
The huge Package for High-dimensional Undirected Graph

Estimation in R

Tuo Zhao ∗ Han Liu †

Kathryn Roeder ‡ John Lafferty § Larry Wasserman¶

January 22, 2012

Abstract

We describe an R package called huge (ver 1.2), that provides easy-to-use functions for
estimating high dimensional undirected graphs from data. This package implements recent
results in the literature, including Meinshausen and Bühlmann [2006], Friedman et al. [2007b],
Liu et al. [2009] and Liu et al. [2010]. Compared with the existing package glasso, the huge

package provides several extra features: (i) instead of using Fortran, it is written in C, which
makes the code more portable and easier to modify; (ii) besides fitting Gaussian graphical
models, it also provides functions for fitting high dimensional semiparametric Gaussian copula
models, data-dependent model selection, data generation and graph visualization; and (iii)
to achieve better scalability, it incorporates correlation screening into graph estimation. In
particular, the package allows the user to apply both lossless and lossy screening rules to scale
up for high-dimensional problems, making a tradeoff between computational and statistical
efficiency.

1 Overview

Significant progress has been made recently on designing efficient algorithms to learn undirected
graphical models from high-dimensional observational datasets. Existing packages include glasso
[Friedman et al., 2007b], Covpath [Krishnamurthy and d’Aspremont, 2011] and CLIME [Cai et al.,
2010]. In particular, the glasso package has been widely adopted by statisticians and computer
scientists due to its friendly user-inference and efficiency. In this paper, we describe a newly
developed R package named huge (High-dimensional Undirected Graph Estimation). Compared
with glasso, the core engine of huge is coded in C, making modifications of the package more
accessible to researchers from the computer science and signal processing communities. The pack-
age includes a wide range of functional modules, including data generation, data preprocessing,
graph estimation, model selection, and visualization. Many recent methods have been imple-
mented, including the nonparanormal [Liu et al., 2009] method for estimating a high dimensional
Gaussian copula graph, the StARS [Liu et al., 2010] approach for stability-based graphical model
selection, and correlation screening [Fan and Lv, 2008] for graph estimation. The package sup-
ports two modes of screening, lossless [Witten et al., 2011, Mazumder and Hastie, 2011a] and
lossy screening. The user can select the desired screening level to scale up to larger problems,
but this introduces some estimation bias.

2 Gaussian Graphical Models and Copula Models

2.1 Gaussian Graphical Models

In Gaussian Graphical Models, X = (X1, ..., Xd)
T is assumed to follow a d-variate Gaussian

distribution N(0,Σ). The conditional independence can be obtained by the inverse covariance

∗email: tzhao5@jhu.edu, Department of Computer Science, Johns Hopkins University
†email: hanliu@cs.jhu.edu, Department of Biostatistics and Computer Science, Johns Hopkins University
‡email: roeder@stat.cmu.edu, Department of Statistics, Carnegie Mellon University
§email: lafferty@cs.cmu.edu, Machine Learning Department, Carnegie Mellon University
¶email: larry@stat.cmu.edu, Department of Statistics, Carnegie Mellon University

1

(concentration) matrix Ω = Σ−1 and Ωjk = 0 means that the i-th variable and j-th variables are
conditional independent given all other variables. The sparse pattern of Ω can also be represented
in a undirected graph, therefore estimating a Gaussian Graphical Models is usually referred to
undirected graph estimation.

Meinshausen and Bühlmann [2006] only estimates the sparse pattern Ω by solving a collection
of `1-regularized regression problems,

β̂ = argmin
β∈Rd,βj=0

1

2
βTSβ − Sjβ + λ‖β‖1 for all j = 1, ..., d (1)

where S denotes the sample covariance matrix Σj denotes the j-th row of Σ, and λ > 0 is the

regularization parameter controlling the sparsity level. Each β̂ corresponds to a column in Ω̂ in
term of the sparsity pattern.

Banerjee et al. [2008] directly formulates the estimation of Ω as a `1 penalized maximum
likelihood problem,

Ω̂ = argmax
Ω∈Rd×d,Ω�0

log |Ω| − 〈S,Ω〉 − λ‖Ω‖1 (2)

(2) can numerically estimate Ω, which usually leads to more possible applications.

Remark 1. Meinshausen and Bühlmann [2006] is more efficient than Banerjee et al. [2008] in
computation, but the degrees of nodes for the estimation are usually restricted, since we cannot
get the nonzeros entries more than the sample size in each `1-regularized regression problem.

Remark 2. Both Meinshausen and Bühlmann [2006] and Banerjee et al. [2008] can asymptoti-
cally recover the true sparsity pattern under the irrepresentable condition. When the condition is
violated, it is highly difficult to achieve perfect recovery.

2.2 Gaussian Copula Models

Gaussian copula models extends the Gaussian graphical models by marginally transforming the
variables using smooth monotone functions. The underlying distribution is still assumed to be
d-variate Gaussian distribution N(0,Σ) and there exists a collection of monotone functions fj ’s
such that (f1(X1), ..., fd(Xd))

T ∼ N(0,Σ). The primary goal of the nonparanormal is to estimate
the underlying sample covariance matrix for a better recovery of the underlying undirected graph
[Liu et al., 2009]. Gaussian Copula models is applicable to not only continuous data but also
discrete data.

Suppose we have n observations for j-th variable, x1j , ..., xnj , we sort all n observations and
get the corresponding rank u1j , ..., unj . Let Φ denote the Gaussian CDF function, then we can
estimate the transformed data using:

f̂j(xij) = Φ−1(ûij)︸ ︷︷ ︸
The normal score

or f̂j(xij) =





Φ−1(δ) if ûij ≤ δ
Φ−1(ûij) if δ < ûij ≤ 1− δ
Φ−1(1− δ) if ûij > 1− δ

︸ ︷︷ ︸
The truncated normal

(3)

where

ûij =
uij
n+ 1

and δ =
1

4n1/4
√
π log n

. (4)

3 Design and Implementation

The package huge aims to provide a general framework for high-dimensional undirected graph
estimation. Six functional modules (M1-M6) facilitate a flexible pipeline for analysis (Figure 1).
M1. Data Generator: The function huge.generator() can generate multivariate Gaussian
data with different undirected graph structures, including hub, cluster, band, scale-free, and
Erdös-Rényi random graphs. The sparsity level of the graph structures and signal-to-noise ratios
can also be adjusted by users.

2

Nonparanormal Graph estimation with the
lossless screening rule

Graph estimation with the
lossy screening rule

scr Model
selection

Visualization Data
No

Yes

Figure 1: The graph estimation pipeline.

M2. Semiparametric Transformation: The function huge.npn() implements the nonpara-
normal method [Liu et al., 2009] for estimating a semiparametric Gaussian copula model by
truncated normal or normal score. Computationally, the estimation of a nonparanormal trans-
formation only requires one pass through the data matrix.

Remark 3. Although in the existing high-dimensional theory, the truncation has been proved to
be asymptotically consistent and no corresponding result has been established for normal score, we
find the normal score also has a good performance in practice.

M3. Graph Screening: The scr argument in the main function huge() controls the use
of large-scale correlation screening before graph estimation. The function supports two types
of screening rules,lossless screening and lossy screening. The lossless screening method is from
Witten et al. [2011], Mazumder and Hastie [2011b] and the lossy screening method is from Fan
and Lv [2008]. Such screening procedures can greatly reduce the computational cost and achieve
equal or even better estimation by reducing the variance at the expense of an increase in bias.
M4. Graph Estimation: Similar to the glasso package, the method argument in the huge()

function supports two estimation methods: (i) the Meinshausen-Bühlmann covariance selection
algorithm [Meinshausen and Bühlmann, 2006] and (ii) the graphical lasso algorithm [Friedman
et al., 2007b, Banerjee et al., 2008]. In our implementation, we exploit many suggested tricks
and practices from Friedman et al. [2007b,a, 2010a]. For example, we solve each individual lasso
problem using coordinate descent combined with active set and covariance update tricks. One
difference between huge and glasso is that we implement all the core components using C instead
of Fortran. The code is also memory-optimized using sparse matrix data structures so that it can
handle larger datasets when estimating and storing full regularization paths. We also provide
an additional graph estimation method based on thresholding the sample correlation matrix.
Such an approach is computationally efficient and has been widely applied in biomedical research
[Langfelder and Horvath, 2008].

Remark 4. We find the graphical lasso algorithm may fail to converge using the warm start trick
when estimating the solution path. We proposed a modified warm start trick and explained the
reason of the failure for the original warm start trick in the Appendix.

M5. Model Selection: The function huge.select() provides three regularization parameter
selection methods: the stability approach for regularization selection (StARS) [Liu et al., 2010];
a modified rotation information criterion (RIC) [Lysen, 2009]; and the extended Bayesian in-
formation criterion [Foygel and Drton, 2010]. The latter approach is a likelihood-based model
selection criterion that is only applicable for the graphical lasso method. StARS conducts many
subsampling steps to calculate variability score using the U-statistics, which is computationally
intensive but can be trivially parallelized. RIC is closely related to the permutation approach for
model selection and scales to large datasets.

Remark 5. Under certain regularity condition, StARS is partially consistent and suffers overs-
election. The performance of StARS also depends on the tuning grid chosen by user.

Remark 6. RIC randomly rotates the variables for each sample multiple times and selects the
minimum regularization which generates all zero estimated using rotated data. It has no theoretical
guarantee of the consistent recovery and often suffers serious underselection or overselection.

M6. Graph Visualization: The plotting functions huge.plot() and plot() provide visual-
izations of the simulated data sets, estimated graphs and paths. The implementation is based on
the igraph package. Due to the limits of igraph, sparse graphs with only up to 2,000 nodes can
be visualized.

3

4 User Interface by Example

We illustrate the user interface by two simple examples. The first one is based on the simulated
data generated by huge.generator(),

> library(huge) # Load the package huge

> L = huge.generator(n=200,d=200,graph="hub") # Generate data with hub structures

> X = L$data; X.pow = X^3/sqrt(15) # Power Transformation

> X.npn = huge.npn(X.pow) # Nonparanormal

> out.mb = huge(X.pow,nlambda=30) # Estimate the solution path

> out.npn = huge(X.npn,nlambda=30)

> huge.roc(out.mb$path,L$theta) # Plot the ROC curve

> huge.roc(out.npn$path,L$theta)

> mb.stars = huge.select(out.mb,criterion="stars",

+ stars.thresh=0.05) # Select the graph using StARS

> npn.stars = huge.select(out.npn,criterion="stars",stars.thresh=0.05)

> mb.ric = huge.select(out.mb) # Select the graph using RIC

> npn.ric = huge.select(out.npn)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Postive Rate

Tr
ue

 P
os

tiv
e

R
at

e

(a) The ROC curve (b) The optimal graph by StARS (c) The optimal graph by RIC

Figure 2: Simulated results w/o nonparanormal

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Postive Rate

Tr
ue

 P
os

tiv
e

R
at

e

(a) The ROC curve (b) The optimal graph by StARS (c) The optimal graph by RIC

Figure 3: Simulated results w/ nonparanormal

We generate 200 samples following a 200-dimensional Gaussian distribution with the hub
structure, then transform the data using power transformation, which preserves the population
mean and population variance. The graph is estimated by Meinshausen and Bühlmann [2006]
by default. The program automatically sets up a sequence of 30 regularization parameters and
estimates the corresponding graph path. The results w/o and w/ non paranormal are shown in
Figure 2 and Figure 3 respectively. We can see a significant improvement by using nonparanormal.
As mentioned in the previous section, the StARS and RIC tend to yields a overselected and a
underselected graph respectively.

The second example is based on a stock market data which we contribute to the huge package.
We acquired closing prices from all stocks in the S&P 500 for all the days that the market was
open between January 1, 2003 and January 1, 2008. This gave us 1258 samples for the 452 stocks
that remained in the S&P 500 during the entire time period.

4

> data(stockdata) # Load the stock data

> Y = log(stockdata$data[2:1258,]/stockdata$data[1:1257,]) # Preprocessing

Here the data have been transformed by calculating the log-ratio of the price at time t to price
at time t− 1, and then standardized by subtracting the mean and adjusting the variance to one.

> Y.npn = huge.npn(Y, npn.func="truncation") # Nonparanormal

> out.npn = huge(Y.npn,method = "glasso", nlambda=40,lambda.min.ratio = 0.4)

> out = huge(Y,method = "glasso", nlambda=40,lambda.min.ratio = 0.4)

Here the nonparanormal transformation is applied to the data, and the graph is estimated using
the graphical lasso (the default is the Meinshausen-Bühlmann estimator). The program auto-
matically sets up a sequence of 40 regularization parameters and estimates the corresponding
graph path. The lossless screening method is applied by default. The output of graph estimation
using the transformed data is shown in Figure 4. To investigate the impact of the nonparanormal

0.8 0.6 0.4

0.
00

0.
04

0.
08

Sparsity

Regularization

x$
sp
ar
si
ty

●
●

●

lambda = 0.664

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

lambda = 0.605

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lambda = 0.538

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4: The estimated graph path.

transformation, we plot points in a subgraph calculated with and without the transformation
(Figure 5). Both graphs have the sparsity level at about 1% and we can see the different pattern

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!
!

!

!
!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!
!

!

!
!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

Figure 5: The estimated glasso graph (left) and nonparanormal graph (right).

between them. We highlight a dense module in the nonparanormal graph which is much sparser
in the corresponding glasso graph.

5 Performance Benchmark

We adopt similar experimental settings as in Friedman et al. [2010b] to compare huge with glasso

(ver 1.4). We consider four scenarios with varying sample sizes n and number of variables d, as

5

shown in Table 1. We simulate the data from three different multivariate normal distributions
with null graph (diagonal covariance matrix) and Erdös-Rényi random graph (with probability
0.01)structures respectively. Timings (in seconds) are computed over 10 values of the corre-
sponding regularization parameter, and the range of regularization parameters is chosen so that
each method produced approximately the same number of non-zero estimates. The convergence
threshold of both glasso and huge is chosen to be 10−4. All experiments were carried out on
a PC with Intel Core i5 3.3GHz processor and 8GB memory. We also tried CLIME (ver 1.0) and
Covpath (ver 0.2), but were unable to obtain timing results due to numerical issues.

Table 1: Experimental Results on Null Graph

Method
d = 1000 d = 2000 d = 3000 d = 4000
n = 100 n = 150 n = 200 n = 300

huge-Meinshausen-Bühlmann (lossy screening) 2.688 (0.140) 11.14 (0.623) 30.47 (0.738) 223.5 (13.14)
huge-Meinshausen-Bühlmann 4.032 (0.267) 37.51 (2.254) 119.6 (3.888) 330.6 (25.49)
glasso-Meinshausen-Bühlmann 34.38 (0.481) 245.8 (4.143) 800.7 (7.652) 2694 (136.5)
huge-graphical lasso (lossy screening) 34.39 (2.173) 246.5 (16.18) 857.3 (24.18) 2015 (151.1)
huge-graphical lasso (lossless screening) 43.13 (3.461) 310.4 (28.19) 1071 (41.51) 2510 (293.4)
glasso-graphical lasso 122.1 (5.259) 931.4 (45.96) 2998 (97.71) 7485 (307.5)

For Meinshausen-Bühlmann graph estimation, we can see that huge achieves the best perfor-
mance. In particular, when the lossy screening rule is applied, huge automatically reduces each
individual lasso problem from the original dimension d to the sample size n, therefore even better
efficiency can be achieved in settings when d� n. Based on our experiments, the speed up due
to the lossy screening rule can be up to 400%.

Table 2: Experimental Results on Random Graph

Method
d = 1000 d = 2000 d = 3000 d = 4000
n = 100 n = 150 n = 200 n = 300

huge-Meinshausen-Bühlmann (lossy screening) 3.246 (0.147) 13.47 (0.665) 35.87 (0.97) 247.2 (14.26)
huge-Meinshausen-Bühlmann 4.24 (0.288) 42.41 (2.338) 147.9 (4.102) 357.8 (28.00)
glasso-Meinshausen-Bühlmann 37.23 (0.516) 296.9 (4.533) 850.7 (8.180) 3095 (150.5)
huge-graphical lasso (lossy screening) 39.61 (2.391) 289.9 (17.54) 905.6 (25.84) 2370 (168.9)
huge-graphical lasso (lossless screening) 47.86 (3.583) 328.2 (30.09) 1276 (43.61) 2758 (326.2)
glasso-graphical lasso 131.9 (5.816) 1054 (47.52) 3463 (107.6) 8041 (316.9)

Unlike the Meinshausen-Bühlmann graph approach, the graphical lasso estimates the inverse
covariance matrix. The lossless screening rule [Witten et al., 2011, Mazumder and Hastie, 2011b]
greatly reduces the computation required by the graphical lasso algorithm, especially when the
estimator is highly sparse. The lossy screening rule can further speed up the algorithm and
provides an extra performance boost.

6 Conclusions

We developed a new package named huge, for high dimensional undirected graph estimation.
The package is complementary to the existing glasso package by providing extra features and
functional modules. We plan to maintain and support this package in the future.

7 Appendix

7.1 A Typical Example of Failure

In the package glasso, the warm start trick begins with the larger regularization parameters
and gradually decreases the regularization parameter. However, in real applications, we find this
strategy may lead to divergence or other numerical issues sometimes. We first provide an example
that glasso fails to converge.

> library(huge) # load the package huge

> library(glasso) # Load the package glasso

> data(stockdata) # Load the stock data

6

> X = log(stockdata$data[2:1258,]/stockdata$data[1:1257,]) # Preprocessing

> out.huge = huge(X,method = "glasso", nlambda=5)

> out.glasso = glassopath(cor(X),rholist = out.huge$lambda[5:1])

7.2 A Modified Warm Start trick

From Banerjee et al. [2008], we know a good initial value for the estimated covariance matrix Σ̂
should satisfy the constraint

‖Σ̂− S‖∞ ≤ λ and Σ � 0 (5)

where S is the sample covariance matrix. Otherwise, the algorithm cannot guarantee the positive
definiteness of the estimation. Once the positive definiteness is violated in some iteration, the
whole algorithm will fail. Now suppose we have a sequence of decreasing regularization parameters
λ1, ..., λK and for λk, we have obtain the estimated covariance matrix as Σ̂k. By KKT condition,
we know

‖Σ̂k − S‖∞ ≤ λk (6)

However, when we use Σ̂k as the initial values for estimating Σ̂k+1 corresponding to λk+1, although

Σ̂k � 0 hold, it is highly likely that Σ̂k may violate our requirement of (5) when using the
regularization parameter λk+1, since λk > λk+1. The glass algorithm may tolerate slight violation
sometimes, but when we decrease the regularization parameter too fast, then a failure is highly
likely to happen. The phenomenon was also found independently by Mazumder and Hastie
[2011b].

In our implementation of the graphical lasso, we actually take the initial covariance matrix as
the sample covariance matrix and compute the path using the regularization parameters in the
increasing order. We sacrifice a little bit efficiency, but guarantee our huge won’t fail due to the
warm start trick. Although our strategy is quite counterintuitive, but it works well in practice. In
the previous example, huge successful estimated the solution path for only seconds, while glasso

showed no intent to stop, thus we killed the corresponding process after 3 hours.

References

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. Journal of Machine Learning Research, 9:485–516, 2008.

T. Cai, W. Liu, and X. Luo. A constrained l1 minimization approach to sparse precision matrix
estimation. Technical report, University of Pennsylvania, 2010.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space. Journal
of the Royal Statistical Society Series B, 70:849–911, 2008.

R. Foygel and M. Drton. Extended Bayesian information criteria for Gaussian graphical models.
Advances in Neural Information Processing Systems, 2010.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Annals
of Applied Statistics, 1(2), 2007a.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2007b.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1), 2010a.

J. Friedman, T. Hastie, and R. Tibshirani. Applications of the lasso and grouped lasso to the
estimation of sparse graphical models. Technical report, Stanford University, 2010b.

Vijay Krishnamurthy and Alexandre d’Aspremont. A pathwise algorithm for covariance selection.
Optimization for Machine Learning, 2011.

7

P. Langfelder and S. Horvath. WGCNA: An R package for weighted correlation network analysis.
BMC Bioinformatics, 9, 2008.

H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal semiparametric estimation of high
dimensional undirected graphs. Journal of Machine Learning Research, 10:2295–2328, 2009.

H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection for high
dimensional graphical models. Advances in Neural Information Processing Systems, 2010.

S. Lysen. Permuted Inclusion Criterion: A Variable Selection Technique. PhD thesis, University
of Pennsylvania, 2009.

R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-
scale graphical lasso. Technical report, Stanford University, 2011a.

R. Mazumder and T. Hastie. The graphical lasso: New insights and alternatives. Technical
report, Stanford University, 2011b.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso.
Annals of Statistics, 34(3):1436–1462, 2006.

D. Witten, J. Friedman, and Noah Simon. New insights and faster computations for the graphical
lasso. Journal of Computational and Graphical Statistics, to appear, 2011.

8

