum data or numbers of replicates (e.g., ai ≥ 10 for SK) are required, although
replication can still be helpful from an efficiency perspective [see Section 4.1].

The same trick can be played with the concentrated log-likelihood. Recall that Kn = Cn +
A−1

n Λn; where for now Λn = τ2
In. Later we shall generalize Λn for the heteroskedastic

setting. Using these quantities, we have

ℓ = c +
N

2
log ν̂N −

1

2

n
∑

i=1

[(ai − 1)] log λi + log ai]−
1

2
log |Kn|,

where ν̂N = N−1(Y⊤Λ−1
N Y− Ȳ⊤AnΛ−1

n Ȳ + Ȳ⊤K−1
n Ȳ).

Notice the additional terms in ν̂N compared with ν̂n := n−1Ȳ⊤K−1
n Ȳ. Since Λn is diagonal,

evaluation of ℓ requires just O(n3) operations, which means hyperparameter inference can
proceed far more computationally efficiently than in typical setups. The derivative is available
in O(n3) times, too, facilitating numerical schemes such as L-BFGS-B.

∂ℓ

∂· =
N

2

∂(Y⊤ΛN Y− ȲAnΛ−1
n Ȳ + nν̂n)

∂· × (Nν̂N)−1

− 1

2

n
∑

i=1

[

(ai − 1)
∂ log λi

∂·

]

− 1

2
tr

(

K−1
n

∂Kn

∂·

)

,

where “·” is a place holder for the hyperparameter(s) of interest.

As an illustration of the potential computational benefit to such a mapping, consider the small
example below, with 100 unique input locations, each having a random number of replicates
uniformly sampled in [1, 50]. The setup is otherwise identical to the 2D example provided in
Section 2.1.

Mickaël Binois, Robert B. Gramacy 11

R> Xbar <- randomLHS(100, 2)

R> Xbar[, 1] <- (Xbar[, 1] - 0.5) * 6 + 1

R> Xbar[, 2] <- (Xbar[, 2] - 0.5) * 6 + 1

R> ytrue <- Xbar[, 1] * exp(-Xbar[, 1]^2 - Xbar[, 2]^2)

R> a <- sample(1:50, 100, replace = TRUE)

R> N <- sum(a)

R> X <- matrix(NA, ncol = 2, nrow = N)

R> y <- rep(NA, N)

R> nf <- 0

R> for(i in 1:100) {

+ X[(nf + 1):(nf + a[i]),] <- matrix(rep(Xbar[i,], a[i]), ncol = 2,

+ byrow = TRUE)

+ y[(nf + 1):(nf + a[i])] <- ytrue[i] + rnorm(a[i], sd = 0.01)

+ nf <- nf + a[i]

+ }

The code below invokes mleHomGP from the hetGP package in two ways. The first bypasses
mleHomGP preprocessing subroutines that calculate the requisite summary statistics for unique-
n modeling, forcing a more cumbersome full-N calculation. The second does things in the
more thrifty unique-n way (which is the default).

R> fN <- mleHomGP(list(X0 = X, Z0 = y, mult = rep(1, N)), y, rep(Lwr, 2),

+ rep(Upr, 2))

R> un <- mleHomGP(X, y, rep(Lwr, 2), rep(Upr, 2))

The code below compares execution times saved above, showing a dramatic difference.

R> c(fN = fN$time, un = un$time)

fN.elapsed un.elapsed

14.233 0.056

In this example, using calculations on the unique-n quantities via the Woodbury identities
results in execution that is 254 times faster compared with the typical full-N analog. The
outcome of these calculations, exemplified below through a reporting of the estimated length-
scales, is nearly identical in both versions.

R> rbind(fN = fN$theta, un = un$theta)

[,1] [,2]

fN 1.047909 1.796778

un 1.037043 1.814403

Besides the SK feature offered by the mleGP package, we are not aware of any other software
package, for R or otherwise, that automatically preprocesses the data into a form that can
exploit these Woodbury identities to speed calculations in the face of heavy replication, or

12 Heteroskedastic Gaussian Processes in R

with comparable computational advantage. Replication is a common feature in the sampling
of noisy processes, and there is a substantial computational benefit to handling this form of
data efficiently.

3. Heteroskedastic modeling

The typical GP formulation, utilizing a covariance structure based on Euclidean distance be-
tween inputs, emits a stationary process where the input-output relationship’s features are
identical throughout the input space. Many data-generating mechanisms are at odds with the
assumption of stationarity. A process can diverge from stationarity (i.e., be nonstationary) in
various ways, but few are well accommodated by computationally viable modeling methodol-
ogy. Even fewer come with public software, such as tgp (Gramacy 2007; Gramacy and Taddy
2010) and laGP (Gramacy 2016). Both of those packages offer a divide-and-conquer approach
to accommodate disparate covariance structures throughout the input space. Such a mecha-
nism is computationally thrifty, but it is not without drawbacks such as lack of continuity of
the resulting predictive surfaces.

Input-dependent variance, or heteroskedasticity, is a particular form of nonstationarity that
is often encountered in practice and that is increasingly encountered in stochastic computer
experiment settings. An example is the so-called motorcycle accident data, available in MASS

(Venables and Ripley 2002). The data arises from a series of simulation experiments measuring
the acceleration on the helmet of a motorcycle rider before and after an impact, triggering a
whiplash-like effect. Ordinary homoskedastic GPs are notoriously inadequate on this example.
Consider the following fit via mleHomGP.

R> library("MASS")

R> hom <- mleHomGP(mcycle$times, mcycle$accel)

The code below comprises of our first demonstration of the generic predict method provided
by the hetGP package, utilizing a dense grid from the smallest to the largest values in the
input space (times).

R> Xgrid <- matrix(seq(0, 60, length = 301), ncol = 1)

R> p <- predict(x = Xgrid, object = hom)

Figure 3 shows the resulting predictive surface overlaid on a scatter plot of the data. The
solid red line is the predictive mean, and the dashed red lines trace out a 90% predictive
interval. The output from predict separates variance in terms of mean (p$sd2) and residual
(nugget-based p$nugs) estimates, which we combine in the figure to show the full predictive
uncertainty of the response Y (x) | DN .

R> plot(mcycle, main = "Predictive Surface")

R> lines(Xgrid, p$mean, col = 2, lwd = 2)

R> lines(Xgrid, qnorm(0.05, p$mean, sqrt(p$sd2 + p$nugs)), col = 2, lty = 2)

R> lines(Xgrid, qnorm(0.95, p$mean, sqrt(p$sd2 + p$nugs)), col = 2, lty = 2)

Mickaël Binois, Robert B. Gramacy 13

●●●●● ●●●●●●●●●●●●
● ●●●

●
●●
●
●
●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

Predictive Surface

times

a
c
c
e
l

Figure 3: Homoskedastic GP fit to the motorcycle data via mean (solid red) and 95% error
bars (dashed red).

Observe in the figure that the fit is less than desirable on two fronts. The most obvious is the
overestimated uncertainty across the first third of times, from left to right. This corresponds
to the preimpact regime in the experiment. Apparently, the predictive surface is overwhelmed
by the latter two-thirds of the data, comprising of the higher-variance whiplash regime. Since
the model assumes stationarity, a compromise must be made between these two regimes, and
the one with stronger support (more data, etc.) wins in this instance. The second is mild
mean nonstationarity, whereby the predicted mean in the first third of the data is wiggly
when it should be flat. The helmet experiences no measurable acceleration until the impact,
so again inferences from the latter two-thirds are bleeding into the first third.

The methodology behind hetGP was designed to cope with exactly this sort of behavior,
but in a more ambitious setting: larger experiments, in higher dimension. If replication is
an important tool in separating signal from noise in homoskedastic settings, it is doubly
so in the face of input-dependent noise. Learning how the variance is changing is key to
learning about mean dynamics. Therefore, handling and prescribing degrees of replication
feature prominently in the methodology, and as a means of remaining computationally thrifty
in implementation and execution. Actually, the motorcycle data contains replicates. Only
about two-thirds of the inputs are unique in the mcycle data. This situation will prove to be
helpful in our examples later.

3.1. Joint Gaussian process modeling

14 Heteroskedastic Gaussian Processes in R

SK, introduced in Section 2.2, accommodates a notion of in-sample heteroskedasticity “for
free” via independently calculated moments Sn = Diag(σ̂2

1, . . . , σ̂2
n), but that is useless out of

sample. By fitting each σ̂2
i separately there is no pooling effect for interpolation. Ankenman

et al. (2010) suggest the quick fix of fitting a second GP to the variance observations with
“data,”

(x̄1, σ̂2
1), (x̄2, σ̂2

2), . . . , (x̄n, σ̂2
n),

to obtain a smoothed variance for use out of sample.

A more satisfying approach from the machine learning literature (Goldberg, Williams, and
Bishop 1998) involves introducing latent (log variance) variables under a GP prior and per-
forming joint inference of all unknowns, including hyperparameters for both “mean” and
“noise” GPs and latent variances, via MCMC. The overall method, which is effectively on the
order of O(TN4) for T MCMC samples, is totally impractical but works well on small prob-
lems. Several authors have economized on aspects of this framework (Kersting, Plagemann,
Pfaff, and Burgard 2007; Lazaro-Gredilla and Titsias 2011) with approximations and simpli-
fications of various sorts, but none (to our knowledge) have resulted in public R software.1

The key ingredient in these works, of latent variance quantities smoothed by a GP, has merits
and can be effective when handled gingerly. The methods implemented in hetGP are built
around the following methodology.

Let δ1, δ2, . . . , δn be latent variance variables (or equivalently latent nuggets), each corre-
sponding to one of the n unique design sites x̄i under study. It is important to introduce
latents only for the unique-n locations. A similar approach on the full-N setup, that is, with-
out exploiting the Woodbury identities, is fraught with identifiability and numerical stability
challenges. Store these latents diagonally in a matrix ∆n, and place them under a GP prior
with mean µ(g),

∆n ∼ Nn(µg, ν(g)(C(g) + gA−1
n)),

for the purpose of spatial smoothing, with lengthscales θ(g). Then smooth λi values can be
calculated by plugging the above ∆n quantities into the mean predictive equations.

Λn = C(g)(C(g) + gA−1
n)−1(∆n − µ(g)In) =: C(g)K

−1
(g)(∆n − µ(g)In) (6)

Smoothly varying Λn generalize Λn = τ2
In from our earlier homoskedastic setup, when

describing our Woodbury shortcuts under replication in Section 2.2. They also generalize the
method of moments estimated Sn from SK. A nugget parameter g controls the smoothness of
λi’s relative to the δi’s. A nonzero mean is preferable for this second GP since the predictions
tend to revert to this mean far from the observations. Instead of estimating this additional
hyperparameter or asking the user for a value, we found it better to use the classical plugin
estimator of the mean for a GP, that is, µ̂g = ∆⊤

n K−1
(g)∆n(1⊤

n K−1
(g)1n)−1.

Variances must be positive, and the equations above give nonzero probability to negative δi

and λi values. One solution is to threshold values at zero. Another is to model log(∆n) in this
way instead, as originally described by Binois et al. (2018a). Differences in the development
are slight. Here we favor the simpler, more direct version, in part to offer a complementary
presentation to the one in that paper.

1A partial implementation is available for Python via GPy: https://sheffieldml.github.io/GPy/

Mickaël Binois, Robert B. Gramacy 15

Rather than Goldberg’s MCMC, Binois et al. (2018a) describe how to stay within a (Wood-
bury) MLE framework, by defining a joint log-likelihood over both mean and variance GPs:

ℓ̃ = c− N

2
log ν̂2

N −
1

2

n
∑

i=1

[(ai − 1) log λi + log ai]−
1

2
log |Kn| (7)

− n

2
log ν̂(g) −

1

2
log |K(g)|.

Maximization may be facilitated via closed-form derivatives with respect to all unknown
quantities, all in O(n3) time. For example, the derivative with respect to the latent ∆n

values follows.

∂ℓ

∂∆n
=

∂Λn

∂∆n

∂ log L

∂Λn
= C(g)K

−1
(g)

∂ℓ

∂Λn

where
∂ℓ

∂λi
=

N

2
×

ais
2
i

λ2
i

+
(K−1

n Ȳn)2
i

ai

ν̂N
− ai − 1

2λi
− 1

2ai
(Kn)−1

i,i

Binois et al. (2018a) show that ℓ̃ is maximized when ∆n = Λn and g = 0. In other words,
smoothing the latent noise variables (6) is unnecessary at the MLE. Optimizing the objective
naturally smooths the latent ∆n values, leading to GP predictions that interpolate those
smoothed values. However, smoothing is useful as a device in three ways: (1) connecting SK
to Goldberg’s latent representation; (2) annealing to avoid local minima; and (3) yielding a
smooth solution when the numerical optimizer is stopped prematurely, which may be essential
in big data (large unique-n) contexts.

3.2. Implementation details

Three kernels families are available in hetGP, parameterized as follows (univariate form):

• Gaussian: kG(x, x′) = exp
(

− (x−x′)2

θ

)

;

• Matérn with smoothness parameter 3/2:

kM32(x, x′) =

(

1 +

√
3|x− x′|

θ

)

exp

(

−
√

3|x− x′|
θ

)

;

• Matérn with smoothness parameter 5/2:

kM52(x, x′) =

(

1 +

√
5|x− x′|

θ
+

5(x− x′)2

3θ2

)

exp

(

−
√

5|x− x′|
θ

)

.

In the hetGP package they are referred to respectively as Gaussian, Matern3_2, and Matern5_2

and may be specified through the covtype argument. Multivariate kernels are defined simply
as the product of univariate ones, with one lengthscale per dimension. Isotropic versions, i.e.,
with the same lengthscale parameter in each dimension, can be obtained by providing scalar
values of the bound arguments upper and lower.

Selecting an appropriate range for lengthscale hyperparameters bounds (with lower and
upper) is difficult: specifications that are too small lead to basically no learning, while overly

16 Heteroskedastic Gaussian Processes in R

large values result in oscillations and matrix conditioning issues. Rules of thumb may be
based on distances between points or other a priori considerations. To automate the process
of choosing these bounds, hetGP relies on distances between design points. Specifically, con-
sidering a [0, 1]d domain over coded inputs, a lower bound is chosen such that the correlation
for a distance between any two points equal to the 5% quantile on distances is at least 1%.
Likewise, the upper bound is defined such that the correlation between two points at the 95%
quantile distance does not exceed 50%. They are further rescaled if the domain is not [0, 1]d.
Unless provided, the initial value for g in a homoskedastic model is based on the variance at
replicates if there are any; otherwise, it is set to 0.1.

By default, GP and TP models estimate an unknown mean (unless provided by the user via
the known argument). In the computer experiments literature this setup is known as ordinary
kriging, as opposed to simple kriging with a zero mean. The plugin value of the mean, via

MLE calculation, may be derived as µ̂ =
1

⊤

N
K

−1
N

YN

1⊤

N
K

−1
N

1N
= 1

⊤
n A

−1
n K

−1
n Yn

1⊤
n K

−1
n 1n

. Predictive equations

may by modified as follows.

µn(x) = µ̂ + kn(x)⊤K−1
n (Yn − µ̂1n)

σ2
n+1,OK(x) = σ2

n+1,SK(x) +
(1− kn(x)⊤K⊤

n YN)2

1⊤
n K−1

n 1n

In particular, utilizing µ̂ results in an extra term in the predictive variance.

The heteroskedastic setup entertained in hetGP relies on several key points: careful initial-
ization of the latent variables, linking of lengthscale hyperparameters between latent GP and
main GP, and safeguards on the variance GP component of the likelihood, namely, the vari-
ance smoothness regularization/penalty term. A default initialization procedure, provided
in Algorithm 1 and invoked via (settings$initStrategy = "residual"), utilizes known
or initial values of hyperparameters that can be passed as a list to known and init, with
elements theta for the main GP lengthscale, theta_g for the latent GP ones, g_H the nugget
parameter for an homoskedastic GP (i.e., τ2), g the smoothing parameter (that ultimately
goes to zero), and the latent variables Delta.

To reduce the number of hyperparameters and thus ease maximization of the joint log-
likelihood, by default the lengthscale hyperparameters of the latent GP theta_g are linked
to the ones of the main GP theta by a scalar k_theta_g in [1, 100]. If this assump-
tion that the noise variance is varying more smoothly than the mean is too limiting, as
is the case in one example below, the linking between theta and theta_g can be removed
with settings$linkThetas = "none". Another option is to use settings$linkThetas =

"constr", to use θ estimated in step 11 of Algorithm 1 as a lower bound for theta_g.

The procedure described so far, with a good initialization, is sufficient for the majority of
cases. But there are some pitfalls related to the joint likelihood objective in Equation (7). In
fact, this setup may be seen as bi-objective optimization problem, giving a set of compromise
solutions between the log-likelihood of the main and latent GPs, with a set of Pareto optimal
solutions. However, that perspective would require selecting a solution afterwards, putting a
human in the loop. If equal weights between objectives are used, as we do here, a solution on
nonconvex parts of the Pareto front may not exist or may be impossible to find. Consequently,
the solution returned corresponds to high likelihood for the latent GP and low likelihood for
the mean GP. We usually observe this behavior when there is not much heteroskedasticity in
the data.

Mickaël Binois, Robert B. Gramacy 17

Require: DN , plus, optionally, initial values of θ, θ(g), gHom, g, ∆.
1: if Initial θ not provided then

2: θ =
√

θmaxθmin.
3: end if

4: if gHom is not provided then

5: if any ai > 5 then

6: gHom ← 1
VAR(YN) ×

(

n
∑

i=1
δai>5σ̂2

i

)

/

(

n
∑

i=1
δai>5

)

7: else

8: gHom ← 0.05
9: end if

10: end if

11: Apply mleHomGP on DN with θ and gHom, obtain or update θ, gHom and ν̂Hom.
12: if ∆ not provided then

13: Compute residuals from homoskedastic fit:

δi =
1

aiν̂Hom

ai
∑

j=1

(

µ(xi)− y
(j)
i

)2
i = 1, . . . , n.

14: end if

15: if θ(g) or g not provided then

16: Fit homoskedastic GP on (xi, δi)1≤i≤n with θ, obtain θg, g.
17: end if

18: Fit heteroskedastic GP on DN with initial hyperparameters θHom, θ(g), g and ∆.

Algorithm 1: Pseudo code for the default initialization procedure in mleHetGP

To circumvent this undesirable behavior, we observe that our goal here is primarily to improve
upon a homoskedastic fit of the data. This is enforced in two ways. First, if the likelihood
of the main GP (without penalty) is lower than that of its homoskedastic counterpart, the
penalty is dropped from the object. From the bi-objective point of view, this amounts to
putting a constraint on the mean GP likelihood. Second, at the end of the joint likelihood
optimization, if the likelihood of the mean GP with heteroskedastic noise is not better than
that of the homoskedastic one, then the homoskedastic model is returned. This latter check
can be deactivated with settings$checkHom = FALSE.

3.3. Student-t variants

Student-t processes generalize GPs, keeping most of their benefits at almost no extra cost,
offering an improved robustness to outliers and larger tail noise. Several choices exist in the
literature; see, for example, the work of Wang, Shi, and Lee (2017), and we follow the one
described by Shah et al. (2014). Briefly, assuming a multivariate-t prior, YN ∼ TN (α, 0, KN))
with α ∈ (2,∞] being the additional degree of freedom parameter, the modified predictive
distribution is multivariate-t,

YN |DN (X) ∼ TN

(

α + N, µ(X),
α + β − 2

α + N − 2
Σ(X)

)

(8)

with β = Y⊤
N K−1

N YN .

18 Heteroskedastic Gaussian Processes in R

The corresponding likelihood has a closed form:

log(L) = −N

2
log((α− 2)π)− 1

2
log(|KN |) + log





Γ
(

α+N
2

)

Γ
(

α
2

)



− (α + N)

2
log

(

1 +
β

α− 2

)

,

and so does its derivatives.

As shown by Chung et al. (2018), the Woodbury simplification and heteroskedastic extension
can be carried out just as for GPs. We employ a different parameterization of KN = σ2CN +
τ2
IN in this case, because the plugin value of ν̂ does not apply here. But this parameterization

of the covariance enables enables an SK variant of this model (similar to that of Xie and Chen
(2017)), by setting log = FALSE in settings and giving the empirical variance estimates in
Delta with known (or init for initialization) in mleHetTP.

We note that while TPs are more flexible that GPs, as N goes to infinity they become
equivalent. In addition, the estimation of the parameter α can become unreliable (see, e.g.,
Wang et al. 2017), such that prespecifying it at a low value may be beneficial.

3.4. Illustrations

Here we consider several examples in turn, returning first to the motorcycle data and then
introducing three challenging real-world computer model simulation examples.

Motorcycle data: The code below shows how to fit a heteroskedastic (coupled) GP via a
smoothed initialization and Matérn covariance structure. This is but one of several potential
ways to obtain a good fit to this data by using the methods provided by the hetGP package.

R> het2 <- mleHetGP(mcycle$times, mcycle$accel, covtype = "Matern5_2",

+ lower = 15, upper = 50, settings = list(initStrategy = 'smoothed'))

R> het2$time

elapsed

0.464

The time it takes to perform the calculations is trivial, although this is not a big problem.
The built-in predict method can perform the calculations required in order to get predictions
on our grid from earlier.

R> p2 <- predict(het2, Xgrid)

R> ql <- qnorm(0.05, p2$mean, sqrt(p2$sd2 + p2$nugs))

R> qu <- qnorm(0.95, p2$mean, sqrt(p2$sd2 + p2$nugs))

Figure 4, which is generated by the code below, shows the resulting predictive surface in two
views.

R> par(mfrow = c(1, 2))

R> plot(mcycle$times, mcycle$accel, ylim = c(-160, 90), ylab = "acc",

+ xlab = "time", main = "Predictive Surface")

Mickaël Binois, Robert B. Gramacy 19

R> lines(Xgrid, p2$mean, col = 2, lwd = 2)

R> lines(Xgrid, ql, col = 2, lty = 2)

R> lines(Xgrid, qu, col = 2, lty = 2)

R> plot(Xgrid, p2$nugs, type = "l", lwd = 2, ylab = "s2", xlab = "time",

+ main = "Variance Surface", ylim = c(0, 2e3))

R> points(het2$X0, sapply(find_reps(mcycle[, 1], mcycle[, 2])$Zlist, var),

+ col = 3, pch = 20)

●●●●● ●●● ●●●●●●●●●
● ●●●

●
●●
●
●
●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

10 20 30 40 50

−
1
5
0

−
1
0
0

−
5
0

0
5
0

1
0
0

Predictive Surface

time

a
c
c

0 10 20 30 40 50 60

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Variance Surface

time

s
2

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

Figure 4: Heteroskedastic GP fit to the motorcycle data. Left panel shows the predictive
distribution via mean (solid red) and 90% error bars (dashed red). Right panel shows the
estimated variance surface and moment-based estimates of variance.

The first view, in the left panel, complements Figure 3. Observe how the surface is het-
eroskedastic, learning the low-variance region in the first third of the data and higher variance
for the later two-thirds. As a consequence of being able to better track the signal-to-noise
relationship over the input space, the estimate of the signal (particularly for the first third of
times) is better. The second view, in the right panel, provides more detail on the estimated
variance surface. Predictive uncertainty is highest for the middle third of the times, which
makes sense because this is where the whiplash effect is most prominent. The green dots in
that panel indicate moment-based estimates of variance obtained from the limited number of
replicates in this example. (There are nowhere near enough for an SK-like approach.) Notice
how the black curve, smoothing the latent variance values ∆n, extracts the essence of the
pattern of those values. This variance fit uses the full data set, leveraging the smoothness of
the GP prior to leverage data with only one replicate, which in this case represents most of
the data.

Susceptible, infected, recovered model: Binois et al. (2018a) consider a 2D problem
arising from a simulation of the spread of an epidemic in a susceptible, infected, recovered
(SIR) setting, as described by Hu and Ludkovski (2017). A function generating the data for

20 Heteroskedastic Gaussian Processes in R

standardized inputs in the unit square (corresponding to S and I) is provided by sirEval

in the hetGP package. Consider a space-filling design of size n = 200 unique runs, with a
random number of replicates ai ∈ {1, . . . , 100}, for i = 1, . . . , n. The x1 coordinate represents
the initial number of infecteds I0, and the x2 coordinate the initial number of susceptibles S0.

R> Xbar <- randomLHS(200, 2)

R> a <- sample(1:100, nrow(Xbar), replace = TRUE)

R> X <- matrix(NA, ncol = 2, nrow = sum(a))

R> nf <- 0

R> for(i in 1:nrow(Xbar)) {

+ X[(nf + 1):(nf + a[i]),] <- matrix(rep(Xbar[i,], a[i]), ncol = 2,

+ byrow = TRUE)

+ nf <- nf + a[i]

+ }

R> nf

[1] 10634

The result is a full data set with N = 10634 runs. The code below gathers our response,
which is the expected number of infecteds at the end of the simulation.

R> Y <- apply(X, 1, sirEval)

The code below fits our hetGP model. By default, lengthscales for the variance GP are linked
to those from the mean GP, requiring that the former be a scalar multiple k > 1 of the latter.
That can be undone, however, as we do below primarily for illustrative purposes.

R> fit <- mleHetGP(X, Y, lower = rep(0.05, 2), upper = rep(10, 2),

+ settings = list(linkThetas = "none"), covtype = "Matern5_2", maxit = 1e4)

R> fit$time

elapsed

1.562

Around 1.6 seconds are needed to train the model. To visualize the resulting predictive
surface, the code below creates a dense grid in 2D and calls the predict method on the
"hetGP"-class object.

R> xx <- seq(0, 1, length = 100)

R> XX <- as.matrix(expand.grid(xx, xx))

R> p <- predict(fit, XX)

R> psd <- sqrt(p$sd2 + p$nugs)

Figure 5 shows the resulting predictive surface, as obtained via the code below.

Mickaël Binois, Robert B. Gramacy 21

R> par(mfrow = c(1, 2))

R> cols <- terrain.colors(128)

R> image(xx, xx, matrix(p$mean, 100), xlab = "S0", ylab = "I0", col = cols,

+ main = "Mean Infected")

R> text(Xbar, labels = a, cex = 0.75)

R> image(xx, xx, matrix(psd, 100), xlab = "S0", ylab = "I0", col = cols,

+ main = "SD Infected")

R> text(Xbar, labels = a, cex = 0.75)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Mean Infected

S0

I0

66

63

99 81

84

69

76

65

24

82

70

95

81

4

23

12

86

13

71 25

56

38

48

97

9

59

42

9

72

74

85

38

44

35

81

63
72

28

83

75

75

56

36

80

36

58

64

49

96

62

75

34

45

60

100

67

88

63

5
30

68

75

93

61

26

94

45

61

32

88

47

60

2

44

84

30

11

97

57

17

94

40

79
66

48

36

70

96

58

4

23

82

74

70

82

26

47

40

39

29
12

61
15

28

25

12

40

65

80

95

32

53

11

84

10

18

69

88

12

12

38

5

45

55

48

80

50

82

45

70

76

38

45

47

87

19

88

5 95

9244

32

20

93

58

27

55

623

23

37

67

89

79

78

86

82

3

70
41

59

81

27

94

95

19

53

62

89

5

53

35

72

35

50

76

11

3

72

4

65
47

94

41

47

66

66

2938

55

32

61

46

78

16

74

16

33

72

47

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SD Infected

S0

I0

66

63

99 81

84

69

76

65

24

82

70

95

81

4

23

12

86

13

71 25

56

38

48

97

9

59

42

9

72

74

85

38

44

35

81

63
72

28

83

75

75

56

36

80

36

58

64

49

96

62

75

34

45

60

100

67

88

63

5
30

68

75

93

61

26

94

45

61

32

88

47

60

2

44

84

30

11

97

57

17

94

40

79
66

48

36

70

96

58

4

23

82

74

70

82

26

47

40

39

29
12

61
15

28

25

12

40

65

80

95

32

53

11

84

10

18

69

88

12

12

38

5

45

55

48

80

50

82

45

70

76

38

45

47

87

19

88

5 95

9244

32

20

93

58

27

55

623

23

37

67

89

79

78

86

82

3

70
41

59

81

27

94

95

19

53

62

89

5

53

35

72

35

50

76

11

3

72

4

65
47

94

41

47

66

66

2938

55

32

61

46

78

16

74

16

33

72

47

Figure 5: Heteroskedastic GP fit to the SIR data. Left panel shows the predictive mean
surface; right panel shows the estimated standard deviation. Text in both panels shows
numbers of replicates.

The left panel in the figure shows the predictive mean surface. The right panel shows the
predicted standard deviation. Text overlaid on the panels indicates the location of the training
data inputs and the number of replicates observed thereon.

Bayes factor surfaces: Bayes factor (BF) calculation for model selection is known to be
sensitive to hyperparameter settings, which is further complicated (and obscured) by Monte
Carlo evaluation that interjects a substantial source of noise. To study BF surfaces in such
settings, Franck and Gramacy (2018) propose treating expensive BF calculations, via MCMC
say, as a (stochastic) computer simulation experiment. The idea is that BF calculations at
a space-filling design in the (input) hyperparameter space can be used to map out the space
and better understand the sensitivity of model selection to those settings.

As a simple warmup example, consider an experiment described by Gramacy and Pantaleo
(2010, Section 3.3–3.4) involving BF calculations to determine whether data is leptokurtic
(Student-t errors) or not (simply Gaussian) as a function of the prior parameterization on
the Student-t degrees of freedom parameter, which they took to be ν ∼ Exp(θ = 0.1). Their
intention was to be diffuse, but ultimately they lacked an appropriate framework for studying

22 Heteroskedastic Gaussian Processes in R

sensitivity to this choice. Franck and Gramacy (2018) created a grid of hyperparameter values
in θ, evenly spaced in log10 space from 10−3 to 106 spanning “solidly Student-t” (even Cauchy)
to “essentially Gaussian” in terms of the mean of the prior over ν. For each θi on the grid
they ran the RJ-MCMC to approximate BFStN by feeding in sample likelihood evaluations
provided by monomvn’s (Gramacy 2017) blasso to compute a BF, following a postprocessing
scheme described by Jacquier, Polson, and Rossi (2004). In order to understand the Monte
Carlo variability in those calculations, ten replicates of the BFs under each hyperparameter
setting were collected. Each BFStN evaluation, utilizing T = 100000 MCMC samples, takes
about 36 minutes to obtain on a 4.2 GHz Intel Core i7 processor, leading to a total runtime of
about 120 hours to collect all 200 values saved. The data is provided with the hetGP package.

R> data("bfs")

R> thetas <- matrix(bfs.exp$theta, ncol = 1)

R> bfs <- as.matrix(t(bfs.exp[, -1]))

For reasons that will become clear momentarily, Franck and Gramacy (2018) fit a het-
eroskedastic Student-t process, described briefly in Section 3.3. Even though they fit in
log-log space, the process is still heteroskedastic and has heavy tails.

R> bfs1 <- mleHetTP(X = list(X0 = log10(thetas), Z0 = colMeans(log(bfs)),

+ mult = rep(nrow(bfs), ncol(bfs))), Z = log(as.numeric(bfs)),

+ lower = 10^(-4), upper = 5, covtype = "Matern5_2")

Predictive evaluations were then extracted on a grid in the input space.

R> dx <- seq(0, 1, length = 100)

R> dx <- 10^(dx * 4 - 3)

R> p <- predict(bfs1, matrix(log10(dx), ncol = 1))

The results are shown in Figure 6, via plotting commands shown below. In the figure, each
open circle is a BFStN evaluation, plotted in log10− loge space.

R> matplot(log10(thetas), t(log(bfs)), col = 1, pch = 21, ylab = "log(bf)",

+ main = "Bayes factor surface")

R> lines(log10(dx), p$mean, lwd = 2, col = 2)

R> lines(log10(dx), p$mean + 2 * sqrt(p$sd2 + p$nugs), col = 2, lty = 2,

+ lwd = 2)

R> lines(log10(dx), p$mean - 2 * sqrt(p$sd2 + p$nugs), col = 2, lty = 2,

+ lwd = 2)

R> legend("topleft", c("hetTP mean", "hetTP interval"), col = 2, lty = 1:2,

+ lwd = 2)

Clearly the BFStN surface is heteroskedastic, even after log transform, and has heavy tails.
The take-home message from these plots is that the BF surface is extremely sensitive to
hyperparameterization. When θ is small, the Student-t (BF below 1) is essentially a foregone
conclusion, whereas if θ is large, the Gaussian (BF above 1) is. A seemingly innocuous
hyperparameter setting is essentially determining the outcome of a model selection enterprise.

Mickaël Binois, Robert B. Gramacy 23

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

−3 −2 −1 0 1

−
1

0
−

5
0

5
1

0
1

5
2

0

Bayes factor surface

log10(thetas)

lo
g

(b
f)

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
● ● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ●
● ● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

● ●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

●

● ●
●

● ● ●

● ●
●

● ●

●

●

●

●

●

●

hetTP mean

hetTP interval

Figure 6: Heteroskedastic TP fit to the Bayes factor data under exponential hyperprior.

Although the computational burden involved in this experiment, 120 hours, is tolerable,
extending the idea to higher dimensions is problematic. Suppose one wished to entertain
ν ∼ Gamma(α, β), where the α = 1 case reduces to ν ∼ Exp(β ≡ θ) above. Over a
similarly dense hyperparameter grid, the runtime would balloon to 100 days, which is clearly
unreasonable. Instead it makes sense to build a surrogate model from a more limited space-
filling design and use the resulting posterior predictive surface to understand variability in
BFs in the hyperparameter space. Responses on a space-filling design in α × β-space, via a
Latin hypercube sample of size 80, using a recently updated version of the monomvn library
to accommodate the Gamma prior, with replicates were obtained at each input setting, for a
total of 400 runs. The data is also provided by the bfs data object in hetGP.

R> D <- as.matrix(bfs.gamma[, 1:2])

R> bfs <- as.matrix(t(bfs.gamma[, -(1:2)]))

A similar hetTP fit can be obtained with the following command.

R> bfs2 <- mleHetTP(X=list(X0 = log10(D), Z0 = colMeans(log(bfs)),

+ mult = rep(nrow(bfs), ncol(bfs))), Z = log(as.numeric(bfs)),

+ lower = rep(10^(-4), 2), upper = rep(5, 2), covtype = "Matern5_2")

Prediction on a dense grid in the 2D input space can be extracted as follows.

24 Heteroskedastic Gaussian Processes in R

R> dx <- seq(0, 1, length = 100)

R> dx <- 10^(dx * 4 - 3)

R> DD <- as.matrix(expand.grid(dx, dx))

R> p <- predict(bfs2, log10(DD))

Figure 7 shows the outcome of that experiment, via the plotting commands below. In that
figure, the mean surface is shown on the left and standard deviation surface on the right. The
numbers overlaid on the figure are the average BFStN obtained for the five replicates at each
input location.

R> par(mfrow = c(1, 2))

R> mbfs <- colMeans(bfs)

R> image(log10(dx), log10(dx), t(matrix(p$mean, ncol=length(dx))),

+ col = heat.colors(128), xlab = "log10 alpha", ylab = "log10 beta",

+ main = "mean log BF")

R> text(log10(D[, 2]), log10(D[, 1]), signif(log(mbfs), 2), cex = 0.5)

R> contour(log10(dx), log10(dx), t(matrix(p$mean, ncol = length(dx))),

+ levels = c(-5, -3, -1, 0, 1, 3, 5), add = TRUE, col = 4)

R> image(log10(dx), log10(dx), t(matrix(sqrt(p$sd2 + p$nugs),

+ ncol = length(dx))), col = heat.colors(128), xlab = "log10 alpha",

+ ylab = "log10 beta", main = "sd log BF")

R> text(log10(D[, 2]), log10(D[, 1]), signif(apply(log(bfs), 2, sd), 2),

+ cex = 0.5)

−3 −2 −1 0 1

−
3

−
2

−
1

0
1

mean log BF

log10 alpha

lo
g
1
0
 b

e
ta

4.4

0.62

4.4

0.66

6

3.2

−0.74

11

−0.89

1.4

−2.2

−0.65

−6.1

1.5

−1.3

0.68

10

0.91

2.2

−0.2

−1

0.8

−1.1

0.12

−0.52

0.06

−1.1

2.7

8.4

5

4.7

−5.1

8.7

1.8

0.66

−0.97
−6

1.3

−0.12

2.8

15

11

−2.4

0.58

0.35

−1.6

−0.88

9.9

−0.68

4.8

0.62

5

−5.8

1.4

−1.1

0.048

11

−0.47

1.1

−9.8

0.39

0.05

0.043

2.2

1.5

−0.9

18

−2.8

3.4

2.9

−3.5

0.43

−1.3

−1.7

15

−0.38

−1.4

7.5

−9.9

7.5

 −
5

 −
3

 −1

 0

 1

 3

 5

−3 −2 −1 0 1

−
3

−
2

−
1

0
1

sd log BF

log10 alpha

lo
g
1
0
 b

e
ta

0.22

0.49

0.26

0.99

0.28

0.38

0.34

0.59

1.2

0.37

1.4

0.82

2.1

0.52

1.1

1.7

0.53

0.5

0.27

0.42

0.3

0.98

0.55

1.2

1.8

1.3

1.8

0.52

1.3

0.45

0.38

2.8

0.95

0.58

0.58

0.9
2.7

0.26

0.88

0.26

1.4

0.45

3.5

0.58

0.59

0.71

1.6

0.94

0.81

0.97

0.64

0.15

1.5

0.59

0.38

1.2

0.75

0.29

0.66

0.99

0.71

0.39

1.5

0.57

0.38

0.71

0.92

2

0.33

0.25

1.4

0.81

1.1

2.3

0.76

0.48

0.84

0.39

0.7

0.66

Figure 7: Heteroskedastic TP fit to the Bayes factor data under Gamma hyperprior.

The story here is much the same as before in terms of β, which maps to θ in the earlier
experiment, especially near α = 1 (i.e., log10 α = 0) where the equivalence is exact. The
left panel shows that along that slice one can get just about whatever conclusion one wants.

Mickaël Binois, Robert B. Gramacy 25

Smaller α values tell a somewhat more nuanced story, however. A rather large range of smaller
α values leads to somewhat less sensitivity in the outcome because of the β hyperparameter
setting, except when β is quite large. Apparently, having a small α setting is essential if the
data is going to have any influence on model selection via BF. The right panel shows that
the variance surface is indeed changing over the input space, justifying the heteroskedastic
surrogate.

Another example with hetTP is provided by Chung et al. (2018), who augment with a latent
variable scheme to account for missing data and to enforce a monotonicity property for solving
a challenging class of inverse problems motivated by an influenza example.

Assemble to order: The assemble-to-order (ATO) problem (Hong and Nelson 2006) in-
volves a queuing simulation targeting inventory management scenarios. The setup is as fol-
lows. A company manufactures m products. Products are built from base parts called items,
some of which are “key” in that the product cannot be built without them. If a random
request comes in for a product that is missing a key item, a replenishment order is executed,
which is filled after a random delay. Holding items in inventory is expensive, so there is a
balance between inventory costs and revenue. Hong and Nelson built a MATLAB simulator for
this setup, which was reimplemented by Xie, Frazier, and Chick (2012). Binois et al. (2018a)
describe an out-of-sample experiment based on this latter implementation in its default set-
ting (originally from Hong and Nelson), specifying item cost structure, product makeup (their
items) and revenue, and distribution of demand and replenishment time, under target stock
vector inputs b ∈ {0, 1, . . . , 20}8 for eight items.

Here we provide code that can be used to replicate results from that experiment, which
involved a uniform design of size ntot = 2000 in 8D space, with ten replicates for a total
design size of Ntot = 20000. The R code below loads in that data, which is stored in the data
object ato, provided with hetGP.

R> data("ato")

In order to create an out-of-sample testing setting, random training–testing partitions were
constructed by randomly selecting n = 1000 unique locations and a uniform number of repli-
cates ai ∈ {1, . . . , 10} thereupon. The ato data object also contains one such random parti-
tion, which is subsequently coded into the unit cube [0, 1]8. Further detail is provided in the
package documentation for the ato object. Actually the object provides two testing sets. One
is a genuine out-of-sample testing set, where the testing sites do not intersect with any of the
training sets. The other is replicate based, involving replicates 10− ai not selected for train-
ing. The training set is large, which makes MLE calculations slow, so the ato object provides
a fitted model for comparison. In the examples section of the ato documentation, code is
provided to reproduce that fit or to create a new one based on a new random training–testing
partition.

R> c(n = nrow(Xtrain), N = length(unlist(Ztrain)), time = out$time)

n N time.elapsed

1000.000 5594.000 8583.767

26 Heteroskedastic Gaussian Processes in R

The main reason for storing these objects is to enable a fast illustration of prediction and
out-of-sample comparison, in particular to have something to compare with a more thoughtful
sequential design scheme outlined in Section 4. The code below performs predictions at the
held-out testing locations and then calculates a proper score (Gneiting and Raftery 2007,
Equation (27)) against the ten replicates observed at each of those locations. Higher scores
are better.

R> phet <- predict(out, Xtest)

R> phets2 <- phet$sd2 + phet$nugs

R> mhet <- as.numeric(t(matrix(rep(phet$mean, 10), ncol = 10)))

R> s2het <- as.numeric(t(matrix(rep(phets2, 10), ncol = 10)))

R> sehet <- (unlist(t(Ztest)) - mhet)^2

R> sc <- - sehet/s2het - log(s2het)

R> mean(sc)

[1] 3.393781

A similar calculation can be made for the held-out training replicates, shown below. These
are technically out of sample, but accuracy is higher since training data was provided at these
locations.

R> phet.out <- predict(out, Xtrain.out)

R> phets2.out <- phet.out$sd2 + phet.out$nugs

R> s2het.out <- mhet.out <- Ztrain.out

R> for(i in 1:length(mhet.out)) {

+ mhet.out[[i]] <- rep(phet.out$mean[i], length(mhet.out[[i]]))

+ s2het.out[[i]] <- rep(phets2.out[i], length(s2het.out[[i]]))

+ }

R> mhet.out <- unlist(t(mhet.out))

R> s2het.out <- unlist(t(s2het.out))

R> sehet.out <- (unlist(t(Ztrain.out)) - mhet.out)^2

R> sc.out <- - sehet.out/s2het.out - log(s2het.out)

R> mean(sc.out)

[1] 5.089897

The two testing sets can be combined to provide a single score calculated on the entire corpus
of held-out data. As expected, the result is a compromise between the two score statistics
calculated earlier.

R> mean(c(sc, sc.out))

[1] 3.925302

Binois et al. (2018a) repeat that training-testing partition 100 times to produce score boxplots
that are then compared with simpler (e.g., homoskedastic) GP-based approaches. We refer

Mickaël Binois, Robert B. Gramacy 27

the reader to Figure 2 in that paper for more details. To make a long story short, fits
accommodating heteroskedasticity in the proper way—via coupled GPs and fully likelihood-
based inference—are superior to all other (computationally tractable) ways entertained.

4. Sequential design

We have been using uniform or space-filling designs in our examples above, and with replica-
tion. The thinking is that coverage in the input space is sensible and that replication will help
separate signal from noise (and yield computational advantages). Model-based designs, such
as maximum entropy and related criteria, are almost never appropriate in this setting. Such
designs, since they condition on the model, are hyperparameter sensitive; and before data is
collected, we have little to go on to choose good settings for those values. This situation is
exacerbated in the heteroskedastic setting, requiring the setting of latent inputs and addi-
tional hyperparameters. A far better approach is to take things one step at a time: start with
a small space-filling design (small N), perhaps with some replication, and choose the next
point, xN+1, by exploring its impact on the model fit, say through the predictive equations.
An interesting question, in such settings, is how much such criteria would prefer to replicate
(repeat existing inputs) versus explore (try new locations).

In the classical GP setup for computer simulations, with low or no noise and an assumption of
stationarity (i.e., constant stochasticity), one can argue that replication is of little or no value.
When signal-to-noise ratios are low and/or changing over the input space, however, intuition
suggests that some replication will be valuable. Until recently, however, it was not known
how such choices would manifest in typical sequential design or data acquisition decisions.
Of course, the details depend on the goal of modeling and prediction. Below we consider
two settings: (1) obtaining accurate predictions globally [Section 4.1] and (2) optimizing
or targeting particular aspects of the predictive distribution such as level sets or contours
(Section 4.2).

4.1. IMSPE

Binois et al. (2018b) studied the exploration vs. replication question in the context of improv-
ing predictive accuracy by means of sequential design. A common criterion in that setting
is the integrated mean-square prediction error (IMSPE), which is just predictive variance
averaged over the input space, specifically,

In+1 ≡ IMSPE(x̄1, . . . , x̄n, xn+1) =

∫

x∈D
σ2

n+1(x) dx. (9)

This formula is written in terms of unique-n inputs for reasons that we shall clarify shortly. It
could, however, instead be phrased in terms of full-N equations. The idea would be to choose
the next design location, xN+1, which could be a new unique location (x̄n+1) or a repeat of
an existing one (i.e., one of x̄1, . . . , x̄n), by maximizing In+1. The presentation in Binois et al.
is more careful, but also more cumbersome, with the notation in this regard.

In general, the integral in Equation (9) usually requires numerical evaluation (Seo et al. 2000;
Gramacy and Lee 2009; Gauthier and Pronzato 2014; Gorodetsky and Marzouk 2016; Pra-
tola, Harari, Bingham, and Flowers 2017b). For example, the tgp package (option Ds2x=TRUE)
sums over a reference set, as well as averaging over the posterior distribution of (treed) Gaus-
sian process parameterization. However, conditional on GP hyperparameters, and when the

28 Heteroskedastic Gaussian Processes in R

study region D is an easily integrable domain such as a hyperrectangle, the requisite integra-
tion may be calculated in closed form. Although examples exist in the literature (e.g., Anken-
man et al. 2010; Anagnostopoulos and Gramacy 2013; Burnaev and Panov 2015; Leatherman,
Santner, and Dean 2017) for particular cases (and approximations), we are not aware of ex-
amples providing the level of specificity and generality in derivation, or implementation in
code as provided in hetGP.

The essence is as follows.

In+1 = E{σ2
n+1(X)} = E{Kθ(X, X)− kn+1(X)⊤K−1

n+1kn+1(X)} (10)

= E{Kθ(X, X)} − tr(K−1
n+1Wn+1),

where Wij =
∫

x∈D k(xi, x)k(xj , x) dx. Closed forms for the Wij exist with D being a hyper-
rectangle, say. Binois et al. (2018b) provide forms for several popular covariance functions,
including the Matérn. In the case of the Gaussian, we quote as follows:

Wij =
d
∏

k=1

√
2πθk

4
exp

{

−(xi,k − xj,k)2

2θk

}

[

erf

{

2− (xi,k + xj,k)√
2θk

}

+ erf

{

xi,k + xj,k√
2θk

}]

.

Having a closed form is handy for evaluation. Even better is that a closed form exists for the
gradient, which facilitates numerical optimization for sequential design. We leave the details
of that calculation to Binois et al.

To investigate how replication can be favored by IMSPE in choosing xn+1, consider the
following setup. Let r(x) = VAR[Y (x) | f(x)] denote a belief about the (otherwise zero mean
and iid) noise process. The form of r(x) can be arbitrary. Below we set up two univariate
examples that follow splines that agree at five “knots.” In this illustration, the x-locations of
those knots could represent design locations xi where responses have been observed.

R> rn <- c(4.5, 5.5, 6.5, 6, 3.5)

R> X0 <- matrix(seq(0.05, 0.95, length.out = length(rn)))

R> X1 <- matrix(c(X0, 0.2, 0.4))

R> Y1 <- c(rn, 5.2, 6.3)

R> r1 <- splinefun(x = X1, y = Y1, method = "natural")

R> X2 <- matrix(c(X0, 0.0, 0.3))

R> Y2 <- c(rn, 7, 4)

R> r2 <- splinefun(x = X2, y = Y2, method = "natural")

Figure 8 provides a visual of these two variance surface hypotheses, evaluated over the pre-
dictive grid provided below.

R> XX <- matrix(seq(0, 1, by = 0.005))

Below we shall refer to these surfaces as “green” and “blue,” respectively, referencing the
colors from Figure 8. The “knots” are shown as red open circles.

R> plot(X0, rn, xlab = "x", ylab = "r(x)", xlim = c(0, 1), ylim = c(2, 8),

+ col = 2, main = "Two Variance Hypotheses")

R> lines(XX, r1(XX), col = 3)

R> lines(XX, r2(XX), col = 4)

Mickaël Binois, Robert B. Gramacy 29

The code below implements the closed form IMSPE of Equation (10) for a generic variance
function r, like one of our splines from above. The implementation uses some internal hetGP

functions such as Wij and cov_gen. (We shall illustrate the intended hooks momentarily;
these low-level functions are of value here in this toy illustration.)

R> IMSPE.r <- function(x, X0, theta, r) {

+ x <- matrix(x, nrow = 1)

+ Wijs <- Wij(mu1 = rbind(X0, x), theta = theta, type = "Gaussian")

+ K <- cov_gen(X1 = rbind(X0, x), theta = theta)

+ K <- K + diag(apply(rbind(X0, x), 1, r))

+ return(1 - sum(solve(K) * Wijs))

+ }

The next step is to apply this function on a grid for each of the two choices for r(x), green
and blue.

R> imspe1 <- apply(XX, 1, IMSPE.r, X0 = X0, theta = 0.25, r = r1)

R> imspe2 <- apply(XX, 1, IMSPE.r, X0 = X0, theta = 0.25, r = r2)

R> xstar1 <- which.min(imspe1)

R> xstar2 <- which.min(imspe2)

Figure 8 shows these two surfaces along with the minimizing values. The x-locations of the
knots, our design sights x1, . . . , xn, are shown as dashed red vertical bars.

R> plot(XX, imspe1, type = "l", col = 3, ylab = "IMSPE", xlab = "x",

+ ylim = c(0.6, 0.7), main = "IMSPE for two variances")

R> lines(XX, imspe2, col = 4)

R> abline(v = X0, lty = 3, col = 'red')

R> points(XX[xstar1], imspe1[xstar1], pch = 23, bg = 3)

R> points(XX[xstar2], imspe2[xstar2], pch = 23, bg = 4)

In the figure the blue variance function hypothesis is minimized at a novel xn+1 location, not
coinciding with any of the previous design sites. However, the green hypothesis is minimized
at x2, reading from left to right. The IMSPE calculated on this particular variance function
r(x) prefers replication. That is a coincidence or fabrication. Binois et al. showed that the
next point xN+1 will be a replicate, that is, be one of the existing unique locations x1, . . . , xn

rather than a new xn+1 when

r(xN+1) ≥ kn(xN+1)⊤K−1
n WnK−1

n kn(xN+1)− 2w⊤
n+1K−1

n kn(xN+1) + wn+1,n+1

tr(Bk∗Wn)

− σ2
n(xN+1),

where k∗ = argmink∈{1,...,n}IMSPE(xk) and Bk =
(K−1

n).,k(K−1
n)k,.

νλk
ak(ak+1)

−(Kn)−1
k,k

.

Basically, this relationship says that IMSPE will prefer replication when the variance is “large
enough.” Rather than read tea leaves more deeply than that, let us see it in action in our
toy example. The code below utilizes some of hetGP’s internals to enable evaluation of the
right-hand side of the inequality above, in other words, treating it as an equality.

30 Heteroskedastic Gaussian Processes in R

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

6
7

8

Two Variance Hypotheses

x

r(
x
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
0

.6
2

0
.6

4
0

.6
6

0
.6

8
0

.7
0

IMSPE for two variances

x

IM
S

P
E

Figure 8: Two hypothetical variance functions (left) and the resulting IMSPE surfaces (right).

R> rx <- function(x, X0, rn, theta, Ki, kstar, Wijs) {

+ x <- matrix(x, nrow = 1); kn1 <- cov_gen(x, X0, theta = theta)

+ wn <- Wij(mu1 = x, mu2 = X0, theta = theta, type = "Gaussian")

+ a <- kn1 %*% Ki %*% Wijs %*% Ki %*% t(kn1) - 2*wn %*% Ki %*% t(kn1)

+ a <- a + Wij(mu1 = x, theta = theta, type = "Gaussian")

+ Bk <- tcrossprod(Ki[, kstar], Ki[kstar,]) /

+ (2 / rn[kstar] - Ki[kstar, kstar])

+ b <- sum(Bk * Wijs); sn <- 1 - kn1 %*% Ki %*% t(kn1)

+ return(a / b - sn)

+ }

Calling that function with the XX grid defined above, with covariance structure details pre-
scribed (more or less) arbitrarily, commences as follows.

R> bestk <- which.min(apply(X0, 1, IMSPE.r, X0 = X0, theta = 0.25, r = r1))

R> Wijs <- Wij(X0, theta = 0.25, type = "Gaussian")

R> Ki <- solve(cov_gen(X0, theta = 0.25, type = "Gaussian") + diag(rn))

R> rx.thresh <- apply(XX, 1, rx, X0 = X0, rn = rn, theta = 0.25, Ki = Ki,

+ kstar = bestk, Wijs = Wijs)

Augmenting our original IMSPE plots from Figure 8, the code below adds a gray line indicat-
ing that threshold, and in particular showing that the green hypothesis is everywhere above
that threshold in this instance.

R> plot(X0, rn, xlab = "x", ylab = "r(x)", xlim = c(0, 1), ylim = c(2, 8),

+ lty = 2, col = 2, main = "Which variance is large enough?")

R> lines(XX, r1(XX), col = 3); lines(XX, r2(XX), col = 4)

R> lines(XX, rx.thresh, lty = 2, col = "darkgrey")

Mickaël Binois, Robert B. Gramacy 31

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

6
7

8

Which variance is large enough?

x

r(
x
)

Figure 9: IMSPE calculations for two variance hypotheses, with replicating threshold added
in gray.

That green hypothesis is, of course, just one instance of a variance function that is above the
requisite threshold for replication. Also, the hypotheses we used were not derived from GP
predictive equations. But the example is designed to illustrate potential. Before turning to
a more prescriptive search for new sites, be they replicates or new unique locations, let us
summarize what we know. Replication (1) is good for the GP calculations (n3 ≪ N3); (2) is
preferred by IMSPE under certain (changing) variance regimes; and (3) helps separate signal
from noise. But how often is IMSPE going to “ask” for replications? The short answer is,
not often enough, at least from an empirical standpoint.

One challenge is numerical precision in optimization when mixing discrete and continuous
search. Given a continuum of potential new locations, up to floating-point precision, a partic-
ular setting corresponding to a finite number of replicate sites is not likely to be preferred over
all other settings, such as ones infinitesimally nearby (no matter what the theory prefers).
Another issue, which is more fundamental, is that IMSPE is myopic. The value the current
selection, be it a replicate or new unique location, is not assessed vis á vis its impact on the
future decision landscape. In general, entertaining such decision spaces is all but impossible,
although that does not stop people from trying. See Section 4.2 for a related discussion in an
optimization context.

Replication-biased lookahead

Binois et al. (2018b) found that a “replication-biased” lookahead is manageable. Specifically,
consider a horizon h into the future. Looking ahead over those choices, one can select a new
unique x̄n+1 and h replicates, each at one of the n + 1 unique locations. Or alternatively,
one can take a replicate first and a unique design element later (and there are h ways to
do that). A longer horizon means a greater chance of replication but also more calculation:
h + 1 continuous searches for new locations and (h + 1)(h + 2)/2− 1 discrete ones in search
of potential replicates. The horizon h can thus be thought of as a tuning parameter. Before

32 Heteroskedastic Gaussian Processes in R

considering choices for how to set this value, let us look at an example for fixed horizon,
h = 3.

Take f(x) = (6x − 2)2 sin(12x − 4) from Forrester, Sobester, and Keane (2008), which is
implemented as f1d in hetGP, and observe Y (x) ∼ N (f(x), r(x)), where the noise variance
function is r(x) = (1.1 + sin(2πx))2.

R> fn <- function(x) { (1.1 + sin(x * 2 * pi)) }

R> fr <- function(x) { f1d(x) + rnorm(length(x), sd = fn(x)) }

Consider an initial uniform design of size N = n = 10 (i.e., without replicates) and an initial
hetGP fit based on a Gaussian kernel.

R> X <- seq(0, 1, length = 10)

R> Y <- fr(X)

R> mod <- mleHetGP(X = X, Z = Y, lower = 0.0001, upper = 10)

Next, let us search via IMSPE with horizon h = 5 lookahead over replication. The IMSPE_optim

call below utilizes the closed form IMSPE (10) and its derivatives within an optim call using
method="L-BFGS-B".

R> opt <- IMSPE_optim(mod, h = 5)

R> c(X, opt$par)

[1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556

[7] 0.6666667 0.7777778 0.8888889 1.0000000 0.4444444

Whether or not the chosen location, in position eleven above (0.444), is a replicate depends
on the random seed used to compile this document, so it is difficult to provide precise com-
mentary in-line here. The hetGP package provides an efficient updating method, utilizing
O(n2) or O(n) updating calculations for new data points, depending on whether that point
is unique or a replicate, respectively. Details of those updates are provided by Binois et al.
(2018b), extending existing ones in the literature (e.g., Gramacy and Polson 2011; Chevalier,
Ginsbourger, and Emery 2014a; Gramacy and Apley 2015) to the heteroskedastic case.

R> X <- c(X, opt$par)

R> Ynew <- fr(opt$par)

R> Y <- c(Y, Ynew)

R> mod <- update(mod, Xnew = opt$par, Znew = Ynew, ginit = mod$g * 1.01)

That is the basic idea. Let us continue and gather a total of 500 samples in this way, in order
to explore the aggregate nature of the sequential design so constructed. Periodically (every
25 iterations in the code below), it can be beneficial to restart the MLE calculations to help
“unstick” any solutions found in local modes of the likelihood surface. Gathering 500 points
is somewhat of an overkill for this simple 1D problem, but it helps create a nice visualization.

Mickaël Binois, Robert B. Gramacy 33

R> for(i in 1:489) {

+ opt <- IMSPE_optim(mod, h = 5)

+ X <- c(X, opt$par)

+ Ynew <- fr(opt$par)

+ Y <- c(Y, Ynew)

+ mod <- update(mod, Xnew = opt$par, Znew = Ynew, ginit = mod$g * 1.01)

+ if(i %% 25 == 0){

+ mod2 <- mleHetGP(X = list(X0 = mod$X0, Z0 = mod$Z0, mult = mod$mult),

+ Z = mod$Z, lower = 0.0001, upper = 1)

+ if(mod2$ll > mod$ll) mod <- mod2

+ }

+ }

R> nrow(mod$X0)

[1] 54

Of the total of N = 500, the final design contained n = 54 unique locations. To help visualize
and assess the quality of the final surface with that design, the code below gathers predictive
quantities on a dense grid in the input space.

R> xgrid <- seq(0, 1, length = 1000)

R> p <- predict(mod, matrix(xgrid, ncol = 1))

R> pvar <- p$sd2 + p$nugs

Figure 10, via the code below, shows the resulting predictive surface in red, with additional
calculations to show the true surface, via f(x) and error-bars from r(x), in black. Gray bars
help visualize the degree of replication at each input location.

R> plot(xgrid, f1d(xgrid), type = "l", xlab = "x", ylab = "y",

+ main="Forrester Example, IMSPE h=5", ylim = c(-8, 18))

R> lines(xgrid, qnorm(0.05, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> lines(xgrid, qnorm(0.95, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> points(X, Y)

R> segments(mod$X0, rep(0, nrow(mod$X0)) - 8, mod$X0, (mod$mult - 8) * 0.5,

+ col = "gray")

R> lines(xgrid, p$mean, col = 2)

R> lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> legend("top", c("truth", "estimate"), col = 1:2, lty = 1:2)

Observe that the degree of replication, as well as the density of unique design locations, is
higher in the high-noise region than it is in the low-noise region. In a batch design setting
and in the unique situation where relative noise levels were known, a rule of thumb of more
samples or replicates in the higher noise regime is sensible. The trouble is that such regimes
are rarely known in advance, and neither are the optimal density differentials and degrees of
replication. Proceeding sequentially allows us to learn and adapt the design as we go.

34 Heteroskedastic Gaussian Processes in R

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

Forrester Example, IMSPE h=5

x

y

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●
●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

● ●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

truth

estimate

Figure 10: Sequential design with horizon h = 5. The truth is in black and the predictive
distribution in red.

Tuning the horizon

Previously we used horizon h = 5, but that was rather arbitrary. Although it is difficult
to speculate on details regarding the quality of the surface obtained above, improvements
are likely possible. Chances are that the uncertainty is overestimated in some regions and
underestimated in others. A solution lies in adapting the lookahead horizon online. Binois
et al. (2018b) proposed two simple on-line adjustments that tune the horizon. The first
adjusts the horizon of the next IMSPE search in order to target a desired ratio ρ = n/N and
thus manage the surrogate modeling cost:

Target: hN+1 ←











hN + 1 if n/N > ρ and a new x̄n+1 is chosen
max{hN − 1,−1} if n/N < ρ and a replicate is chosen
hN otherwise.

The second attempts to adapt to minimize IMSPE regardless of computational cost:

Adapt: hN+1 ∼ Unif{a′
1, . . . , a′

n} with a′
i := max(0, a∗

i − ai),

and a∗
i ∝

√

r(x̄i)(K
−1
n WnK−1

n)i,i comes from a criterion in the SK literature (Ankenman
et al. 2010).

The code below duplicates the example above with the adapt heuristic. Alternatively, horizon

call can be provided target and previous_ratio arguments to implement the target heuristic
instead. First, reinitialize the design.

Mickaël Binois, Robert B. Gramacy 35

R> X <- seq(0, 1, length = 10)

R> Y <- fr(X)

R> mod.a <- mleHetGP(X = X, Z = Y, lower = 0.0001, upper = 10)

R> h <- rep(NA, 500)

Next, loop to obtain N = 500 observations under the adaptive horizon scheme.

R> for(i in 1:490) {

+ h[i] <- horizon(mod.a)

+

+ opt <- IMSPE_optim(mod.a, h = h[i])

+ X <- c(X, opt$par)

+ Ynew <- fr(opt$par)

+ Y <- c(Y, Ynew)

+ mod.a <- update(mod.a, Xnew = opt$par, Znew = Ynew,

+ ginit = mod.a$g * 1.01)

+

+ if(i %% 25 == 0){

+ mod2 <- mleHetGP(X = list(X0 = mod.a$X0, Z0 = mod.a$Z0,

+ mult = mod.a$mult), Z = mod.a$Z, lower = 0.0001, upper = 1)

+ if(mod2$ll > mod.a$ll) mod.a <- mod2

+ }

+ }

Then, obtain predictions on the grid.

R> p.a <- predict(mod.a, matrix(xgrid, ncol = 1))

R> pvar.a <- p.a$sd2 + p.a$nugs

The code below provides the calculations behind the visualization in Figure 11. The left panel
of that figure shows the adaptively selected horizon over the iterations of sequential design.
The right panel shows the final design and predictions, versus the truth, matching Figure 10
for the fixed horizon (h = 5) case.

R> par(mfrow = c(1, 2))

R> plot(h, main = "Horizon", xlab = "Iteration")

R> plot(xgrid, f1d(xgrid), type = "l", xlab = "x", ylab = "y",

+ main = "Adaptive Horizon Design", ylim = c(-8, 18))

R> lines(xgrid, qnorm(0.05, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> lines(xgrid, qnorm(0.95, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> points(X, Y)

R> segments(mod$X0, rep(0, nrow(mod$X0)) - 8, mod$X0, (mod$mult - 8) * 0.5,

+ col = "gray")

R> lines(xgrid, p$mean, col = 2)

R> lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar.a)), col = 2, lty = 2)

R> lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar.a)), col = 2, lty = 2)

36 Heteroskedastic Gaussian Processes in R

●●●●●●●

●

●●

●

●●

●

●

●●●●●●●●●

●

●●

●

●●

●●

●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●●

●●●

●●●●●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●●●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●●

●●

●

●●●

●●

●

●

●●

●●●●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●●●●

●●

●●

●

●

●●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●

0 100 200 300 400 500

0
2

4
6

8

Horizon

Iteration

h

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

Adaptive Horizon Design

x
y ●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
● ●

●●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●

●●
●

●●

●

●

●

● ●
● ●

●

●

●

● ●●●

●●
●●

●
● ●

●
●

●●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●●
●●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●● ● ●
●

●
●

●

●

●
●

●
●

●●
●

●

●

●

●
●●

●●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

● ● ● ●

●

●
●

●●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

● ● ●●
●

● ●●

●
●

●
● ●●

●

●●
● ●

●

●

●
●

● ●

● ● ●
●

●
●● ●●

●

●

●

●
●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●● ●
●

●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

● ●●
● ●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●
●●

●

●

●

●

●

● ● ●

●●

●

● ●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

● ●

●
●

●●
● ●

●
●

●

●
●

Figure 11: Left: Horizons chosen per iteration; right: final design and predictions versus the
truth, similar to Figure 10

The left panel of the figure reveals that a horizon of h = 5 is indeed not totally uncommon,
but it is also higher than generally preferred by the adaptive scheme, which had n = 109
unique sites—more than the h = 5 case, but in the same ballpark compared with the full size
of N = 500.

R> nrow(mod.a$X0)

[1] 109

The code below offers an out-of-sample comparison via RMSE (lower is better) to the truth
and score (higher is better) against a noisy analog.

R> ytrue <- f1d(xgrid)

R> yy <- fr(xgrid)

R> rbind(rmse = c(h5 = mean((ytrue - p$mean)^2),

+ ha = mean((ytrue - p.a$mean)^2)),

+ score = c(h5 = - mean((yy - p$mean)^2 / (pvar) + log(pvar)),

+ ha = -mean((yy - p.a$mean)^2 / pvar.a + log(pvar.a))))

h5 ha

rmse 0.0220554 0.04002842

score -0.8789815 -1.26984744

Although speculating on the precise outcome of this comparison is difficult because of the
noisy nature of sampling and horizon updates, the typical outcome is that the two comparators
are similar on RMSE, which is quite small, but that score prefers the adaptive scheme.

Mickaël Binois, Robert B. Gramacy 37

Being able to adjust the horizon enables the adaptive scheme to better balance exploration
versus replication in order to efficiently learn the signal-to-noise ratio in the data-generating
mechanism.

A larger example

For a larger example, let us revisit the ATO application from Section 3.1. Binois et al. (2018b)
described a sequential design scheme utilizing fixed, adaptive, and target horizon schemes.
The ato data object loaded earlier contained a "hetGP"-class model called out.a that was
trained with an adaptive horizon IMSPE-based sequential design scheme. The size of that
design and the time it took to train are quoted by the output of the R code below.

R> c(n = nrow(out.a$X0), N = length(out.a$Z), time = out.a$time)

n N time.elapsed

1194.00 2000.00 38737.97

Recall that the earlier experiment involved n = 1000 unique sites with an average of five
replicates at each, for a total of about N = 5000 training data points. The training set here
is much smaller, having N = 2000 at n = 1194 unique locations. Thus, the adaptive design
has more unique locations but still a nontrivial degree of replication, resulting in many fewer
overall runs of the ATO simulator. Utilizing the same out-of-sample testing set from the
previous score-based comparison, the code below calculates predictions and scores with this
new sequential design.

R> phet.a <- predict(out.a, Xtest)

R> phets2.a <- phet.a$sd2 + phet.a$nugs

R> mhet.a <- as.numeric(t(matrix(rep(phet.a$mean, 10), ncol = 10)))

R> s2het.a <- as.numeric(t(matrix(rep(phets2.a, 10), ncol = 10)))

R> sehet.a <- (unlist(t(Ztest)) - mhet.a)^2

R> sc.a <- - sehet.a/s2het.a - log(s2het.a)

R> c(batch = mean(sc), adaptive = mean(sc.a))

batch adaptive

3.393781 3.616211

The sequential design leads to more accurate predictors than the batch design does, despite
having being trained on 40% as many runs. To illustrate how that design was built, we first
need to “rebuild” the out.a object. For compact storage, the covariance matrices, inverses,
and so forth have been deleted via return.matrices=FALSE in the mleHetGP command.

R> out.a <- rebuild(out.a)

The calculation sequence for each step of the search for this design involves first determining
the horizon and then searching with that horizon via IMSPE. In code, that amounts to the
following.

38 Heteroskedastic Gaussian Processes in R

R> Wijs <- Wij(out.a$X0, theta = out.a$theta, type = out.a$covtype)

R> h <- horizon(out.a, Wijs = Wijs)

R> control <- list(tol_dist = 1e-4, tol_diff = 1e-4, multi.start = 30)

R> opt <- IMSPE_optim(out.a, h, Wijs = Wijs, control = control)

Precalculating the Wijs saves a little time since these are needed for both horizon and
IMSPE_optim.

R> opt$par

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.8947368 0.6842105 0.8947368 0.8421053 0.6315789 0.2105263

[,7] [,8]

[1,] 0.7894737 0.6842105

The 8D location above would then be fed into the computer model simulator and the input
output pair subsequently added into the design. An indication of whether or not the new
location is unique (i.e., actually new) or a replicate is provided with path along with the
IMSPE_optim output, par, and value. The path list contains the best sequence of points
found by the lookahead procedure, with elements par, value, and new of the next design plus
h further ones selected successively.

R> opt$path[[1]]$new

[1] FALSE

Since ATO inputs are actually on a grid, we would have to first snap this continuous solution
to that grid (after undoing the coding of the inputs). In so doing we could create a replicate
as part of that discretization process.

4.2. Contour finding and optimization

So far we have focused on constructing a globally accurate surrogate model, but it is also
common to target specific regions of interest. Examples include global minima or level sets
(Bogunovic, Scarlett, Krause, and Cevher 2016).

Bayesian optimization: Starting with optimization, namely, finding x∗ ∈ argminx Y (x),
we follow the canonical efficient global optimization framework (Jones, Schonlau, and Welch
1998) with the expected improvement (EI) criterion (Mockus, Tiesis, and Zilinskas 1978). For
a review of many variants of this and other so-called Bayesian optimization (BO) methods,
see, for example, Shahriari, Swersky, Wang, Adams, and de Freitas (2016) and Frazier (2018).
Picheny, Wagner, and Ginsbourger (2012) provide benchmarks specifically for the noisy ob-
jective case. In that setting, where more evaluations are needed to separate signal from noise,
EI is appealing since it does not need extra tuning parameters to balance exploitation and
exploration, does not require numerical approximation, and has a closed-form derivative.

Mickaël Binois, Robert B. Gramacy 39

For a deterministic function, the improvement IN : x ∈ R
d 7→ R is defined as

I(x) = max

[

min
i∈{1,...,n}

Y (xi)− Y (x)

]

,

a random variable. EI is the expectation of the improvement conditioned on the observations,
which has a closed-form expression:

EI ≡ E(IN (x) | DN) = (y∗ − µn(x))Φ

(

y∗ − µn(x)

σn(x)

)

+ σn(x)φ

(

y∗ − µn(x)

σn(x)

)

,

where y∗ = mini∈{1,...,n} Y (xi) and φ and Φ are the pdf and cdf of the standard normal
distribution, respectively. In the noisy case, y∗ defined in this way is no longer a viable option,
but it can be replaced for instance with mini∈{1,...,n} µn(xi) as recommended by Vazquez,
Villemonteix, Sidorkiewicz, and Walter (2008) or minx µ(x) as described by Gramacy and
Lee (2011).

Lookahead versions of EI have been studied (see, e.g., Ginsbourger and Le Riche 2010; Gon-
zalez, Osborne, and Lawrence 2016; Lam, Willcox, and Wolpert 2016; Huan and Marzouk
2016), but a closed-form expression exists only for one-step-ahead versions. The reason is
that, unlike IMPSE, future values of the criterion depend on future function values. Inspired
by (Lam et al. 2016) and our IMSPE-analog (Section 4.1), we introduce here a replication-
biased lookahead for EI. To circumvent the unknown future function values issue, our simple
implementation uses yn+1 ← µn(xn+1), a kriging “believer” type of approach (Ginsbourger,
Le Riche, and Carraro 2010).

Going back to the 1D example, the code below implements this replication-biased lookahead
scheme in an optimization context. Notice that we initialize with a small amount of repli-
cation. This is to guard against initial (and incorrect) noiseless surrogate fits that cause
numerical issues. Initial designs for Bayesian optimization of noisy functions is still an open
area of research. Also, we fix a lookahead horizon of h = 5; developing an analog target and
adapt scheme is left for future research as well.

First, we reinitialize the design and fit, but this time with a small degree of replication to
stabilize the behavior of this example across knitr builds.

R> X <- seq(0, 1, length = 10)

R> X <- c(X, X)

R> Y <- fr(X)

R> mod <- mleHetGP(X = X, Z = Y, lower = 0.0001, upper = 10)

We have 500 sequential design iterations as before, but this time with EI.

R> for(i in 1:480) {

+ opt <- crit_optim(mod, crit = "crit_EI", h = 5)

+ X <- c(X, opt$par)

+ Ynew <- fr(opt$par)

+ Y <- c(Y, Ynew)

+ mod <- update(mod, Xnew = opt$par, Znew = Ynew, ginit = mod$g * 1.01)

+

40 Heteroskedastic Gaussian Processes in R

+ if(i %% 25 == 0){

+ mod2 <- mleHetGP(X = list(X0 = mod$X0, Z0 = mod$Z0, mult = mod$mult),

+ Z = mod$Z, lower = 0.0001, upper = 1)

+ if(mod2$ll > mod$ll) mod <- mod2

+ }

+ }

Next, we obtain predictions on the grid.

R> p <- predict(mod, matrix(xgrid, ncol = 1))

R> pvar <- p$sd2 + p$nugs

Figure 12, built with the following R code, provides a visualization similar to our IMSPE-based
ones in Section 4.1.

R> plot(xgrid, f1d(xgrid), type = "l", xlab = "x", ylab = "y",

+ ylim = c(-6, 17), main = "Forrester example with EI, h = 5")

R> lines(xgrid, qnorm(0.05, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> lines(xgrid, qnorm(0.95, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> points(X, Y)

R> segments(mod$X0, rep(0, nrow(mod$X0)) - 6, mod$X0, (mod$mult - 6) * 0.5,

+ col = "gray")

R> lines(xgrid, p$mean, col = 2)

R> lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> legend("top", c("truth", "estimate"), col = 1:2, lty = 1:2)

Observe that this lookahead-biased EI approach leads to substantial replication in the areas
of interest, judiciously balancing exploration and exploitation in order to pin down the global
minima of the mean surface. The actual number of unique locations is extracted as follows,
which is a small fraction of the total budget of N = 500.

R> nrow(mod$X0)

[1] 60

Most of the replication is focused in the areas of primary interest from an optimization
perspective, around x ≈ 0.1, where we observe an inferior local minimum with large noise
and, more intensively, around the true global optima located at the other end of the input
space. EI is also available for TPs, and the corresponding modifications are provided in
Appendix A.

Contour finding. A related problem is contour finding, also known as level-set estimation.

The objective is to identify a region of inputs of interest: Γf =
{

x ∈ R
d : Y (x) > T

}

with T

a given threshold, often zero without loss of generality. We describe briefly here the criteria
defined by Lyu et al. (2018) for both GPs and TPs that are implemented in hetGP. Several

Mickaël Binois, Robert B. Gramacy 41

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

Forrester example with EI, h = 5

x

y

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●●●●●●●●●●
●●●
●●
●●●
●●●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

truth

estimate

Figure 12: Sequential optimization with horizon h = 5. The truth is in black and the
predictive distribution in red .

others can be found in the literature (Chevalier, Ginsbourger, Bect, and Molchanov 2013;
Bogunovic et al. 2016; Azzimonti, Ginsbourger, Chevalier, Bect, and Richet 2016), with
a selection of implementations provided by the KrigInv package (Chevalier, Picheny, and
Ginsbourger 2014b; Chevalier, Picheny, Ginsbourger, and Azzimonti 2018).

The simplest criterion is maximum contour uncertainty (MCU), implemented by crit_MCU

in the hetGP package. MCU is based on the local probability of misclassification, namely,
that f is incorrectly predicted to be below or above the threshold (see also, e.g., Bichon, El-
dred, Swiler, Mahadevan, and McFarland 2008; Ranjan, Bingham, and Michailidis 2008). A
second criterion, contour stepwise uncertainty reduction (cSUR), implemented by crit_cSUR

in hetGP, amounts to calculating a one-step-ahead reduction of MCU. A more computation-
ally intensive, but more global, alternative involves integrating cSUR over the domain in a
manner similar to IMSPE for variance reduction or so-called integrated expected conditional
improvement (IECI, Gramacy and Lee 2011) for Bayesian optimization. In practice, the inte-
gral is approximated by a finite sum, which is the approach taken by crit_ICU in hetGP. The
final criterion available, targeted mean square error (tMSE) (Picheny, Ginsbourger, Roustant,
Haftka, and Kim 2010), is implemented in crit_tMSE and is designed to reduce the variance
close to the limiting contour via a weight function.

For illustration, let us consider finding the zero contour in our simple 1D example. The code
below illustrates the crit_cSUR criteria, the hetGP package’s generic crit_optim interface.

42 Heteroskedastic Gaussian Processes in R

Otherwise the setup and for loop are identical to those for our IMSPE and EI-based examples.

R> X <- seq(0, 1, length = 10)

R> X <- c(X, X)

R> Y <- fr(X)

R> mod <- mleHetGP(X = X, Z = Y, lower = 0.0001, upper = 10)

R>

R> for(i in 1:480) {

+ opt <- crit_optim(mod, crit = "crit_cSUR", h = 5)

+ X <- c(X, opt$par)

+ Ynew <- fr(opt$par)

+ Y <- c(Y, Ynew)

+ mod <- update(mod, Xnew = opt$par, Znew = Ynew, ginit = mod$g * 1.01)

+

+ if(i %% 25 == 0){

+ mod2 <- mleHetGP(X = list(X0 = mod$X0, Z0 = mod$Z0, mult = mod$mult),

+ Z = mod$Z, lower = 0.0001, upper = 1)

+ if(mod2$ll > mod$ll) mod <- mod2

+ }

+ }

R>

R> p <- predict(mod, matrix(xgrid, ncol = 1))

R> pvar <- p$sd2 + p$nugs

Again, we see that using the biasing lookahead procedure reduces the number of unique
designs, which is beneficial in terms of speed as well as accuracy in general.

R> nrow(mod$X0)

[1] 135

In Figure 13, the repartition of unique designs is nontrivial around locations of crossing of
the threshold, with larger spread (and less replication) where the crossing is in noisy areas.
As with EI, this preliminary setup is likely to be improved upon after further research.

R> plot(xgrid, f1d(xgrid), type = "l", xlab = "x", ylab = "y",

+ ylim = c(-6, 17), main="Forrester example with cSUR, h = 5")

R> lines(xgrid, qnorm(0.05, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> lines(xgrid, qnorm(0.95, f1d(xgrid), fn(xgrid)), col = 1, lty = 2)

R> points(X, Y)

R> segments(mod$X0, rep(0, nrow(mod$X0)) - 6, mod$X0, (mod$mult - 6) * 0.5,

+ col="gray")

R> lines(xgrid, p$mean, col = 2)

R> lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar)), col = 2, lty = 2)

R> legend("top", c("truth", "estimate"), col = 1:2, lty = 1:2)

R> abline(h = 0, col = "blue")

Mickaël Binois, Robert B. Gramacy 43

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

Forrester example with cSUR, h = 5

x

y

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●
●●

●●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●●
● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●● ●
●

●

●
●●

●

●
● ●

●●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

● ●
●

●

●●
●

● ●●

●

● ●

●

●

● ●
● ● ●

●

●

●
●

●

●

●

●

●
● ●●

● ●
●

●
●● ● ●

● ●

●
●●

●●
●●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●
●●

●

●
●

●
●
●●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●●

●

●

●

●●

●

●●

●

●●
●

●
●

●

●

●
●

●●●●

●

●

● ●
●

●
●

●

●

●

●
● ●

●●●
●

●
●

●

●
●●
●

●

●

●

●
●

●
●●
●

●

●

●

●

●●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●●●

●

●

●
●
●●

●

●●

●

●

●
●

●

●●●●
●
●●
●
●●●

●●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●●
●

●
●
●
●
●

●

● ●●
●● ●

●●

●
●

●

●

●

●

truth

estimate

Figure 13: Sequential contour finding with horizon h = 5. The truth is in black and the
predictive distribution in red.

5. Summary and discussion

We have introduced the R package hetGP for heteroskedastic Gaussian process regression,
sequential experimental design, and Bayesian optimization. Although the package is designed
for dealing with noise and changing signal-to-noise ratios in the setting of Gaussian process
regression, it offers a full-featured GP regression approach. Ordinary homoskedastic (and
noise-free) GP modeling is supported. When the data is observed with noise, the package
implements a Woodbury trick to make inference more efficient, decomposing matrices sized
by the number of unique input sites, rather than ones sized by the full data set. This leads
to dramatically faster inference compared with other GP packages on CRAN when the level
of replication is high.

Working only with unique inputs has other advantages, particularly it comes to coupled-GP
inference for nonlinearly changing (latent) variance variables along with the usual mean-
based analysis. By creating a unifying likelihood-based inferential framework, complete with
closed-form derivative expressions, library-based optimization methods (e.g., optim in R)
can be deployed for efficient heteroskedastic modeling. Whereas the earlier MCMC-based
approaches could at best handle dozens of observations, hetGP can handle thousands in a
reasonable amount of computing time.

Although relevant to machine learning and spatial data applications, the methods in the
hetGP package target stochastic computer modeling applications, which often exhibit hetero-

44 Heteroskedastic Gaussian Processes in R

geneous noise effects. Agent-based models are a good example. In that setting, the design of
the experiment is at least as important as modeling. Here we introduced several sequential
design schemes that work with hetGP model objects to organically grow the design toward
accurate (low-variance) prediction, optimization, and the search for level sets. In all three
scenarios, the scheme is able to balance exploration, exploitation, and replication as a means
of obtaining efficient predictions for those targets. Extensions are provided to accommodate
new sequential design acquisition strategies toward novel surrogate modeling and prediction
applications.

Acknowledgments

The work of MB is supported by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357.
RBG gratefully acknowledges funding from a DOE LAB 17-1697 via subaward from Ar-
gonne National Laboratory for SciDAC/DOE Office of Science ASCR and High Energy
Physics, and partial support from National Science Foundation grants DMS-1849794, DMS-
1821258 and DMS-1621746. Many thanks to D. Austin Cole for comments on early drafts
and to Gail Pieper for her useful language editing.

References

Anagnostopoulos C, Gramacy R (2013). “Information-Theoretic Data Discarding for Dynamic
Trees on Data Streams.” Entropy, 15(12), 5510–5535. ArXiv:1201.5568.

Ankenman B, Nelson BL, Staum J (2010). “Stochastic Kriging for Simulation Metamodeling.”
Operations Research, 58(2), 371–382.

Azzimonti D, Ginsbourger D, Chevalier C, Bect J, Richet Y (2016). “Adaptive Design of Ex-
periments for Conservative Estimation of Excursion Sets.” arXiv preprint arXiv:1611.07256.

Banerjee S, Carlin BP, Gelfand AE (2004). Hierarchical Modeling and Analysis for Spatial
Data. Chapman and Hall/CRC.

Banerjee S, Gelfand AE, Finley AO, Sang H (2008). “Gaussian Predictive Process Models
for Large Spatial Data Sets.” Journal of the Royal Statistical Society B, 70(4), 825–848.

Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008). “Efficient Global
Reliability Analysis for Nonlinear Implicit Performance Functions.” AIAA Journal, 46(10),
2459–2468.

Binois M, Gramacy RB, Ludkovski M (2018a). “Practical Heteroscedastic Gaus-
sian Process Modeling for Large Simulation Experiments.” Journal of Computa-
tional and Graphical Statistics, 27(4), 808–821. doi:10.1080/10618600.2018.1458625.
https://doi.org/10.1080/10618600.2018.1458625, URL https://doi.org/10.1080/

10618600.2018.1458625.

Mickaël Binois, Robert B. Gramacy 45

Binois M, Huang J, Gramacy RB, Ludkovski M (2018b). “Replication or Exploration?
Sequential Design for Stochastic Simulation Experiments.” Technometrics, 0(ja), 1–
43. doi:10.1080/00401706.2018.1469433. https://doi.org/10.1080/00401706.2018.

1469433, URL https://doi.org/10.1080/00401706.2018.1469433.

Bogunovic I, Scarlett J, Krause A, Cevher V (2016). “Truncated Variance Reduction: A
Unified Approach to Bayesian Optimization and Level-Set Estimation.” In Advances in
Neural Information Processing Systems, pp. 1507–1515.

Burnaev E, Panov M (2015). “Adaptive Design of Experiments Based on Gaussian Processes.”
In Statistical Learning and Data Sciences, pp. 116–125. Springer-Verlag.

Carnell R (2018). lhs: Latin Hypercube Samples. R package version 0.16, URL https:

//CRAN.R-project.org/package=lhs.

Chevalier C, Ginsbourger D, Bect J, Molchanov I (2013). “Estimating and Quantifying
Uncertainties on Level Sets Using the Vorob’ev Expectation and Deviation with Gaussian
Process Models.” In D Ucinski, AC Atkinson, M Patan (eds.), mODa 10 - Advances
in Model-Oriented Design and Analysis, Contributions to Statistics, pp. 35–43. Springer-
Verlag. ISBN 978-3-319-00217-0. doi:10.1007/978-3-319-00218-7_5. URL http://dx.

doi.org/10.1007/978-3-319-00218-7_5.

Chevalier C, Ginsbourger D, Emery X (2014a). “Corrected Kriging Update Formulae for
Batch-Sequential Data Assimilation.” In Mathematics of Planet Earth, pp. 119–122.
Springer-Verlag.

Chevalier C, Picheny V, Ginsbourger D (2014b). “KrigInv: An Efficient and User-Friendly
Implementation of Batch-Sequential Inversion Strategies Based on Kriging.” Computational
Statistics & Data Analysis, 71, 1021–1034.

Chevalier C, Picheny V, Ginsbourger D, Azzimonti D (2018). KrigInv: Kriging-Based Inver-
sion for Deterministic and Noisy Computer Experiments. R package version 1.4.1, URL
https://CRAN.R-project.org/package=KrigInv.

Chung M, Binois M, Gramacy RB, Moquin DJ, Smith AP, Smith AM (2018). “Parameter
and Uncertainty Estimation for Dynamical Systems Using Surrogate Stochastic Processes.”
arXiv preprint arXiv:1802.00852.

Dancik GM, Dorman KS (2008). “mlegp: Statistical Analysis for Computer Models of Bio-
logical Systems using R.” Bioinformatics, 24(17).

Deville Y, Ginsbourger D, Durrande ORCN (2018). kergp: Gaussian Process Laboratory. R

package version 0.4.0, URL https://CRAN.R-project.org/package=kergp.

Erickson CB, Ankenman BE, Sanchez SM (2017). “Comparison of Gaussian Process Mod-
eling Software.” European Journal of Operational Research. ISSN 0377-2217. doi:

https://doi.org/10.1016/j.ejor.2017.10.002. URL http://www.sciencedirect.

com/science/article/pii/S0377221717308962.

Forrester A, Sobester A, Keane A (2008). Engineering Design via Surrogate Modelling: A
Practical Guide. John Wiley & Sons.

46 Heteroskedastic Gaussian Processes in R

Franck CT, Gramacy RB (2018). “Assessing Bayes Factor Surfaces Using Interactive Visual-
ization and Computer Surrogate Modeling.” arXiv preprint arXiv:1809.05580.

Frazier PI (2018). “A Tutorial on Bayesian Optimization.” arXiv preprint arXiv:1807.02811.

Gauthier B, Pronzato L (2014). “Spectral Approximation of the IMSE Criterion for Opti-
mal Designs in Kernel-Based Interpolation Models.” SIAM/ASA Journal on Uncertainty
Quantification, 2(1), 805–825.

Ginsbourger D, Le Riche R (2010). “Towards Gaussian Process-Based Optimization with
Finite Time Horizon.” In mODa 9–Advances in Model-Oriented Design and Analysis, pp.
89–96. Springer-Verlag.

Ginsbourger D, Le Riche R, Carraro L (2010). “Kriging Is Well-Suited to Parallelize Opti-
mization.” In Computational Intelligence in Expensive Optimization Problems, pp. 131–162.
Springer-Verlag.

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Esti-
mation.” Journal of the American Statistical Association, 102(477), 359–378. doi:

10.1198/016214506000001437.

Goldberg PW, Williams CK, Bishop CM (1998). “Regression with Input-Dependent Noise:
A Gaussian Process Treatment.” In Advances in Neural Information Processing Systems,
volume 10, pp. 493–499. MIT press, Cambridge, MA.

Gonzalez J, Osborne M, Lawrence N (2016). “GLASSES: Relieving the Myopia of Bayesian
Optimisation.” In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, pp. 790–799.

Gorodetsky A, Marzouk Y (2016). “Mercer Kernels and Integrated Variance Experimental
Design: Connections between Gaussian Process Regression and Polynomial Approxima-
tion.” SIAM/ASA Journal on Uncertainty Quantification, 4(1), 796–828.

Gramacy R, Lee H (2012). “Cases for the Nugget in Modeling Computer Experiments.”
Statistics and Computing, 22(3).

Gramacy R, Polson N (2011). “Particle Learning of Gaussian Process Models for Sequential
Design and Optimization.” Journal of Computational and Graphical Statistics, 20(1), 102–
118. doi:10.1198/jcgs.2010.09171.

Gramacy RB (2007). “tgp: An R Package for Bayesian Nonstationary, Semiparametric Non-
linear Regression and Design by Treed Gaussian Process Models.” Journal of Statistical
Software, 19(9), 1–46. URL http://www.jstatsoft.org/v19/i09/.

Gramacy RB (2016). “laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian
Processes in R.” Journal of Statistical Software, 72(1), 1–46. doi:10.18637/jss.v072.i01.

Gramacy RB (2017). monomvn: Estimation for Multivariate Normal and Student-t Data
with Monotone Missingness. R package version 1.9-7, URL https://CRAN.R-project.

org/package=monomvn.

Mickaël Binois, Robert B. Gramacy 47

Gramacy RB, Apley DW (2015). “Local Gaussian Process Approximation for Large Computer
Experiments.” Journal of Computational and Graphical Statistics, 24(2), 561–578. See
arXiv:1303.0383.

Gramacy RB, Lee HKH (2009). “Adaptive Design and Analysis of Supercomputer Experi-
ment.” Technometrics, 51(2), 130–145.

Gramacy RB, Lee HKH (2011). “Optimization under Unknown Constraints.” In J Bernardo,
S Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, M West (eds.), Bayesian
Statistics 9, pp. 229–256. Oxford University Press.

Gramacy RB, Pantaleo E (2010). “Shrinkage Regression for Multivariate Inference with
Missing Data, and an Application to Portfolio Balancing.” Bayesian Anal., 5(2), 237–262.
doi:10.1214/10-BA602. URL https://doi.org/10.1214/10-BA602.

Gramacy RB, Taddy M (2010). “Categorical Inputs, Sensitivity Analysis, Optimization and
Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Mod-
els.” Journal of Statistical Software, 33(6), 1–48. URL http://www.jstatsoft.org/v33/

i06/.

Hong L, Nelson B (2006). “Discrete Optimization via Simulation Using COMPASS.” Opera-
tions Research, 54(1), 115–129.

Hu R, Ludkovski M (2017). “Sequential Design for Ranking Response Surfaces.” SIAM/ASA
Journal on Uncertainty Quantification, 5(1), 212–239.

Huan X, Marzouk YM (2016). “Sequential Bayesian Optimal Experimental Design via Ap-
proximate Dynamic Programming.” arXiv preprint arXiv:1604.08320.

Jacquier E, Polson N, Rossi PE (2004). “Bayesian Analysis of Stochastic Volatility Models
with Fat-Tails and Correlated Errors.” J. of Econometrics, 122, 185–212.

Jones D, Schonlau M, Welch W (1998). “Efficient Global Optimization of Expensive
Black-Box Functions.” Journal of Global Optimization, 13(4), 455–492. URL http:

//www.springerlink.com/index/M5878111M101017P.pdf.

Kersting K, Plagemann C, Pfaff P, Burgard W (2007). “Most Likely Heteroscedastic Gaussian
Process Regression.” In Proceedings of the International Conference on Machine Learning,
pp. 393–400. ACM, New York, NY.

Lam R, Willcox K, Wolpert DH (2016). “Bayesian Optimization with a Finite Budget:
An Approximate Dynamic Programming Approach.” In Advances In Neural Information
Processing Systems, pp. 883–891.

Lazaro-Gredilla M, Titsias M (2011). “Variational Heteroscedastic Gaussian Process Regres-
sion.” In Proceedings of the International Conference on Machine Learning, pp. 841–848.
ACM, New York, NY.

Leatherman ER, Santner TJ, Dean AM (2017). “Computer Experiment Designs for Accurate
Prediction.” Statistics and Computing, pp. 1–13.

48 Heteroskedastic Gaussian Processes in R

Lyu X, Binois M, Ludkovski M (2018). “Evaluating Gaussian Process Metamodels and Se-
quential Designs for Noisy Level Set Estimation.” arXiv preprint arXiv:1807.06712.

MacDonald B, Ranjan P, Chipman H (2015). “GPfit: An R Package for Fitting a Gaussian
Process Model to Deterministic Simulator Outputs.” Journal of Statistical Software, 64(12),
1–23. URL http://www.jstatsoft.org/v64/i12/.

Mockus J, Tiesis V, Zilinskas A (1978). “The Application of Bayesian Methods for Seeking
the Extremum.” Towards Global Optimization, 2(117-129), 2.

Ng SH, Yin J (2012). “Bayesian Kriging Analysis and Design for Stochastic Systems.” ACM
Transations on Modeling and Computer Simulation (TOMACS), 22(3), article no. 17.

Opsomer J, Ruppert D, Wand W, Holst U, Hossler O (1999). “Kriging with Nonparameteric
Variance Function Estimation.” Biometrics, 55, 704–710.

Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim NH (2010). “Adaptive Designs
of Experiments for Accurate Approximation of a Target Region.” Journal of Mechanical
Design, 132(7), 071008.

Picheny V, Wagner T, Ginsbourger D (2012). “A Benchmark of Kriging-Based Infill Criteria
for Noisy Optimization.” Structural and Multidisciplinary Optimization, pp. 1–20.

Plumlee M, Tuo R (2014). “Building Accurate Emulators for Stochastic Simulations via
Quantile Kriging.” Technometrics, 56(4), 466–473.

Pratola M, Chipman H, George E, McCulloch R (2017a). “Heteroscedastic BART Using
Multiplicative Regression Trees.” arXiv preprint arXiv:1709.07542.

Pratola MT, Harari O, Bingham D, Flowers GE (2017b). “Design and Analysis of Experiments
on Nonconvex Regions.” Technometrics, pp. 1–12.

Ranjan P, Bingham D, Michailidis G (2008). “Sequential Experiment Design for Contour
Estimation from Complex Computer Codes.” Technometrics, 50(4), 527–541.

Rasmussen CE, Williams C (2006). Gaussian Processes for Machine Learning. MIT Press.
URL http://www.gaussianprocess.org/gpml/.

Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages for
the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization.”
Journal of Statistical Software, 51(1), 1–55. URL http://www.jstatsoft.org/v51/i01/.

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989). “Design and Analysis of Computer
Experiments.” Statistical Science, 4(4), 409–423.

Seo S, Wallat M, Graepel T, Obermayer K (2000). “Gaussian Process Regression: Active Data
Selection and Test Point Rejection.” In Proceedings of the International Joint Conference
on Neural Networks, volume III, pp. 241–246. IEEE.

Shah A, Wilson A, Ghahramani Z (2014). “Student-t Processes as Alternatives to Gaussian
Processes.” In S Kaski, J Corander (eds.), Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine

Mickaël Binois, Robert B. Gramacy 49

Learning Research, pp. 877–885. PMLR, Reykjavik, Iceland. URL http://proceedings.

mlr.press/v33/shah14.html.

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016). “Taking the Human out of
the Loop: A Review of Bayesian Optimization.” Proceedings of the IEEE, 104(1), 148–175.

Snelson E, Ghahramani Z (2005). “Sparse Gaussian Processes Using Pseudo-Inputs.” In
Advances in Neural Information Processing Systems, pp. 1257–1264.

Snoek J, Larochelle H, Adams RP (2012). “Bayesian Optimization of Machine Learning
Algorithms.” In Neural Information Processing Systems (NIPS).

Vazquez E, Villemonteix J, Sidorkiewicz M, Walter E (2008). “Global Optimization Based
on Noisy Evaluations: An Empirical Study of Two Statistical Approaches.” In Journal of
Physics: Conference Series, volume 135, p. 012100. IOP Publishing.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer-
Verlag, New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Wang Z, Shi JQ, Lee Y (2017). “Extended T-Process Regression Models.” Journal of Statis-
tical Planning and Inference, 189, 38–60.

Xie G, Chen X (2017). “A Heteroscedastic T-Process Simulation Metamodeling Approach
and its Application in Inventory Control and Optimization.” In Simulation Conference
(WSC), 2017 Winter, pp. 3242–3253. IEEE.

Xie J, Frazier P, Chick S (2012). “Assemble to Order Simulator.” URL http://simopt.org/

wiki/index.php?title=Assemble_to_Order&oldid=447.

50 Heteroskedastic Gaussian Processes in R

A. TP modifications

The expression for EI with TPs is given, for example, in the work of Shah et al. (2014):

EITP = z(x)σ(x)Λα+N (z(x)) + σ(x)

(

1 +
z(x)2 − 1

α + N − 1

)

λν+N (z(x)),

with z(x) = y∗−µ(x)
σ(x) and λ, Λ the pdf and cdf of the Student-t distribution.

We provide the expression for the corresponding gradient:

∇EITP(x) = ∇{z(x)σ(x)Λα+N (z(x))}+∇
{

σ(x)

(

1 +
z(x)2 − 1

α + N − 1

)

λν+N (z(x))

}

where ∇{z(x)σ(x)Λα+N (z(x))} = −∇m(x)λ(z(x)) + s(x)z(x)∇z(x)λ(z(x)) and

∇
{

σ(x)

(

1 +
z(x)2 − 1

b

)

λν+N (z(x))

}

=

(

∇s(x)(1 +
z(x)2 − 1

b
) + 2s(x)z(x)∇z(x)/b

)

λ(z(x))

+ s(x)(1 +
z(x)2 − 1

b
)∇z(x)λ′

α(z(x))

with b = α + N − 1, and

λ′
α(z) =

(−α− 1)zΓ(α+1
2)(α+z2

α)−α/2−3/2

√
πα3/2Γ(α

2)
.

Affiliation:

Mickaël Binois
Mathematics and Computer Science Division
Argonne National Laboratory
9700 Cass Ave.
Lemont, IL 60439, United States of America
E-mail: mbinois@mcs.anl.gov

URL: https://sites.google.com/site/mickaelbinoishomepage/

Robert B. Gramacy
Department of Statistics
Virginia Tech
250 Drillfield Drive
Blacksburg, VA 24061, United States of America
E-mail: rbg@vt.edu

URL: http://bobby.gramacy.com/

	Introduction
	Gaussian process modeling under replication
	Gaussian process review
	Speedup from replication

	Heteroskedastic modeling
	Joint Gaussian process modeling
	Implementation details
	Student-t variants
	Illustrations

	Sequential design
	IMSPE
	Replication-biased lookahead
	Tuning the horizon
	A larger example

	Contour finding and optimization

	Summary and discussion
	TP modifications

