How To Use iSubpathwayMiner

Chunquan Li
January 20, 2011

Contents
I Overview] 2
|2 The methods of graph-based reconstruction of pathways| 3
2.1 Convert KGML files of KEGG pathwaystoalistim R} 4
2.2 Convert metabolic pathways to graphs| 7
2.2.1 e method to convert metabolic pathways to graphs| 7
2.2.2 ome simple examples of operating pathway graphs| 10
2.3 Convert non-metabolic pathways to graphs| 12
2.3.1 The default method to convert non-metabolic pathways to graphs| 12
[2.3.2 The alternative method to convert non-metabolic pathways to graphs| 14
[2.4 Convert pathway graphs to other derivative graphs| 14
2.4.1 onvert pathway graphs to undirected graphs|. 16
[2.4.2 Map current organism-specific gene identifiers to nodes in pathway graphs|. . . . 16
[2.4.3 Filter nodes of pathway graphs| 18
[2.4.4 Simplify pathway graphs as graphs with only gene products (or only compounds) |
[asnodesl L e 22
[2.4.5 Expand nodes of pathway graphs| 25
2.4.6 et simple pathway graphs|o 29
[2.4.7 Merge nodes with the same names| 29
[2.5 The integrated application of pathway reconstruct methods| 31
[2.5.1 Example 1: enzyme-compound (KO-compound) pathway graphg 31
2.5.2 Example 2: enzyme-enzyme (KO-KO) pathway graphs|. 39
2.5.3 Example 3: compound-compound pathway graphs| 51
2.5.4 Example 4: organism-specific gene-gene pathway graphs| 56
[3__Methods to analyze pathway graphs| 56
3.1 e basic analyses based on graph model| 000000000 61
13.1.1 Node methods: degree, betweenness, local clustering coefficient, etc.| 61
8.1.2 Edge method: shortest paths| 0oL 64
13.1.3 Graph method: degree distribution, diameter, global clustering coefficient, den- |
sity, module, etc.|o 65
[3-2 Topology-based pathway analysis of cellular component sets| 66
3.2.1 Topology-based pathway analysis of genesets| 66
13.2.2 Topology-based pathway analysis of compound sets|. 72
13.2.3 Topology-based pathway analysis of gene and compound sets| 74
[3.3 _Annotate cellular component sets and identify entire pathways| 76
3.3.1 nnotate gene sets and identify entire pathways| 76
13.3.2 Annotate compound sets and identify enire pathways| 80

[3.3.3 Annotate compound and gene sets and identify entire pathways|. 82

3374 Other examples|. 84

8.4 The k-cliques method to identity subpathways|. 86
3.4.1 Annotate gene sets and i1dentify subpathways| 88

13.4.2 Annotate compound sets and identify subpathways| 89

[3.4.3 Annotate compound and gene sets and identify subpathways| 92

[3:44 Other examples|. . . . o . o v v 94

|4 Visualize a pathway graphl 96
4.1 _Change node label of the pathway graph| 98
(@2 oom a part of pathway graph| 98
4.3 The basic commands to visualize a pathway graph with custom style| 98
4.4 The layout style of a pathway graphin R} 103
4.5 Edit a pathway graphl oo 106
4.6 Visualize a pathway graph through linking to the KEGG websitel 106
[£77 " Visualize the result graph of pathway analyses| 112
E8 Export a pathway graph] o . . e 117

|5 Data management)| 117
5.1 Set or update the current organism and the type of gene identifier] 117
B2 Update pathway data] 118
b.3 Load and save the environment variable of the system| 118
6 Session Infol 119

1 Overview

This vignette demonstrates how to easily use the iSubpathwayMiner package. The package can im-
plement the graph-based reconstruction, analyses, and visualization of the KEGG pathways. (1) Our
system provides many strategies of converting pathways to graph models (see the section. Ten func-
tions related to conversion from pathways to graphs are developed. Furthermore, the combinations
of these functions can get many combined conversion strategies of pathway graphs (> 20). (2) The
iSubpathwayMiner can support the annotation and identification of pathways based on gene sets (see
the section and , compound sets (see the sec and 7 and even the combined
sets of genes and compounds (see the section and |3.4.3)). The entire pathway and subpathway
identification methods are available for these sets (see the section and [3.4). (3) The system also
supports topology-based pathway analysis of these sets (see the section, including gene sets (see the
section , compound sets (see the section , and the combined sets of genes and compounds
(see the section . The current available topological properties contain degree, local clustering
coefficient, closeness and betweenness. (4) We develop KEGG layout style of pathway graphs in R to
simulate the layout of the pathway picture in KEGG website (see the section. In addition, our system
has also provided many types of automatic layout styles. Pathway graphs can also be exported to the
GML format supported by Cytoscape [Shannon et al., 2003]. (5) The iSubpathwayMiner is developed
based on the previous SubpathwayMiner. It is thus able to provide some good functions supported
by SubpathwayMiner. For example, through the methods provided in data management section
iSubpathwayMiner can provide the most up-to-date pathway analysis results for users. Multiple species
(about 139 Eukaryotes, 1141 Bacteria and 93 Archaea) and different gene identifiers (KEGG compound,
Entrez Gene IDs, gene official symbol, NCBI-gi IDs, UniProt IDs, PDB IDs, etc.) can also be supported
by the system. The following sections will detailedly introduce the iSubpathwayMiner system. We firstly
give several examples as follows:
The following commands can convert two metabolic pathways to graphs.

#get path of the KGML files
path<-paste(system.file(package="iSubpathwayMiner"),
"/localdata/kgml/metabolic/ec/",sep="")

#convert pathways to a list in R
pList<-getPathway (path,c("ec00010.xm1", "ec00020.xm1"))
#convert metabolic pathways to graphs
guList<-getMetabolicGraph(pList)

vV V VYV + VYV

The following commands visualize a pathway graph. The result is shown in Figure

> #visualize
> plotGraph(gmList[[1]])

The following command gets the type of organism and identifier in the current environment variable.

> getOrgAndIdType ()
[1] "hsa" "ncbi-geneid"

The following commands annotate gene sets to the above two metabolic pathways and evaluate the
enrichment significance of pathways.

#To do this, let us generate an example of gene sets:
genelList<-getExample (geneNumber=1000, compoundNumber=0)
#see a part of the set.

#organism:human (hsa)

#identifier type:Entrez Gene IDs (ncbi-geneid)
geneList[1:5]

V V.V Vv VvyVv

[1] "10" "100" Illoooll "10000" II10005I|

> #annotate the sets to pathways

> #evaluate the enrichment significance of pathways
> ann<-identifyGraph(geneList,gmList)

> #print the results to screen

> printGraph(ann)

pathwayIld pathwayName annComponentRatio annBgRatio
1 path:00010 Glycolysis / Gluconeogenesis 12/1000 64/21796
2 path:00020 Citrate cycle (TCA cycle) 4/1000 30/21796
pvalue qvalue 1lfdr
1 2.942795e-05 3.246438e-05 1

N

4.678027e-02 4.907606e-02 1

2 The methods of graph-based reconstruction of pathways

The section introduces many strategies for converting pathways to different types of graphs. We firstly
need to use the function getPathway to convert KGML files (KEGG Markup Language, http://www.
genome. jp/kegg/docs/xml/) of KEGG pathways to a list variable in R, which is used to store pathway
data in the iSubpathwayMiner system (see the section [2.1)). We can then use the function getMetabolic-
Graph or getNonMetabolicGraph to convert metabolic pathways or non-metabolic pathways to graphs (Fig-
ure and. The function getMetabolicGraph constructs graphs based on reaction information of KGML
files of pathways (see the section . The function getNonMetabolicGraph constructs graphs based on

http://www.genome.jp/kegg/docs/xml/
http://www.genome.jp/kegg/docs/xml/

relation information (see the section . After using the function getMetabolicGraph or getNonMetabol-
icGraph to convert pathways to graphs, users can change these pathway graphs to other derivative
graphs. We develop the function getUGraph, mapNode, filterNode, simplifyGraph, mergeNode, getSimple-

Graph, and expandNode (see the section . Through these functions, many graph-based reconstruction
strategies of pathways can be done such as constructing undirected graphs (Figure , organism-specific

and idType-specific graphs (Figure , the metabolic graphs with enzymes (compounds) as nodes and
compounds (enzymes) as edges (Figure m and , etc. Furthermore, the combination of these functions

can also get more useful pathway graphs (see the section . For example, we can construct the di-
rected /undirected pathway graphs of enzyme-compound (see the section, enzyme-enzyme (see the
section [2.5.2)), KO-KO (see the section [2.5.2), compound-compound (see the section [2.5.3), organism-
specific gene-gene (see the section @, etc. Most of these conversions represent current major ap-
plications [Smart et al., 2008, [Schreiber et al., 2002} [Klukas and Schreiber, 2007, [Kanehisa et al., 2000,
Goffard and Weiller, 2007, |[Koyuturk et al., 2004 |Hung et al., 2010, Xia and Wishart, 2010, |Jeong et al., 2000,
Antonov et al., 2008, |Guimera and Nunes Amaral, 2005} Draghici et al., 2007} |Li et al., 2009 |Ogata et al., 2000,
Hung et al., 2010, Barabasi and Oltvai, 2004]. The following sections will detailedly introduce the usage

of the functions relative to graph-based conversion of pathways.

2.1 Convert KGML files of KEGG pathways to a list in R

The KEGG Markup Language (KGML) is an exchange format of KEGG pathway data. In a KGML
file (.xml), the pathway element is a root element. The entry element stores information about nodes
of the pathway, including the attribute information (id, name, type, link, and reaction), the “graphics”
subelement, the "component” subelement. The relation element stores information about relationship
between gene products (or between gene products and compounds). It includes the attribute information
(entryl, entry2, and type), and the "subtype” subelement that specifies more detailed information about
the interaction. The reaction element stores chemical reaction between a substrate and a product. It
includes the attribute information (id, name, and type), the ”substrate” subelement, and the “product”
subelement. Detailed information is provided in http://www.genome. jp/kegg/xml/docs/.

In KEGG, there are two fundamental controlled vocabularies for matching genes to pathways. En-
zyme commission (EC) numbers are traditionally used as an effective vocabulary for annotating genes
to metabolic pathways. With the rapid development of KEGG, more and more non-metabolic pathways
including genetic information processing, environmental information processing and cellular processes
have been added to KEGG PATHWAY database. KEGG Orthology (KO) identifiers, which over-
come limitations of enzyme nomenclature and integrate the pathway and genome information, have
become a better controlled vocabulary for annotating genes to both metabolic and regulatory path-
ways [Kanehisa et al., 2006]. Therefore, KEGG has provided the KGML files of reference metabolic
pathways linked to EC identifiers, reference metabolic pathways linked to KO identifiers, and reference
non-metabolic pathways linked to KO identifiers. They can be obtained from KEGG ftp site (ftp:
//ftp.genome. jp/pub/kegg/xml/kgml /metabolic/ec, ftp://ftp.genome. jp/pub/kegg/xml/kgml/
metabolic/ko, and|ftp://ftp.genome. jp/pub/kegg/xml/kgml/non-metabolic/ko). In addition, the
KGML file of organism-specific pathways linked to genes can also be obtained from KEGG ftp site.

The function getPathway can convert the above KGML files to a list variable in R, which is used as
pathway data in our system. The conversion only changes data structure in order to efficiently operate
data in R environment. After conversion, most of original information about pathways are not ignored
although data structure changed. The list that stores pathway information will be used as the input
of other functions such as getMetabolicGraph and getNonMetabolicGraph. The following commands can
convert KGML files of metabolic pathways to a list in R.

> #iget path of the KGML files
> path<-paste(system.file(package="iSubpathwayMiner"),
+ "/localdata/kgml/metabolic/ec/",sep="")

http://www.genome.jp/kegg/xml/docs/
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ec
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ec
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ko
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ko
ftp://ftp.genome.jp/pub/kegg/xml/kgml/non-metabolic/ko

> #convert pathways to a list in R

> p<-getPathway(path,c("ec00010.xml1","ec00020.xml1"))
> #see type of the variable p

> typeof (p)

[1] "1list"

> #see length of the variable p
> length(p)

[1] 2

The list type of variable p stores information of two pathways. We can display information stored in
the variable. The following commands only display a part of the list structure of a pathway.

> #display information stored in the variable p

> pll1]1](1]

$pathwayAttrs
$pathwayAttrs$name
[1] "path:ec00010"

$pathwayAttrs$number
[1] "oo010"

$pathwayAttrs$org
[1] nach

$pathwayAttrs$title
[1] "Glycolysis / Gluconeogenesis"

$pathwayAttrs$image
[1] "http://www.genome.jp/kegg/pathway/ec/ec00010.png"

$pathwayAttrs$link
[1] "http://www.genome.jp/kegg-bin/show_pathway?ec00010"

> #the first entry information of the pathway
> pl[1]1[[2]][1]

[[11]
([111$id
[1] nq3n

[[1]]$name
[1] "ec:4.1.2.13"

[[1]1]$type

[1] "enzyme"

[[1]]$reaction
[1] "rn:RO1070"

[[1]1]1$link
[1] "http://www.kegg.jp/dbget-bin/www_bget?4.1.2.13"

[[1]1]$graphics
[[1]]$graphics$name
[1] "4.1.2.13"

[[1]1]$graphics$fgcolor
[1] "#000000"

[[1]1]$graphics$bgcolor
[1] "#BFBFFF"

[[1]]$graphics$type
[1] "rectangle"

[[1]]1$graphics$x
[1] nqag83n

[[1]1]$graphics$y
[1] "A04"

[[1]]1$graphics$width
[1] II46II

[[1]]1$graphics$height
[1] nq7n

[[1]]1$graphics$coords
[1] "unknow"

[[1]]1$component
[1] "unknow"

> #the first relation information of the pathway

> pl[117[[3]1][1]

[[11]
[[1]]$entryl
[1] nwzqn

[[1]]$entry2
[1] nzan

[[1]1]1$type
[1] "ECrel"

[[1]11$subtype
[[11]$subtypel[[1]]
[[1]1]$subtypel[1]]$name
[1] "compound"

[[1]1]1$subtypel[[1]1]1$value
[1] |l87n

> #the first reaction information of the pathway

> pll177[[41][1]

[[1]1]
([1]1]$id
[1] I|37|l

[[1]]$name
[1] "rn:R0O0710"

[[11]$type
[1] "reversible"

[[1]]$substrate
[[1]]1$substrate[[1]]
[[1]]$substrate[[1]]1$id
[1] "102"

[[1]]$substrate[[1]]$name
[1] "cpd:C00084"

[[1]]1$product
[[1]]1$product [[1]]
[[1]1]$product[[1]1]$id
[1] "4o"

[[1]]1$product[[1]] $name
[1] "cpd:C00033"

2.2 Convert metabolic pathways to graphs
2.2.1 The method to convert metabolic pathways to graphs

The function getMetabolicGraph can convert metabolic pathways to graphs. A result graph mainly
contains three types of nodes: compounds, gene products (enzymes, KOs, or genes encoding them),
and maps that represent pathways linked with the current pathway. Edges are mainly constructed
from reactions. Specially, if a compound participates in a reaction as a substrate or product, a di-
rected edge connects the compound node to the reaction node (enzymes, KOs, or genes). That is,
substrates of a reaction are connected to the reaction node (enzymes, KOs, or genes) and the reaction
node is connected to products. For substrates, they are directed toward the reaction node. For prod-
ucts, the reaction node is directed toward them. Reversible reactions have twice edges of irreversible
reactions. The conversion strategy of pathway graphs has the advantage that graph algorithms and
standard graph drawing techniques can be used. More importantly, almost all information can be ef-
ficiently stored in the kind of graph model. The similar strategy is also adopt by many study groups
[Smart et ol, 2008| [Klukas and Schreiber, 2007, |Goffard and Weiller, 2007, |Goffard and Weiller, 2007,
Koyuturk et al., 2004].

In addition, a compound and a linked map will be connected by an edge if they have relationships get
from relation element of the KGML file. Other information such as node attribute, pathway attribute
(e.g., pathway name), etc. are converted to attribute of graph.

The following commands can convert metabolic pathways to graphs.

> #get path of the KGML files

> path<-paste(system.file(package="iSubpathwayMiner"),
+ "/localdata/kgml/metabolic/ec/",sep="")

> #convert pathways to a list in R

> p<-getPathway(path,c("ec00010.xml1","ec00020.xm1"))
> #convert metabolic pathways to graphs

> gm<-getMetabolicGraph (p)

The following commands can visualize the graph of the Glycolysis / Gluconeogenesis pathway. Figure
shows the result graph. In the figure, the blue rectangle nodes represent enzymes. The circle nodes
represent compounds. The white rectangle nodes represent maps.

> #name of graph gm[[1]]
> gm[[1]]$title

[1] "Glycolysis / Gluconeogenesis"

> #visualize
> plotGraph(gm([[1]])

For a pathway graph, the function summary can print the number of nodes and edges, names of node
and edge attributes, and whether the graph is directed as follows:

> summary(gm[[1]])

Vertices: 94

Edges: 183

Directed: TRUE

Graph attributes: name, number, org, title, image, link.

Vertex attributes: name, id, names, type, reaction, link, graphics_name, graphics_fgcolor, graphics_bg
No edge attributes.

The function print can display the information similar to the function summary. In addition, the
function also displays edges, graph attributes, node attributes, and edge attributes. The following
command prints all information of a pathway graph:

> print(gm[["00010"]],v=TRUE, e=TRUE, g=TRUE)

Because the pathway graph is usually too large, here we only display its subgraph with five nodes in
order to save page space.

> #display a subgraph with 5 nodes.
> sgm<-subgraph(gm[[1]],V(gm[[1]])[1:5])
> print (sgm,g=TRUE, v=TRUE, e=TRUE)

Vertices: 5
Edges: 5
Directed: TRUE
Graph attributes:

TITLE:GchonIuconeogenesis

Pentose hate pathwi

‘

Carbon fixation in

Citrate ¢ 7
02p 1.1 00186

Propandate fetabolism

Figure 1: The Glycolysis / Gluconeogenesis pathway graph.

[[name]]
[1] "path:ec00010"
[[number]]
[1] "ooo10"
[[orgl]
[1] "ec"
[[titlel]
[1] "Glycolysis / Gluconeogenesis"
[[image]]
[1] "http://www.genome. jp/kegg/pathway/ec/ec00010.png"
[[1ink]]
[1] "http://www.genome.jp/kegg-bin/show_pathway?ec00010"
Vertex attributes:
name id names type reaction
[0] 37 37 ec:1.2.1.3 enzyme rn:R00710
[1] 38 38 ec:6.2.1.13 enzyme rn:R00229
[2] 39 39 ec:1.2.1.5 enzyme rn:R0O0711
[31 40 40 cpd:C00033 compound unknow

[4] 41 41 path:ec00030 map unknow

link graphics_name
[0] http://www.kegg.jp/dbget-bin/www_bget?1.2.1.3 1.2.1.3
[1] http://www.kegg.jp/dbget-bin/www_bget?6.2.1.13 6.2.1.13
[2] http://www.kegg.jp/dbget-bin/www_bget?1.2.1.5 1.2.1.5
[3] http://www.kegg.jp/dbget-bin/www_bget?C00033 €00033

[4] http://www.kegg.jp/dbget-bin/www_bget?ec00030 Pentose phosphate pathway
graphics_fgcolor graphics_bgcolor graphics_type graphics_x graphics_y

(o] #000000 #BFBFFF rectangle 289 943

[1] #000000 #BFBFFF rectangle 146 911

[2] #000000 #BFBFFF rectangle 289 964

(3] #000000 #FFFFFF circle 146 953

[4] #000000 #FFFFFF roundrectangle 656 339
graphics_width graphics_height graphics_coords

[0] 46 17 unknow

[1] 46 17 unknow

[2] 46 17 unknow

(3] 8 8 unknow

[4] 62 237 unknow

Edges and their attributes:

[0] '37' -> '40'
[1] '40' -> '37"
[2] '38' -> '40"
[3] '39' -> '40°
[4] '40' -> '39"

2.2.2 Some simple examples of operating pathway graphs

Since pathways can be converted to graphs, many analyses based on graph model are available by using
the functions provided in the igraph package. For example, we can get subgraph, degree, shortest path,
etc. Detailed information will be introduced in the section Here, we only give some examples of
operating graphs, which are very important for effectively interpreting and operating pathway graphs.

10

We can get the name and number of the pathway, as follows:
> gm[[1]]$title
[1] "Glycolysis / Gluconeogenesis"
> gm[[1]]$number
[1] "oo010"

We can get the attribute value of a node. In all attributes, the "names” attribute is the most important.
It makes us able to identify the cellular components the node includes. Its values are usually the
identifiers of compound, enzyme, gene, or KO, etc. The following commands can get "names” attribute
of the second node:

> V(gm[[1]]) [2] $names
[1] "ec:6.2.1.13"

The result shows that the second node is the enzyme identifier. We can also use another method to get
“names” attribute of the node

> get.vertex.attribute(gm[[1]], "names",2)
[1] "ec:6.2.1.13"

We can get other attributes. For example, the following command gets the "type” attribute of the
second node:

> V(gm[[11]) [2]$type
[1] "enzyme"

The result shows that the second node is the enzyme.

An important application is to identify some nodes that meet the certain conditions. For example,
one is likely to want to find the enzyme "ec:4.1.2.13” and ”ec:1.2.1.59” in pathway graph "00010”, and
then calculate the shortest path between them in the graph. One may also want to identify the enzyme
7ec:4.1.2.3”, and then calculate its betweenness, which represents the importance of the node.

In order to do these, one firstly needs to get indexes of interesting nodes. Node indexes are used
as input of most of functions in igraph package. We then use functions in the igraph package (e.g.,
get.shortest.paths, betweenness, etc.) to get the analysis results. The following commands get indexes
of nodes with "names”’="ec:4.1.2.13” and "ec:1.2.1.59” in graph "00010”, then calculate shortest path of
them.

> #iget indexes of nodes

> index1<-V(gm[[1]]1) [V(gm[[1]])$names=="ec:4.1.2.13"]

> index2<-V(gm[[1]]1) [V(gm[[1]])$names=="ec:1.2.1.59"]

> #iget shortest path

> shortest.path<-get.shortest.paths(gm[[1]],index1, index2)
> #display shortest path

> shortest.path

[[1]1]
[1] 0 88 80

11

> #convert indexes to names
> V(gm[[1]]) [shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" ‘"ec:1.2.1.59"

Calculate betweenness of the enzyme "ec:4.1.2.3”.

> index1<-V(gm[[1]]) [V(gm[[1]])$names=="ec:4.1.2.13"]
> betweenness(gm[[1]],index1)

[1] 1756.746

Note that we should see node index value using the function as.integer. The direct display is not
real node index value, but the value of the ”id” attribute of nodes.

> #node index value
> as.integer (index1)

(11 o

> #direct display is not real node index value.
> index1

Vertex sequence:
[1] ||13n

> #it is equal to the value of the "id" attribute.
> index1$id

[1] nq3n

2.3 Convert non-metabolic pathways to graphs
2.3.1 The default method to convert non-metabolic pathways to graphs

The function getNonMetabolicGraph can convert non-metabolic pathways to directed graphs. An result
graph mainly contains two types of nodes: gene products (KOs) and maps that represent pathways
linked with the pathway graph. Sometimes, there are several compounds in pathways such as IP3,
DAG, cAMP, ca+, etc. Edges are obtained from relations. In particular, two nodes are connected by an
edge if they have relationships get from relation element of the KGML file. The relation element specifies
relationships between nodes. For example, the attribute PPrel represents protein-protein interaction
such as binding and modification. Other information such as node attribute, pathway attribute, etc.
is converted to attribute of graphs. The following commands can convert non-metabolic pathways to
graphs. The result graph of the MAPK signaling pathway is shown in Figure

#get path
pathn<-paste(system.file(package="iSubpathwayMiner"),
"/localdata/kgml/non-metabolic/ko/",sep="")
pn<-getPathway (pathn, c ("ko04010.xm1", "k0o04020.xm1"))
#Convert pathways to graphs
gnl<-getNonMetabolicGraph (pn)

#name of the first pathway

gni[[1]]$title

V VV VYV + VYV

[1] "MAPK signaling pathway"

> #visualize
> plotGraph(gn1[[1]])

12

'ITLE:MAPaling pathway
Phosphatidylinl signaling system

CO0RTS 044 ° — aqh2ss|
<gg§u1
- JE otokr
:-& e K0435 // / Bo43ia
043¢ .f -y -
<,...f JOe3i030j283 (04366 i3 MO43H "m’ Q043 78=2K04379
1 404363.. ‘ 2 ¢ s l p ‘ 77
Kﬁgalh“iﬁaﬁﬁg ‘QHE“Z 044534 gall
K04348B...
<m o
o44 ' 7 ks
4' 74 44 e 9
= X @5

B

04375 céll oycle

044953 sigaling pathway Asi

043 (6

0aas?
04153

.-'______>——4 4
.
04405

Figure 2: The MAPK signaling pathway graph with ambiguous edges as bi-directed.

13

2.3.2 The alternative method to convert non-metabolic pathways to graphs

In non-metabolic pathways, there are usually many different types of edges between nodes. There
are four fundamental types of edges including ECrel (enzyme-enzyme relation), PPrel (protein-protein
interaction), GErel (gene expression interaction) and PCrel (protein-compound interaction). Each fun-
damental type usually contains many subtypes such as compound, hidden compound, activation, inhi-
bition, expression, repression, indirect effect, state change, binding/assoction, dissociation, and missing
interaction. Detailed information is provided in http://www.genome. jp/kegg/xml/docs/.

According to these substypes, we can obtain edge direction. For example, "activation” means that
protein A activates B (A—>B). However, not all types of edges have definite direction. For example,
"binding/association” means that there is the binding or association relation between protein A and
protein B but we don’t know A—>B or B—>A. In addition, an edge is also likely to have no subtype and
thus we can’t know its direction. The argument ambiguousEdgeDirection can define direction of am-
biguous edges according to subtype of edges. Users firstly define which subtype of edges are considered
as ambiguous edges by setting the argument ambiguousEdgeList. The default ambiguous edges include
“compound”; ”hidden compound”, "state change”, "binding/association”, "dissociation”, and "unknow”.
Then users can define their direction through setting the value of the argument ambiguousEdgeDirection
as one of "single”, "bi-directed” or "delete”, which means to convert ambiguous edges to "—>7, "<—>",
or to delete these ambiguous edges. The default value is "bi-directed”.

The following commands convert pathways to graphs with ambiguous edges deleted. The result
graph of the MAPK signaling pathway is shown in Figure [3] Compared with Figure [2] some edges are
deleted such as edges related with the compound "C00076” because the default ambiguous edges include
”compound”.

> #Convert pathways to graphs with ambiguous edges as deleted
> gn2<-getNonMetabolicGraph (pn,ambiguousEdgeDirection="delete")
> #visualize

> plotGraph(gn2[[11])

The function getNonMetabolicGraph has also some other arguments. For example, the argument
simpleGraph can be used to obtain simple graphs (see the section [2.4.6]). The default value is TRUE.

2.4 Convert pathway graphs to other derivative graphs

After using the function getMetabolicGraph or getNonMetabolicGraph to convert pathways to graphs,
users can change these pathway graphs to other derivative graphs. To do it, we develop the function
getUGraph, mapNode, filterNode, simplifyGraph, mergeNode, getSimpleGraph, and expandNode. Through
these functions, many graph-based reconstruction strategy of pathways can be done such as constructing
undirected graphs (Figure 7 organism-specific and idType-specific graphs (Figure , the metabolic
graph with enzymes (compounds) as nodes and compounds (enzymes) as edges (Figure m and , etc.
Furthermore, the combination of these functions can also get more useful graphs from pathway data
(see the section . The following section will detailedly introduce the usage of the related functions.

We firstly construct metabolic pathway graphs (gm) and non-metabolic pathway graphs (gn) as
examples of input data. The commands are as follows:

##get metabolic pathway graphs

#get path of KGML files
path<-paste(system.file(package="iSubpathwayMiner"),
"/localdata/kgml/metabolic/ec/",sep="")

#convert metabolic pathways to graphs
gu<-getMetabolicGraph(getPathway (path,c("ec00010.xm1")))
#show title of pathway graphs

sapply(gm,function(x) x$title)

VVVYV +VVyV

14

http://www.genome.jp/kegg/xml/docs/

'ITLE:MAPaling pathway
Phosphatidylinl signaling system

s caoprs
02582

;. k(43440801
{043% 0431 &
‘,...“ 640308 --

0435o0A3G.

{08052 7
K0434p--#08053 <>
04448
0aa
4450

-043 (5 &
4044553 sig haling pathway A S(ijle
o :

'- 043 6
i.. ot

k1337544043852
veY _____>__044 04
ceroniah e
k04405

donat:

ottt

Figure 3: The MAPK signaling pathway graph with ambiguous edges as single directed. For example,
edges related with the compound ”C00076” were deleted compared with Figure [2]

15

00010
"Glycolysis / Gluconeogenesis"

##get non-metabolic pathway graphs

#get path

pathi<-paste(system.file(package="iSubpathwayMiner"),
"/localdata/kgml/non-metabolic/ko/",sep="")

#convert non-metabolic pathways to graphs

gn<-getNonMetabolicGraph (getPathway (pathl,c("k004010.xm1", "k004020.xm1")),
ambiguousEdgeDirection="bi-directed")

#show title of pathway graphs

sapply(gn,function(x) x$title)

VV+ VYV +ViVy

04010 04020
"MAPK signaling pathway" "Calcium signaling pathway"

Note that the variable gm is a list of metabolic pathway graphs. The variable gn is a list of non-metabolic
pathway graphs.

2.4.1 Convert pathway graphs to undirected graphs

The function getUGraph can convert directed graphs to undirected graphs. The following commands can
get the undirected simple pathway graph (see Figure [4] for the result graph).

> #iget undirected pathway graphs

> gl<-getUGraph (gm,simpleGraph=TRUE)
> #visualzie an undirected graph

> plotGraph(gl[[1]])

Converting directed graphs to undirected graphs may cause multiple edges. Through setting the argu-
ment simpleGraph value as TRUE, these edges can be merged by calling the function getSimpleGraph
(see the section , and finally simple graphs will be obtained. The default value of the argument
simpleGraph is TRUE.

2.4.2 Map current organism-specific gene identifiers to nodes in pathway graphs

The function mapNode can map current organism-specific gene identifiers to nodes of graphs. We can
use the function getOrgAndIdType to know the type of organism and identifier in the current study:

> getOrgAndIdType ()
[1] "hsa" "ncbi-geneid"

The result means that the type of organism and identifier in the current study are Homo sapiens (hsa)
and Entrez gene identifiers (NCBI-geneid), which is the default value of the system (see the section ?7?).

The following commands use the function mapNode to map human gene identifiers (NCBI-geneid) to
nodes in pathway graphs. Figure shows the result graph of Glycolysis / Gluconeogenesis pathway after
performing the function. We can see the value of names attribute of some nodes revised. Green rectangle
nodes are those that can correspond to gene identifiers, suggesting that these nodes are enzymes that
human genes can encode. White rectangle nodes are those that can’t correspond to gene identifiers,
indicating that they may not be enzymes which human genes can encode. Therefore, the graph can be
considered as human Glycolysis / Gluconeogenesis pathway graph.

> #see the names attribute of nodes.
> V(gm[[1]]) [1:10]$names

16

TITLE:GchonIuconeogenesis

Starch and se metabolism

345

4
05

Pentose hate pathwi

fizl-capss

Carbon fixation in

42101
eaoos

C@ :11.1. 9
Pyruvafe metabolism

Citrate cycle (ECA cycle)

Tt o022 —+{LLpr—eqbise

Propandate fetabolism

Figure 4: The undirected graph of the Glycolysis / Gluconeogenesis pathway.

17

[1] "ec:1.2.1.3" "ec:6.2.1.13" '"ec:1.2.1.5" "cpd:C00033" "path:ec00030"
[6] "path:ec00500" "ec:4.1.1.1" "ec:1.1.1.2" "ec:1.1.1.1" "ec:4.1.1.1"
> #get the organism-specific and idType-specific graph
> gl<-mapNode (gm)
> #see the names attribute of nodes in the new graph.
> #some node names are revised as NCBI-gene IDs
> V(g1[[1]])[1:10]$names
[1] "217 219 223 224 501" "ec:6.2.1.13"
[3] "218 220 221 222" "cpd:C00033"
[5] "path:ec00030" "path:ec00500"
[7] "ec:4.1.1.1" "10327"
[9] "124 125 126 127 128 130 131" "ec:4.1.1.1"

> #visualize the Glycolysis / Gluconeogenesis pathway graph
> plotGraph(g1[[1]])

The result graph has many changes. In particular, the names attribute value of nodes that can cor-
respond to gene IDs are replaced as the corresponding gene IDs. Accordingly, the values of type
attribute of nodes are revised to "gene”. The values of attribute graphics name, graphics_fgcolor, and
graphics_bgcolor are also resived. Finally, pathway graphs will be converted to organism-specific graphs
as well as idType-specific ones.

In fact, there are the KGML files of most organism-specific pathways in KEGG and the files are
stored in KEGG ftp site |ftp://ftp.genome. jp/pub/kegg/xml/kgml/metabolic/organisms. Our
method can get the results similar to KEGG organism-specific pathways. Most organism-specific
pathway graphs can also be supported by using the function updateOrgAndIdType to change the cur-
rent organism. Compared with KEGG organism-specific pathways, our method can map many dif-
ferent cross-reference identifiers (e.g., NCBI-geneid, NCBI-gi) to nodes by using the function update-
OrgAndIdType to change the current idType. In the XML files of KEGG organism-specific pathways
ftp://ftp.genome. jp/pub/kegg/xml/kgml/metabolic/organisms, only KEGG gene identifiers are
available. The function mapNode can automatically convert reference pathway graphs to organism-specific
pathway graphs. So, the method may be more convenient in obtaining organism-specific pathways than
downloading large numbers of pathway data from KEGG ftp site ftp://ftp.genome. jp/pub/kegg/
xml/kgml/metabolic/organisms. Moreover, gene identifiers such as NCBI-geneid are also more pop-
ular compared with KEGG gene IDs.

2.4.3 Filter nodes of pathway graphs

The function filterNode is used to filter "not interesting” nodes. For example, it may be necessary to
ignore nodes with type="map” when focusing on components such as compounds and gene products.
The function will delete nodes according to the argument nodeType and thus related edges are also
deleted.

The following commands can delete nodes whose types are "map”. Figure [6] shows the result graph
of the MAPK signaling pathway after deleting nodes with type="map”.

> #We display them before nodes are filtered
> V(gn[[11])$type

[1] "compound" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"
[7] "compound" "compound" "compound" "compound" "ortholog" "ortholog"
[13] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"
[19] "ortholog" "ortholog" "ortholog" "ortholog" "ortholog" "ortholog"

18

ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms

TITLE:GchonIuconeogenesis

‘

Carbon fixation in

Citrate ¢

i 62113 COBPM—HL739—8L5072
Coopae—— 15

hate pathwi

Figure 5: The organism-specific and idType-specific graph (org:human, idType:NCBI-geneid). The

graph can be considered as human Glycolysis / Gluconeogenesis pathway graph.

19

[25]
[31]
[37]
[43]
[49]
[55]
[61]
(671
[73]
[79]
[85]
[91]
[97]
[103]
[109]
[115]
[121]
[127]
[133]

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"map
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"map
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"map
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

> #delete nodes with type="map"
> gl<-filterNode (gn,nodeType=c("map"))
> #The "map" nodes are deleted in the new graph.

> V(g1[[1]])$type

(1]
(7]
[13]
[19]
[25]
[31]
[37]
[43]
[49]
[55]
[61]
[67]
[73]
[79]
[85]
[91]
[97]
[103]
[109]
[115]
[121]
[127]

"compound"
"compound"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"compound"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

> #visulize the graph
> plotGraph(g1[[1]])

The following commands can delete nodes whose types are not genes or gene products

"ortholog"
"compound"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"map
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"compound"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

20

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"map
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
llmapll

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"
"ortholog"

cafieoes K...——rr
04345

<O43HO

+b
" \ ~TR0O4358...
‘m 1. sazaposols p3s]
.-. x_ '. 02677 \>
D187 IR L7 afms
mz; osopax %‘E’

{043%

S
=
@

436
64365 . —
K0434p-— m {04352

SN

g)
oast
Qoaaos
Kh!al./// 5
FReTR—— <
K04 .I"llﬁ'\;::\ ‘ﬂa!

n. N~

-"\‘- 02308
CO0B38-K04391 — — — Re>=—— ’,

7y > 2
iw
,l‘;‘:-‘ L

4

i ‘“ 6 S 80445
%04443."
(04428 . 04445R043Y
<r {05866

{04468

Figure 6: The MAPK signaling pathway graph after deleting nodes with type="map”

21

> g2<-filterNode (gn,nodeType=c("compound", "map"))

We can also filter nodes of metabolic pathway graph using the function. For metabolic graphs, it is
fit to filter nodes with type="map”. However, it is generally not suitable to use the function to filter
compounds or gene products because most of related edges are deleted when node disappears. We can
instead use the function simplifyGraph to get graphs with gene products as nodes and compounds as
edges (see the section simplifyGraphsection).

2.4.4 Simplify pathway graphs as graphs with only gene products (or only compounds)
as nodes

When we focus on gene products, compounds may be not important. Similarly, gene products may
be not important when focusing on metabolites (compounds). For metabolic pathway graphs, a useful
approach is to get graphs with gene products (or compounds) as nodes and compounds (gene products)
as edges.

The function simplifyGraph can convert pathways to graphs with gene products (or compounds)
as nodes and compounds (or gene products) as edges. We take an example of constructing metabolic
pathway graphs with enzymes as nodes and compounds as edges. Firstly, all enzymes in a pathway
graph are used as nodes. For undirected, two nodes are then connected by an edge if their corresponding
reactions have a common compound. For directed, two nodes are connected by an edge if their cor-
responding reactions have a common compound and two nodes are reachable through the compound.
Finally, compound information is added into edge attribute of new graphs. Similarly, a metabolic path-
way graph can be converted to a graph with compounds as nodes. Two nodes are connected by an edge
if they belong to the same reaction. Enzyme information is added into edge attribute of new graphs.

The following commands construct pathway graphs with enzymes as nodes and compounds as edges.

> #iget graphs with enzymes as nodes and compounds as edges
> gl<-simplifyGraph (gm,nodeType="geneProduct")

> #see the names attribute of three edges

> E(g1[[1]]) [1:3]$names

[1] "cpd:C05378" "cpd:C00118" "cpd:C00118"

> #visualize a graph
> plotGraph(g1[[1]],edge.label=E(g1[[1]]) [1:3]$names)

As showed in Figure[7] the result show that nodes are enzymes and edges represent compounds shared
by them.

The following commands construct graphs with compounds as nodes and enzymes as edges. As
showed in Figure [§] nodes are compounds and edges represent enzymes catalyzing the corresponding
reaction.

> #iget graphs with compounds as nodes and enzymes as edges
> g2<-simplifyGraph (gm,nodeType="compound")

> #see the names attribute of three edges

> E(g2[[1]]) [1:3] $names

[1] "ec:6.2.1.1" "ec:2.7.1.69" "ec:5.4.2.2"

> #visualize a graph
> plotGraph(g2[[1]],edge.label=E(g2[[1]]) [1:3]$names)

22

Figure 7: The graph with enzymes as nodes and compounds as edges.

23

36

97

Cp0p31

compse e0074

68

/‘Q + l

coopgs e eop eoz6
eCIZI.l.GQ 72 l

C00038 e £00084 £00469

Figure 8: The graph with compounds as nodes and enzymes as edges.

24

The function can also be applied to non-metabolic pathway graphs. In non-metabolic pathways, most
of nodes are gene products and only several nodes are compounds. For example, in the calcium signaling
pathway (Figure , most of nodes are gene products. But several nodes are compounds (e.g., ca2+).
They usually interact with other gene products (Figure . Sometimes, for non-metabolic pathways,
we may want to construct graphs with gene products as nodes and maintain these indirect edges that
share the same compound. To do it, we can use the function simplifyGraph to simplify graphs to those
with gene products as nodes and maintain two kinds of edges: direct edges and indirect edges. The
function simplifyGraph obtains indirect edges. The argument directEdge is used to determine whether
direct edges should be obtained together.

The following commands can convert non-metabolic pathways to graphs with gene products as
nodes. The nodes are connected by an edge if they have direct relations or share a compound. Figure
|§| shows the result graph. We can compare it with graph before conversion (Figure .

#get the graph with gene products as nodes.

#Edges contain direct and indirect edges
g3<-simplifyGraph(gn,nodeType="geneProduct",directEdge=TRUE)
#visualize the new graph

plotGraph(g3[[2]])

vV V. Vv VvV

[1] "Calcium signaling pathway"

2.4.5 Expand nodes of pathway graphs

In pathways, some nodes may have multiple components, which are considered as components of "par-
alogues”. For example, node PDE, which is the enzyme node in Purine metabolism (ec00230), maps
to two enzymes: PDE (ec:3.1.4.17) and cGMP-PDE (ec:3.1.4.35). The function expandNode is just used
to expand those nodes with multiple components. Users can select which types of nodes are expanded
using the argument nodeType. The default values represent that all nodes are expanded. The following
commands expand nodes of non-metabolic pathway graphs:

> #We firstly display node number before nodes are expanded
> veount (gn[[1]])

[1] 133

> ##expand nodes in Graphs

> gil<-expandNode (gn)

> #We can see change of node number in the new graph:
> #node number after nodes are expanded

> veount (g1[[1]])

[1] 197

After carrying out the function expandNode, a node is usually expanded into many nodes. It is
difficult to display the expanded graphs using the KEGG style because coordinates of new nodes can’t
be defined effectively. Therefore, we suggest that users had better use other automatically layout
methods to visualize the expanded graphs (e.g., the “sphere” style, see the section . The following
commands display the expanded graph of the MAPK signaling pathway using the ”sphare” style.

> plotGraph(g1[[1]],layout=1layout.sphere)

25

)

A

5
\}

7

7

R

\.&v’c.

D

O
R
/ /,M/w \

%
0

/

0

i,

S Y
P)

7
J

K0436LL...

4 .\&

-@ _m

K026

s

Figure 9: The graph of the calcium signaling pathway with gene products as nodes. Edges contain

direct edges and indirect edges that get from shared compound.

26

TITLE:CaIciunaIing pathway

colp05849

{05850
K 4 j-
1,‘

K0485Q...
K04344 MAPK sig pathway
K04854
A sis
K04808:-
Long—tetentiation

Long—tepression

05857
K04361L... i
‘4w 5
_ j05850< 5~
{7 X

p<)
. 605 75— K058\

‘W sphatidylinl signaling s
ozst 7

Figure 10: The calcium signaling pathway graph before conversion.

27

oG

ko lrffm: KO ST /4
2 G (SN
AW
kofK04874 \ ‘45,‘“"‘\\\’;
IO o

BN TN

DTIAS
»: &g\\ﬁ;\v"?"é}d! dkoTER:
PORR Y K\‘ A\‘:\Yéd““‘a!!t"iﬂm.ﬁ.n B64
P 376 N Y — T RO

N Y75
O LT

\" \ ‘\“,w. ‘«!,‘ thd e na 4
L AR SR R L HiiK04p
‘%’*ﬁ\\\- '.R‘\\\\\Vﬁ[b\\‘ WK N ‘li"‘ TRa1K0430
T AN ,“F»%'.smm@sm B63

e
!'Q"l. Hko04210

')é 1;";"-’, 862
N 4
ok T\ K y"’l Q’

\ A QV "»:\\\\E[v."“\\v \i‘ e 4110
Wi N

7
GK07|

S

KO3

/‘}‘1.”) ?’{:‘ “':i%\" KO :\ N

kofK04B76/4fic1 2R | | HNIKO4HS
E o

‘\\‘ m!

D

4!@.%* :

e
H—RBIK04861

2N SKOTBE1/ P)
| ’ﬁ;é‘\éll(/@@m

Z
e

77

,"72 7
L

R
1/ |~ gt
‘:!5“‘ : :ﬁ. alakod4010
a K04859
LA 82

Figure 11: The expanded graph of the MAPK signaling pathway. The graph is displayed using the
“sphare” style

28

The result graph shows in Figure

The argument nodeType can determine which types of nodes should be expanded. Expanding nodes
with certain node types is also available. The following commands only expand nodes that belong to
gene products.

> #only expand nodes with type="enzyme" or "ortholog" in graphs
> g2<-expandNode (gn,nodeType=c ("ortholog", "enzyme"))

2.4.6 Get simple pathway graphs

If a graph is simple, it does not contain loop or/and multiple edges. A loop edge is an edge where the
two endpoints have the same node (vertex). Two edges are multiple edges if they have exactly the same
two endpoints. If graphs are not simple, some graph-based algorithms may be not applied. We can use
the function getSimpleGraph to get a simple graph. Note that information of multiple edges is kept in

edge attribute using ”;” as separator.
The function is.simple can check whether a graph is simple as follows:

> all(sapply(gm,is.simple))

[1] TRUE

2.4.7 Merge nodes with the same names

A pathway usually includes some nodes with the same names. For example, an enzyme may appear
repeatedly in a pathway. As shown in Figure [1} the Glycolysis / Gluconeogenesis pathway contain
enzymes that appear repeatedly such as 2.7.1.69, 4.1.1.1, etc. The function mergeNode can merge those
nodes with the same names. Therefore, each node in the result graph will has unique name. The edges
of the merged nodes are obtained from edges of original nodes. After nodes are merged, multiple edges
or loops may appear. The argument simpleGraph can delete them, which will return simple graphs (see
the section [2.4.6]). The following commands can get the graph in which nodes with the same names are
merged.

> #get node number before merge
> vcount (gm[[1]])

[1] 94

> #merge nodes

> gl<-mergeNode (gm,simple=FALSE)
> #iget node number after merge
> vcount(g1[[1]])

[1] 83

> #visualize
> plotGraph(g1[[1]])

The result is shown in Figure

29

TITLE:GchonIuconeogenesis

Starch and se metabolism

2\7.1. 03
4.2|12
13 7.1. 31
63—
.1.147
13 5/1.3.
COP—H7a
Pentose phosphate pathwi
CooL i PER T
cst ot
coo 8

Carbon fixation in[pho

4.2

00631
i
g

Citrate ¢

022——1.1.p7——E00186

Propandate fnetabolism

Figure 12: The graph in which nodes with the same names are merged.

30

2.5 The integrated application of pathway reconstruct methods

In the section, we have provided some examples for converting pathways to graphs using the combina-
tion of graph conversion functions including getUGraph, mapNode, filterNode, simplifyGraph, mergeNode,
getSimpleGraph, and expandNode, etc. Through the combination of these functions, many conversion
strategies of pathway graphs can be implemented.
The section introduces the 24 examples of pathway graphs. They include enzyme-compound (KO-
compound) pathway graphs (Figure 15| and [20), enzyme-enzyme (KO-KO)
pathway graphs (Figure and [28), compound-compound pathway graphs
(Figure and [32)), organism-specific gene-gene pathway graphs (Figure and [36),
etc. These examples represent current major applications [Smart et al., 2008 [Schreiber et al., 2002]
Klukas and Schreiber, 2007, [Kanehisa et al., 2006}, |Goffard and Weiller, 2007, [Koyuturk et al., 2004, |Hung et al., 2010,
Xia and Wishart, 2010,|Jeong et al., 2000,|Antonov et al., 2008] |Guimera and Nunes Amaral, 2005|,Draghici et al., 2007,
Li et al., 2009, [Ogata et al., 2000, [Hung et al., 2010l Barabasi and Oltvai, 2004]. In the following sub-
section, we will detailedly introduce the combination usage of the graph conversion functions.

2.5.1 Example 1: enzyme-compound (KO-compound) pathway graphs

For metabolic pathways, the following commands can get pathway graphs with enzymes and compounds
as nodes.

> #iget graphs with enzymes and compounds as nodes
> gl<-filterNode (gm,nodeType=c("map"))

> #visualize

> plotGraph(gl[[1]])

Figure [13|shows the result graph of the Glycolysis / Gluconeogenesis pathway. Compared with original
pathway graph (Figure , the "map” nodes disappear in the new graph.

If we apply the above method to all metabolic pathways, we can get all metabolic pathway graphs
with enzymes and compounds as nodes. To do it easily, we have developed the function getMetabol-
icECCOGraph. The following command can use the function to get all metabolic pathway graphs with
enzymes and compounds as nodes.

> #iget all metabolic pathway graphs with enzymes and compounds as nodes
> graphList<-getMetabolicECCOGraph ()

The result of the function are equal to the result of the following commands:

#get all metabolic pathway data

metabolicEC<-get ("metabolicEC",envir=k2ri)

##write the results to tab delimited file.

graphList<-filterNode (getMetabolicGraph(metabolicEC) ,nodeType=c("map"))

vV VvV VvV

The variable metabolicEC stores all metabolic pathway data (see the section . The variable graphList
stores all metabolic pathway graphs with enzymes and compounds as nodes.

The following commands can get the corresponding undirected graphs, that is, the undirected graphs
with enzymes and compounds as nodes. The function getMetabolicECCOUGraph can get all results.

> #liget the undirected graphs with enzymes and compounds as nodes
> g2<-filterNode (getUGraph (gm) ,nodeType=c ("map"))

> #visualize

> plotGraph(g2([[1]1])

31

Figure 13: The Glycolysis / Gluconeogenesis pathway graph with enzymes and compounds as nodes.
Compared with original pathway graph (Figure , the "map” nodes disappear in the new graph.

32

S ——C T

5.4.212

- .- 00031
‘w- 68

c5p7a—{Bale—eop72

Figure 14: The undirected Glycolysis / Gluconeogenesis pathway graph with enzymes and compounds
as nodes. Compared with original pathway graph (Figure , the "map” nodes disappear in the new
graph and edges are undirected.

33

Figure [14] shows the result graph of the Glycolysis / Gluconeogenesis pathway.

The following commands can get graphs with enzymes and compounds as nodes, in which each node
only contains one enzyme/compound and each enzyme/compound only appears once. The function
getMetabolicECCOEMGraph can get all results.

> #iget graphs with enzymes and compounds as nodes

> #And, each node only contains one enzyme/compound and

> #each enzyme/compound only appears once in the graph.

> g3<-mergelNode (expandNode (filterNode (gm,nodeType=c ("map"))))
> #visualize

> plotGraph(g3[[1]1])

Figure [15|shows the result graph of the Glycolysis / Gluconeogenesis pathway. Compared with original
pathway graph (Figure , the "map” nodes disappear in the new graph. Moreover, each node only
contains one enzyme/compound and each enzyme/compound only appears once in the graph.

The following commands can get the corresponding undirected graphs. The function getMetabol-
icECCOUEMGraph can get all results.

#get the undirected graphs with enzymes and compounds as nodes

#And, each node only contains one enzyme/compound and

#each enzyme/compound only appears once in the graph.

g4<-mergeNode (expandNode (filterNode (getUGraph (gm) ,nodeType=c ("map"))))
#visualize

plotGraph(g4[[1]])

V V.V Vv Vv Vv

Figure [16| shows the result graph of the Glycolysis / Gluconeogenesis pathway.
For non-metabolic pathways, the following commands can get graphs with KOs and compounds as
nodes. The function getNonMetabolicK0COGraph can get all results.

> #iget graphs with KOs and compounds as nodes
> gb<-filterNode (gn,nodeType=c("map"))

> #visualize

> plotGraph(g5[[1]])

Figure shows the result graph of the MAPK signaling pathway. Compared with original pathway
graph (Figure , the "map” nodes disappear in the new graph.

The following commands can get the undirected graphs with KOs and compounds as nodes. The
function getNonMetabolicECCOUGraph can get all results.

> #get the undirected graphs with KOs and compounds as nodes
> g6<-filterNode (getUGraph(gn),nodeType=c("map"))

> #visualize

> plotGraph(g6([[1]])

Figure [18| shows the result graph of the MAPK signaling pathway.

The following commands can get graphs with KOs and compounds as nodes. And, each node only
contains a KO/compound and each KO/compound only appears once in the graph. The function
getNonMetabolicKOCOEMGraph can get all results.

#get graphs with KOs and compounds as nodes

#And, each node only contains a KO/compound and

#each KO/compound only appears once in the graph.
g7<-mergeNode (expandNode (filterNode (gn,nodeType=c("map"))))
#visualize

plotGraph(g7[[1]],layout=layout.sphere)

V V.V Vv \VvyVv

34

cpd@)0631

ecj4.2.1.11

Figure 15: The Glycolysis / Gluconeogenesis pathway graph with enzymes and compounds as nodes.
Compared with original pathway graph (Figure, the "map” nodes disappear in the new graph. More-
over, each node only contains one enzyme/compound and each enzyme/compound only appears once
in the graph.

35

cpd@)0631

ec.ll

opdCp 4.1 o peCPO074

ec 40

Figure 16: The undirected Glycolysis / Gluconeogenesis pathway graph with enzymes and compounds
as nodes. Compared with original pathway graph (Figure , the "map” nodes disappear in the new
graph and edges are undirected. Moreover, each node only contains a enzyme/compound and each

enzyme/compound only appears once in the graph.

36

consedses o~ =i
<0:

{04380
104381

02582 \ R0 ' 510k
:m -. 080 8

1-. L. 1. d02677
st A L o ===
43 J,' g -‘ 66y ‘E‘ .; 5':._:,__7 2379
\ 6 f ——1P o)
- — ot

KQ434p- m Joa3s2

0218
c-', -
\\\: - ity
-"- ' 8 d i.' .-<: v 5 : . -
ey ‘_:i\ — - Hoaat ' \.& I0444
C@3 804391 — &> ’g-' “ R
o1t ‘“ o .
'K04405 d KO4445, "
{0440 {0448) oaasskoaz)s
404429 (05866
04468

Figure 17: The MAPK signaling pathway graph with KOs and compounds as nodes. Compared with
original pathway graph (Figure , the "map” nodes disappear in the new graph.

37

{ _>__

7

4——E00 4345 04380

T P 43 1

<. 300 o |R04358... 47
1 "' K 02617 \

0 |
35 .!.:« 4
i ’4
'

0436 ‘ p +O
- K -::-:_-, 04379

"'-_w.
I

\.. "
K04346-=>—K08053 <_ 59
..
'4:
<l. 8-K04462
I/
{044(J0azks
!_ \'—!‘
oNNR

03156

31

K0438B=+ *33,,‘> - 4
0438 do~ = "'- 04432, / +n .
C@g F1— — S —— ﬂg'“ ' \3;\; Koaa54
- ouaga ™ LT @ ke
< !’ 104461 \ ‘,‘!!'.
{0446 {04428 Q04445404374
9 {05866
Jo4468

Figure 18: The undirected MAPK signaling pathway graph with KOs and compounds as nodes. Com-
pared with original pathway graph (Figure , the "map” nodes disappear in the new graph and edges
are undirected.

38

Figure [19] shows the result graph of the MAPK signaling pathway. Compared with original pathway
graph (Figure 7 the "map” nodes disappear in the new graph. Moreover, each node only contains a
KO/compound and each KO/compound only appears once in the graph. Note that the KEGG layout
style is not available because too many nodes have the same coordinates. Instead, we can use other
layout styles such as layout.sphere (see the section .

The following commands can get the corresponding undirected graphs. The function getNonMetabol-
icKOCOUEMGraph can get all results.

#get the undirected graphs with KOs and compounds as nodes

#And, each node only contains a KO/compound and

#each KO/compound only appears once in the graph.

g8<-mergeNode (expandNode (filterNode (getUGraph (gn) ,nodeType=c ("map"))))
#visualize

plotGraph(g8[[1]],layout=layout.sphere)

vV V.V VVvyVv

Figure [20] shows the result graph of the MAPK signaling pathway.

2.5.2 Example 2: enzyme-enzyme (KO-KO) pathway graphs

For metabolic pathways, the following commands can get graphs with enzymes as nodes and compounds
as edges. The function getMetabolicECECGraph can get the results of all metabolic pathway graphs with
enzymes as nodes and compounds as edges.

> #liget graphs with enzymes as nodes and compounds as edges

> gl<-simplifyGraph(filterNode (gm,nodeType=c("map")) ,nodeType="geneProduct")
> #visualize

> plotGraph(g1[[1]1])

Figure [21 shows the result graph of the Glycolysis / Gluconeogenesis pathway.

The following commands can get the corresponding undirected graphs, that is, the undirected graphs
with enzymes as nodes and compounds as edges. The function getMetabolicECECUGraph can get all
results.

> #iget the undirected graphs with enzymes as nodes and compounds as edges

> g2<-simplifyGraph(filterNode (getUGraph (gm),nodeType=c("map")),nodeType="geneProduct")
> #visualize

> plotGraph(g2([[1]])

Figure [22| shows the result graph of the Glycolysis / Gluconeogenesis pathway.

The following commands can get graphs with enzymes as nodes and compounds as edges. And, each
node contains only one enzyme and each enzyme only appears once in the graph. The graph can be
treated as the enzyme-enzyme network obtained from the Glycolysis / Gluconeogenesis pathway. The
function getMetabolicECECEMGraph can get all results.

> #get graphs with enzymes as nodes and compounds as edges

> #And, each node contains only one enzyme and each enzyme only appears once.
> g3<-mergelNode (expandNode (simplifyGraph(filterNode (gm,

+ nodeType=c("map")) ,nodeType="geneProduct")))

> #visualize

> plotGraph(g3[[1]])

Figure [23| shows the result graph of the Glycolysis / Gluconeogenesis pathway.
The following commands can get the corresponding undirected graphs. The function getMetabol-
icECECUEMGraph can get all results.

39

ko [H04P09 ko H@ARDABos
270 | 7ho mf'??@m

ol04
KoK04] @...
; K04k4

:"": I ""A Ve

koiK04RE ok 121\ SRR

ko f{0R5R o7k — o "V iojksaathoo
Ui il D :ﬁ\‘“é‘ ojes
IS, 7 A kekagsts
kofKOak7KOgY 1 e

DA A

NS

DAY O
W i

‘\\!.\“gﬁ’ AR
R g\
4 7\ !

<O

. ‘\F
R

kQIK05866
" e
Ry <O e

i»

o koikoT835 >
N |

e
“:’A\ ‘ kolkoah68

ko f

ad
e

KO
s
Y ?

=
(S
2

\
=, 2K

i

‘.“ E‘Q" %

e, ke

enaszl <\ A i
o] LI
\L!"/. 1%

&

A

A
2 \
o4y P UpBED 4355

RYROABRO e

Figure 19: The MAPK signaling pathway graph with KOs and compounds as nodes. Compared with
original pathway graph (Figure , the "map” nodes disappear in the new graph. Moreover, each node
only contains a KO/compound and each KO/compound only appears once in the graph.

40

ko BHK8AP69 koiHRARDAB oS
O . \ r

k0 ‘A 2

kojK0ARAR 1,

ko '.w m;‘ 20y \' aha5
N A > %) g »)
ol 968B1g RN o{Q4eahos
AV R RofK0593
kolK05B66
KO3¥58
o7g3s K04B62

kojK04468

= 043 \
K — N\ SR K .l:“t‘;,
S I Do o
AR N\ =
SN \.\,

",
X

Kitk!

Figure 20: The MAPK signaling pathway graph with KOs and compounds as nodes. Compared with
original pathway graph (Figure, the "map” nodes disappear in the new graph and edges are undirected.
Moreover, each node only contains a KO/compound and each KO/compound only appears once in the
graph.

41

Figure 21: The Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and compounds as
edges.

== R T

2113 E="kRI
= —— "
2.1/ 1.2/8

Figure 22: The undirected Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and
compounds as edges.

43

Figure 23: The Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and compounds as
edges. Moreover, each node contains only one enzyme and each enzyme only appears once in the graph.
The graph can be treated as the enzyme-enzyme network obtained from the Glycolysis / Gluconeogenesis
pathway.

44

> #iget undirected graphs with enzymes as nodes and compounds as edges.

> #And, each node contains only one enzyme and each enzyme only appears once.
> g4<-mergeNode (expandNode (simplifyGraph (filterNode (getUGraph (gm),

+ nodeType=c("map")) ,nodeType="geneProduct")))

> #visualize

> plotGraph(g4([[1]1])

Figure [24] shows the result graph of the Glycolysis / Gluconeogenesis pathway.
For non-metabolic pathways, the following commands can get graphs with KOs as nodes. The
function getNonMetabolicKOKOGraph can get all results.

> #get graphs with KOs as nodes

> gb<-simplifyGraph(filterNode (gn,nodeType=c("map")) ,nodeType="geneProduct")
> #visualize

> plotGraph(g5([[1]1])

Figure [25] shows the result graph of the MAPK signaling pathway.
The following commands can get the corresponding undirected graphs, that is, the undirected graphs
with KOs as nodes. The function getNonMetabolicKOKOUGraph can get all results.

#get the undirected graphs with KOs as nodes
g6<-simplifyGraph(filterNode (getUGraph(gn),
nodeType=c("map")) ,nodeType="geneProduct")
#visualize

plotGraph(g6[[1]])

vV VvV + VvV

Figure [26] shows the result graph of the MAPK signaling pathway.

The following commands can get graphs with KOs as nodes. And, each node contains only a KO
and each KO only appears once in the graph. The function getNonMetabolicKOKOEMGraph can get all
results.

#get graphs with only KOs as nodes. And, each node contains
#only a KO and each KO only appears once in the graph.
g7<-mergeNode (expandNode (simplifyGraph (filterNode (gn,
nodeType=c ("map")) ,nodeType="geneProduct")))

#visualize

plotGraph(g7[[1]],layout=layout.sphere)

vV VvV + Vv VvV

Figure shows the result graph of the MAPK signaling pathway. The graph can be treated as the
KO-KO (gene product-gene product) network obtained from the the MAPK signaling pathway.

The following commands can get the corresponding undirected graphs. The function getNonMetabol-
icKOKQUEMGraph can get all results.

#get the undirected graphs with only KOs as nodes. And, each node contains
#only a KO and each KO only appears once in the graph.

g8<-mergeNode (expandNode (simplifyGraph (filterNode (gn,

nodeType=c ("map")) ,nodeType="geneProduct")))

#visualize

plotGraph(g8[[1]],layout=layout.sphere)

vV VvV + Vv VvV

Figure shows the result graph of the MAPK signaling pathway. The graph can be treated as the
KO-KO (gene product-gene product) network obtained from the the MAPK signaling pathway.

45

Figure 24: The undirected Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and
compounds as edges. Moreover, each node contains only one enzyme and each enzyme only appears
once in the graph. The graph can be treated as the enzyme-enzyme network obtained from the Glycolysis
/ Gluconeogenesis pathway.

46

025k \ KQ4355...
4', Josois

:g e S K0435p./ K02677

sty o5 a4

e
<- <= \

408052

KQ4346—K08053 04382

I---— 04379

b
bt
.«;:/LA

= N j
< 04330 .
D S S_——=K02308 .044 SY
<= ‘,‘ Joazbo
031787 04461
0aits
40440 (04428

st

Figure 25: The MAPK signaling pathway graph with KOs as nodes.

47

<|044¢
e —xizesp..

K§4344. 04345 404380

404381

P2582 \- 9 Ko1047

KQ43S6-. =2 '. 267 -
; d04370 /

1/ s

X
o

436 440309892833 “:':
4365 N 04367

408052
K... ©8053 Koa3s2

044 "M :
{04406 ‘ ‘J \ K04462

< , 44 1l 0448
‘ K044

,.(0441 =‘g.4. 04449

2 /-m |
/ 2sp

b 3;84‘

043 390

ﬂ-

044

i ‘» K04460
0445 104461
<M: d04428

doast

Figure 26: The undirected MAPK signaling pathway graph with KOs as nodes.

48

Z

8 Y

B

a KO and each KO only appears once in the graph. The graph can be treated as the KO-KO (gene
49

Figure 27: The MAPK signaling pathway graph with KOs as nodes. Moreover, each node contains only
product-gene product) network obtained from the MAPK signaling pathway.

>

 any/
B

v X
R\ \#

Y

Figure 28: The undirected MAPK signaling pathway graph with KOs as nodes. Moreover, each node

contains only a KO and each KO only appears once in the graph. The graph can be treated as the

KO-KO (gene product-gene product) network obtained from the MAPK signaling pathway.

50

2.5.3 Example 3: compound-compound pathway graphs

For metabolic pathways, the following commands can get graphs with compounds as nodes and enzymes
as edges. The function getMetabolicCOCOGraph with setting the argument type as "EC” can get all
metabolic pathway graphs with compounds as nodes and enzymes as edges.

> #The graph with compounds as nodes and enzymes as edges

> gl<-simplifyGraph(filterNode (gm,nodeType=c("map")),nodeType="compound")
> #visualize

> plotGraph(g1([[1]])

Figure [29 shows the result graph of the Glycolysis / Gluconeogenesis pathway.
The following commands can get the undirected graphs with compounds as nodes and enzymes as
edges. The function getMetabolicCOCOUGraph with setting the argument type as "EC” can get all results.

> #The undirected graph with compounds as nodes and enzymes as edges

> g2<-simplifyGraph(filterNode (getUGraph (gm),nodeType=c("map")),nodeType="compound")
> #visualize

> plotGraph(g2[[1]1])

Figure [30[shows the result graph of the Glycolysis / Gluconeogenesis pathway.

The following commands can get graphs with compounds as nodes and enzymes as edges. Each
node only contains a compound and each compound only appears once in the graph. The function
getMetabolicCOCOEMGraph with setting the argument type as "EC” can get all results.

#The graph with compounds as nodes and enzymes as edges
#Each node only contains a compound and each compound only appears once in the graph.
g3<-mergeNode (expandNode (simplifyGraph (filterNode (gm,
nodeType=c ("map")) ,nodeType="compound")))

#visualize

plotGraph(g3[[1]])

vV V + Vv vV

Figure[31|shows the result graph of the Glycolysis / Gluconeogenesis pathway. Each node only contains
a compound and each compound only appears once in the graph. The graph can be treated as the
compound-compound network obtained from the Glycolysis / Gluconeogenesis pathway.

The following commands can get the undirected graphs with compounds as nodes and enzymes as
edges. Each node only contains a compound and each compound only appears once in the graph. The
function getMetabolicCOCOUEMGraph with setting the argument type as "EC” can get all results.

> #The undirected graph with compounds as nodes and enzymes as edges

> #Each node only contains a compound and each compound only appears once in the graph.
> g4<-mergeNode (expandNode (simplifyGraph (filterNode (getUGraph (gm),

+ nodeType=c("map")) ,nodeType="compound")))

> #visualize

> plotGraph(g4[[1]1])

Figureshows the result graph of the Glycolysis / Gluconeogenesis pathway. The graph can be treated
as the compound-compound network obtained from the Glycolysis / Gluconeogenesis pathway.

Note that Figure [31] and [32] are not changed compared with Figure 29| and This is bacause each
compound node in the original Glycolysis / Gluconeogenesis pathway only contains a compound and
each compound only appears once in the graph.

51

CO0R2: £05345

CQRL86—————B(QRLE/ 78
C@45:1.—EQ9188
!

C@l 599118

36

97

C@?ﬂ

36 £00074

8

6
g*
o 0545 £00pae (0186
| .
cogoss E000a

S®469

Figure 29: The Glycolysis / Gluconeogenesis pathway graph with compounds as nodes and enzymes as
edges.

52

20

97

C@Sl

foie)

C@)74

CO0p24 /"@%Z\C@ZZ
et |

Py

QA
O%F

ez

Figure 30: The undirected Glycolysis / Gluconeogenesis pathway graph with compounds as nodes and

enzymes as edges.

53

c 0103

I C 0031
CpACHIRS? . M

cpdCpeg2: € —epi(CP5345
cpd@)@-}%—em@) 18 I
[5378
cpd@)%&—eﬁﬁ@) 188 I
cpd@) 11 Fpﬂ@)OliB
C 0236
cpd@) 9
c 0197
cpd@)OGSl
cpd(CPO036 cpE(CP0074

& @p22 opECP0186

op(CP0469

Figure 31: The Glycolysis / Gluconeogenesis pathway graph with compounds as nodes and enzymes as
edges. The graph can be treated as the compound-compound network obtained from the Glycolysis /
Gluconeogenesis pathway.

54

c 0103

‘ 0668————”””_;;u(gpoo31
coCp

cpd@)m” 1 epd: ﬁspd@)5345
64-86—99(46;) 18 |
de@) cpd@)5378

de@%-l—epd@) 188 /
cpd@! 11 f‘pd@)Olls
cpdCP0236
cpd@) 9
cp 0197

cpd@)0631

CcpdCPOa36 €pd(Cpo074

epdC0186

cpd@nno'z /-prl_ 0084 nprl_ 0469

Figure 32: The undirected Glycolysis / Gluconeogenesis pathway graph with compounds as nodes and
enzymes as edges. Each node only contains a compound and each compound only appears once in the
graph. The graph can be treated as the compound-compound network obtained from the Glycolysis /

Gluconeogenesis pathway.

95

2.5.4 Example 4: organism-specific gene-gene pathway graphs

For metabolic pathways, the following commands can get graphs with organism-specific genes as nodes
and compounds as edges. And, each node contains only a gene and each gene only appears once in
the graph. The function getMetabolicGEGEEMGraph with setting the argument type as "EC” can get all
metabolic pathway graphs with organism-specific genes as nodes and compounds as edges.

#get graphs with organism-specific genes as nodes and compounds as edges
gl<-mergeNode (expandNode (simplifyGraph (filterNode (mapNode (gm),
nodeType=c("map", "enzyme")) ,nodeType="geneProduct")))

#visualize

plotGraph(g1[[1]],layout=layout.sphere)

vV VvV + Vv Vv

Figure shows the result graph of the Glycolysis / Gluconeogenesis pathway. Because the default
orgnaism is human and idType is ncbi-geneid, the result graph is the graph of the human Glycolysis
/ Gluconeogenesis pathway with ncbi-geneid nodes. The graph can be considered as human gene-gene
network obtained from the Glycolysis / Gluconeogenesis pathway.

The following commands can get the corresponding undirected graphs. The function getMetabol-
icGEGEEMUGraph with setting the argument type as "EC” can get all results.

#get the undirected graphs with organism-specific genes as nodes and compounds as edges
g2<-mergeNode (expandNode (simplifyGraph (filterNode (mapNode (getUGraph (gm)),

nodeType=c ("map", "enzyme")) ,nodeType="geneProduct")))

#visualize

plotGraph(g2[[1]],layout=layout.sphere)

vV VvV + Vv Vv

Figure [34] shows the result graph of the Glycolysis / Gluconeogenesis pathway.

For non-metabolic pathways, the following commands can get graphs with organism-specific genes as
nodes and compounds as edges. Moreover, each node contains only a gene and each gene only appears
once in the graph. The function getNonMetabolicGEGEEMGraph can get all results.

#get graphs with organism-specific genes as nodes
g3<-mergeNode (expandNode (simplifyGraph (filterNode (mapNode (gn),
nodeType=c("map", "ortholog")) ,nodeType="geneProduct")))
#visualize

plotGraph(g3[[1]],layout=layout.sphere)

vV V. + Vv Vv

Figure 35| shows the result graph of the MAPK signaling pathway.
The following commands can get the corresponding undirected graphs. The function getNonMetabol-
icGEGEUEMGraph can get all results.

#get the undirected graphs with organism-specific genes as nodes
g4<-mergeNode (expandNode (simplifyGraph (filterNode (mapNode (gn),
nodeType=c ("map", "ortholog")) ,nodeType="geneProduct")))
#visualize

plotGraph(g4[[1]],layout=Ilayout.sphere)

vV VvV + Vv VvV

Figure [36] shows the result graph of the MAPK signaling pathway.

3 Methods to analyze pathway graphs

Pathway analyses have become invaluable aids to understanding the interesting sets generated from
technologies of “omics”. Most of pathway analysis tools were developed for analysis of genomic or

56

02

02
82
415351516
23
02
218
173 5
- 16 = 501,
220 20
52
78 31
5
2 224
16 23
22 221 12521
= 230 2
590,
223
73 10
222
669 217 1267521
09 10
219
305 24
602 03275 125
59 64 21
124/ =
93563 16
94

Figure 33: The human Glycolysis / Gluconeogenesis pathway graph with genes as nodes and compounds
as edges. And, each node contains only a gene (ncbi-geneid) and each gene only appears once in the
graph. The graph can be considered as human gene-gene network obtained from the Glycolysis /
Gluconeogenesis pathway.

o7

02

02
82
415317516
23
02
218
173
- 16 = 501
20
= 220
78 31
5
2 224
16 23
22 221 12521
09 230 2
590
53 31
223
73 10
222
669 217 126521
09 10
219
305 24
602
S 03210 125
64 21
124 i
93863 16
94

Figure 34: The undirected human Glycolysis / Gluconeogenesis pathway graph with genes as nodes
and compounds as edges. Moreover, each node contains only a gene (ncbi-geneid) and each gene only

appears once in the graph. The graph can be considered as human gene-gene network obtained from
the Glycolysis / Gluconeogenesis pathway.

o8

Figure 35: The human MAPK signaling pathway graph with genes as nodes and compounds as edges.
Moreover, each node contains only a gene (ncbi-geneid) and each gene only appears once in the graph.
The graph can be considered as human gene-gene network obtained from the MAPK signaling pathway.

99

)’
5/
A
7, (# %),
) g-
G :ﬁ"ﬁha":,’,

ol S,
&

Figure 36: The undirected human MAPK signaling pathway graph with genes as nodes and compounds
as edges. Moreover, each node contains only a gene (ncbi-geneid) and each gene only appears once
in the graph. The graph can be considered as human gene-gene network obtained from the MAPK
signaling pathway.

60

proteomic data. Metabolomics is a rapidly-growing field of ’omics’ science. Typically hundreds to
thousands of compounds can be identified in a typical high throughput metabolomic assay. With the
rapid development of this field, there is an increasing demand for software tools that support pathway
analyses of metabolomic data. More importantly, it is useful for the pathway analysis tools to support
pathway analysis based on not only gene/protein sets, but also metabolite sets, even their combined
sets.

Since pathways can be converted to graphs, many analyses based on graph model are available.
For example, we can get subgraph, degree, shortest path, etc. The section will detailedly introduce
the methods of graph-based pathway analyses. We firstly introduce some basic operation of graphs.
Secondly, we mainly introduce pathway analyses based on cellular component sets, including both
the topology-based pathway analysis (see the section and the annotation and identification of
entire pathways and subpathways (see the section and . The system can provide topology-
based pathway analysis of gene sets (see the section, compound sets (see the section , and
the combined sets of genes and compounds (see the section . The current available topological
properties contain degree, local clustering coefficient, and betweenness. Topological significance of
pathways can be also evaluated by the system. The system can support the annotation and identification
of pathways based on gene sets (see the section and , compound sets (see the section [3.3.2]
and 7 and even the combined sets of genes and compounds (see the section |3.3.3| and |3.4.3). The
identification methods of the entire pathways (see the section and subpathways (see the section
are available for these sets. Taken together, the total of six strategies of pathway identifications
can be supported by our system.

3.1 The basic analyses based on graph model

Since pathways are able to be converted to different types of graphs, many analyses based on graph model
are available by using the functions provided in the igraph package. For example, we can get subgraph,
degree, shortest path, etc [Csardi and Nepusz, 2006]. Here, we will give some detailed examples of
operating graphs, nodes, edges, attributes. To do these, we firstly construct pathway graphs as the
example graphs of the basic analyses based on graph model. The commands are as follows:

We can get metabolic pathway graphs as follows:

#get path of KGML files
path<-paste(system.file(package="iSubpathwayMiner"),
"/localdata/kgml/metabolic/ec/",sep="")

#convert metabolic pathways to graphs with "map" node deleted
gmf<-filterNode(getMetabolicGraph(getPathway (path,c("ec00010.xml1"))))
#show title of pathway graphs

sapply (gmf,function(x) x$title)

VVVyV + VYV

00010
"Glycolysis / Gluconeogenesis"

> #convert metablic pathways to graphs with enzymes as nodes and compounds as edges
> gmfs<-simplifyGraph (gmf,nodeType="geneProduct")

Figure [37] displays gmfs[[1]]. It is the Glycolysis / Gluconeogenesis pathway graph with enzymes as
nodes and compounds as edges. The "map” nodes are deleted.
3.1.1 Node methods: degree, betweenness, local clustering coefficient, etc.

Degree (or connectivity) of a node is defined as the number of its adjacent edges [Csardi and Nepusz, 2000},
Barabasi and Oltvai, 2004, [Huber et al., 2007]. Tt is a local quantitative measure of a node relative to
other nodes. The following commands can get the degree of the first node in the graph.

61

Figure 37: The Glycolysis / Gluconeogenesis pathway graph with enzymes as nodes and compounds as
edges. The "map” nodes are deleted. The graph is stored in the variable gmfs[[1]].

62

> #iget degree of nodes
> igraph::degree(gmfs[[1]],0)

[1] 12
We can see names of the first node as follows:

> #see name of the first node

> V(gmfs[[1]]) [0] $names
[1] "ec:4.1.2.13"

The first node is the enzyme "ec:4.1.2.13” and is at the right-top part of Figure
We can identify enzyme "ec:4.1.2.13” and get degree of a node with given names as follows:

> #iget indexes of nodes

> index1<-V(gmfs[[1]]) [V(gmfs[[1]])$names=="ec:4.1.2.13"]
> #iget degree of node

> igraph::degree(gmfs[[1]],index1)

(1] 12

The argument mode can control which type of degree should be obtained. The "out” for out-degree,
”in” for in-degree or "total” for the sum of the two. For undirected graphs, this argument is ignored.
The following commands get in-degree and out-degree of the enzyme "ec:4.1.2.13”.

> #in-degree
> igraph::degree(gmfs[[1]],index1,mode="in")

[1] 5

> #out-degree
> igraph: :degree(gmfs[[1]],index1,mode="out")

(11 7

We may also want to calculate its betweeness, which is (roughly) defined by the number of shortest
paths going through a node [Csardi and Nepusz, 2006, [Barabasi and Oltvai, 2004, [Huber et al., 2007].

> #Calculate betweenness of enzyme "ec:4.1.2.13".
> betweenness (gmfs[[1]],index1)

[1] 960

The local clustering coefficient measures the probability that the adjacent nodes of a node are
connected.

> #Calculate the clustering coefficient of enzyme "ec:4.1.2.13".
> igraph::transitivity(gmfs[[1]],type="local",vids=index1)

[1] 0.3888889

Closeness centrality measures how many steps is required to access every other node from a given
node.

> #Calculate the Closeness centrality of enzyme "ec:4.1.2.13".
> closeness(gmfs[[1]],v=index1, mode = "all")

63

[1] 0.275

> closeness(gmfs[[1]],v=index1, mode "in")

[1] 0.05178908
> closeness(gmfs[[1]],v=index1, mode = "out")

[1] 0.09532062

3.1.2 Edge method: shortest paths

The following commands can get the shortest path between the first node and the second node [Csardi and Nepusz, 2000,
Barabasi and Oltvai, 2004 [Huber et al., 2007].

> #get the shortest path
> shortest.path<-get.shortest.paths(gmf[[1]],0,1,mode="out")

We can see name of nodes as follows:

> #see name of the first and second nodes
> V(gmf[[11]) [0:1] $names

[1] "ec:4.1.2.13" "ec:1.2.1.3"

> #see name of nodes in the shortest path
> V(gmf[[1]]) [shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" "ec:1.2.7.6" 'cpd:C00197" '"ec:5.4.2.1"
[6] "cpd:C00631" "ec:4.2.1.11" "cpd:C00074" "ec:2.7.1.40" "cpd:C00022"
[11] "ec:4.1.1.1" '"cpd:C05125" ‘"ec:4.1.1.1" '"cpd:C00084" ‘"ec:1.2.1.3"

We sometimes may want to get the shortest path between two enzymes in a pathway, i.e., the shortest
path between enzyme "ec:4.1.2.13” and 7ec:1.2.1.3” in the Glycolysis / Gluconeogenesis pathway. To do
this, we need to get indexes of interesting nodes and then use the function get.shortest.paths to get
the result. The above strategy is usually necessary because in the igraph package, node indexes is used
as input of most of functions. The following commands can calculate the shortest path between enzyme
"ec:4.1.2.13” and "ec:1.2.1.3” in the Glycolysis / Gluconeogenesis pathway.

#get indexes of nodes

index1<-V(gmf[[1]]) [V(gmf [[1]])$names=="ec:4.1.2.13"]
index2<-V(gmf[[1]]) [V(gmf [[1]])$names=="ec:1.2.1.3"]

#get shortest path
shortest.path<-get.shortest.paths(gmf[[1]],index1,index2)
#display shortest path

shortest.path

V VVVVYVYyV

[[1]1]
[1] 0 81 74 52 15 44 14 51 13 57 8 58 5 60 1

> #convert indexs to names
> V(gmf[[1]]) [shortest.path[[1]]]$names

[1] "ec:4.1.2.13" "cpd:C00118" "ec:1.2.7.6" "cpd:C00197" '"ec:5.4.2.1"
[6] "cpd:C00631" "ec:4.2.1.11" "cpd:CO0074" "ec:2.7.1.40" "cpd:C00022"
[11] "ec:4.1.1.1" "cpd:C05125" '"ec:4.1.1.1" '"cpd:C00084" '"ec:1.2.1.3"

64

3.1.3 Graph method: degree distribution, diameter, global clustering coefficient, density,
module, etc.

The following command can get degree distribution of a pathway graph [Csardi and Nepusz, 2006,
Barabasi and Oltvai, 2004, [Huber et al., 2007].

> #degree distribution.
> degree.distribution<-degree.distribution(gmfs[[1]])

The diameter of a pathway graph is the length of the longest geodesic [Csardi and Nepusz, 2006].

> f#iget diameter
> diameter(gmfs[[1]])

[1] 11

The following command can get the global clustering coefficient [Csardi and Nepusz, 2006].

> #Calculate the clustering coefficient.
> igraph::transitivity(gmfs[[1]])

[1] 0.5209302

The following command can get density of a pathway graph. The density of a graph is the ratio of
the number of edges and the number of possible edges [Csardi and Nepusz, 2006].

> #Calculate the density.
> graph.density(gmfs[[1]])

[1] 0.0788961

The following commands can find densely connected subgraphs (modules or communities) in a
pathway graph. We use walktrap community finding algorithm in the igraph package to find modules in
the graph via random walks [Csardi and Nepusz, 2006]. Short random walks tend to stay in the same
module.

> #find modules.

> wtc <- walktrap.community (gmfs[[1]])

> module<-community.to.membership(gmfs[[1]], wtc$merges, steps=53)
> module

$membership
[1] 200
[39] 111

00000000000222111111111111111102111
000222022201110

$csize

[1] 20 25 11

The result shows that three modules are found. They contain 20, 25, and 11 nodes respectively. We
can also see names of nodes in the first module as follows:

> V(gmfs[[1]]) [module$membership==0] $names

[1] "ec:1.2.1.3" "ec:6.2.1.13" "ec:1.2.1.5" "ec:4.1.1.1" ‘"ec:1.1.1.2"
[6] "ec:1.1.1.1" '"ec:4.1.1.1" "ec:1.2.4.1" "ec:1.2.4.1" '"ec:2.3.1.12"
[11] "ec:1.1.1.27" "ec:2.7.1.40" "ec:4.2.1.11" "ec:1.8.1.4" ‘"ec:4.1.1.32"
[16] "ec:1.1.2.7" "ec:4.1.1.49" "ec:1.2.7.1" "ec:6.2.1.1" '"ec:1.1.2.8"

65

We can display these modules. The result graph is shown in Figure The three modules are
colored red, green, and yellow respectively.

> vertex.color<-module$membership

> vertex.color<-replace(vertex.color,which(vertex.color==0), "red")

> vertex.color<-replace(vertex.color,which(vertex.color==1), "green")
> vertex.color<-replace(vertex.color,which(vertex.color==2),"yellow")
> plotGraph(gmfs[[1]],vertex.color=vertex.color)

This function modularity can calculate how modular is a given division of a graph into modules.
> modularity(gmfs[[1]], module$membership)

[1] 0.6122966

3.2 Topology-based pathway analysis of cellular component sets

The section mainly introduces topology-based pathway analysis of cellular component sets. Currently,
our system can support input of three kinds of cellular component sets: gene sets, compound (metabo-
lite) sets, and gene and compound sets at the same time. Therefore, the system can provide topology-
based pathway analysis of gene sets (see the section , compound sets (see the section , and
the combined sets of genes and compounds (see the section . Topological significance of pathways
can be also evaluated by the system. For example, if users input a set of interesting genes, the set
can be mapped onto pathways. The topological property values can then be calculated. The topo-
logical significance of pathways can be evaluated. The available topological properties contain degree,
clustering coefficient, betweenness, and closeness [Csardi and Nepusz, 2006, [Barabasi and Oltvai, 2004}
Huber et al., 2007]. Degree of a node is the number of its adjacent edges. Local clustering coefficient
quantifies the probability that the neighbours of a node are connected. Node betweenness can be cal-
culated based on the number of shortest path passing through a given node. Closeness measures how
many steps is required to access every other nodes from a given node.

3.2.1 Topology-based pathway analysis of gene sets

The function identifyTopo in the iSubpathwayMiner package facilitates topology-based pathway analysis
of gene sets. We need to set the value of the argument type of the function as ”gene”. Moreover, we
need to set the argument propertyName as a specific property (e.g., "degree”).

To do topology-based pathway analysis of gene sets, we firstly construct a list of pathway graphs.
We secondly input the interesting gene set and the list of pathway graphs to the function identifyTopo.
The function can map interesting gene sets onto each pathway. For the mapped genes in a pathway,
their topological property values can be calculated. These values can be compared with property values
of all genes in the pathway. Finally, the statistical significance can be calculated using wilcoxon rank
sum test.

The return value of the function identifyTopo is a list. Each element of the list is another list.
It includes following elements: ’'pathwayld’, 'pathwayName’, ’annComponentList’, ’annComponent-
Number’, ’annBgComponentList’, ’"annBgNumber’, ’‘ComponentNumber’, ’bgNumber’, 'propertyName’,
"annComponentProperty ValueList’, 'propertyValue’, ’annBgComponentProperty ValueList’, ’bgProper-
tyValue’, 'pvalue’, 'qvalue’, and ’lfdr’. They correspond to pathway identifier, pathway name, the
submitted components annotated to a pathway, numbers of submitted components annotated to a
pathway, the background components annotated to a pathway, numbers of background components
annotated to a pathway, numbers of submitted components, numbers of background components, topo-
logical property name (e.g., 'degree’), topological property values of submitted components annotated
to a pathway, average topological property values of submitted components annotated to a pathway,
topological property values of the background components annotated to a pathway, average topological

66

Figure 38: We use walktrap community finding algorithm in the igraph package to find three modules
in the the Glycolysis / Gluconeogenesis pathway via random walks. The three modules is colored red,
green, and yellow respectively.

67

property values of the background components annotated to a pathway, p-value of wilcoxon rank sum
test for ’annComponentPropertyValueList’ and 'annBgComponentPropertyValueList’, g-values (Fdr),
and local fdr values. The list of results returned from the function identifyTopo can also be converted
to data.frame using the function printTopo.

The following commands can perform topology-based pathway analysis of gene sets. The list of path-
way graphs is obtained from the function getMetabolicECECGraph, which can get all directed metabolic
pathway graphs with enzymes as nodes and compounds as edges (see the section and Figure .

> #get pathway graphs with enzymes as nodes.
> graphList<-getMetabolicECECGraph ()
> #iget a set of genes
> geneList<-getExample (geneNumber=1000, compoundNumber=0)
> #topology-based pathway analysis
> ann<-identifyTopo(genelList,graphList,type="gene",propertyName="degree")
> result<-printTopo (ann)
> #print a part of the result
> result[1:5,]
pathwayld pathwayName annComponentRatio annBgRatio
1 path:00982 Drug metabolism - cytochrome P450 29/1000 82/21796
2 path:00380 Tryptophan metabolism 28/1000 65/21796
3 path:00562 Inositol phosphate metabolism 3/1000 55/21796
4 path:00670 One carbon pool by folate 7/1000 18/21796
5 path:00591 Linoleic acid metabolism 21/1000 42/21796
propertyName propertyValue bgPropertyValue pvalue qvalue 1lfdr
1 degree 0.5923372 0.5089431 0.006771113 0.5716482 0.9875398
2 degree 1.3511905 1.9128205 0.022801872 0.8120926 0.9875398
3 degree 6.6666667 4.2242424 0.041951602 0.8837633 0.9875398
4 degree 16.3809524 22.1388889 0.054268216 0.9053561 0.9875398
5 degree 2.6666667 4.6190476 0.054602392 0.9058175 0.9875398

The each row of the result (data.frame) is a pathway. Columns include pathwayld, pathwayName,
annComponentRatio, annBgRatio, propertyName, propertyValue, bgPropertyValue, pvalue, qvalue,
Ifdr. The annComponentRatio is the ratio of the annotated components. For example, 30/1000 means that
30 components in 1000 components are annotated. The propertyValue is average topological property
value of submitted components annotated to a pathway. The bgPropertyValue is average topological
property value of the background components annotated to a pathway. When many correlated pathways
are considered, a false positive discovery rate is likely to result. We provide g-values (Fdr) and local fdr
values for reducing the false positive discovery rate [Strimmer, 2008]. Because the result is a data.frame,
we are able to use the function write.table to export the result to a tab delimited file. If setting the
argument detail as TRUE, we can also get more detailed result. For example, the topological property

99,9

values of submitted genes annotated to a pathway can be exported using ”;” as separator.

##write the results to tab delimited file.
write.table(result,file="result.txt",row.names=FALSE,sep="\t")

#detailed information is also outputed

resultl<-printTopo (ann,detail=TRUE)

##write the results to tab delimited file.
write.table(resultl,file="resultl.txt",row.names=FALSE,sep="\t")

V V.V V Vv VYV

The following command displays a part of the return result list of the function identifyTopo, which
s the analysis result of first pathway.

e

68

> #list of the result
> ann[1]

[[1]1]
[[1]]$pathwayId
[1] "path:00982"

[[1]1]1$pathwayName
[1] "Drug metabolism - cytochrome P450"

[[1]]$annComponentLlist

[1] "10720" "10941" "119391" "124" "125" 126" "127" "128"
[9] "130" "131" "1543" "1544" "1545" "1548" "1549" "1551"
[17] "1553" "15B5" "1557" "1658" "1559" "1562" "1565" "1571"
[25] "1572" "1573" "1576" "1577" "1588"

[[1]]$annComponentNumber
[1] 29

[[1]]$annBgComponentList

[1] "10720" "10941" "119391" "124" "126" "126" "127" "128"

[9] "130" "131" "1543" "1544" "1545" "1548" "1549" "1551"
[17] "1653" "1555" "1557" "1568" "1559" "1562" "1565" "1571"
[25] "1572" "1573" "1576" "1577" "1580" "1588" "199974" "218"

[33] "220" "221" "221357" "222" "2326" "2327" "2328" "2329"
[41] "2330" "260293" "2938" "2939" "2040" "2041" "2944" "2946"
[49] "2947" "2048" "2049" "2950" "2052" "2953" "2954" "29785"
[57] "316" "373156" "4128" "4129" "4257" "4258" "4259" "54490"
[65] "54575" "54576" "54577" "54578" "54579" "54600" "54657" "54658"
[73] "54659" "574537" "64816" "7363" "7364" "7365" "7366" "7367"

[81] "79799" "9446"

[[1]1]$annBgNumber
[1] 82

[[1]]$componentNumber
[11 1000

[[1]]$bgNumber
[1] 21796

[[1]1]$propertyName
[1] "degree"

[[1]]$annComponentPropertyValuelist

[1] 0.6666667 0.6666667 0.0000000 0.3333333 0.3333333 0.3333333 0.3333333
[8] 0.3333333 0.3333333 0.3333333 0.7111111 0.7111111 0.7111111 0.7111111
[15] 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111
[22] 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111
[29] 0.7111111

69

[[1]1]$propertyValue
[1] 0.5923372

[[1]]$annBgComponentPropertyValuelist

[1] 0.6666667 0.6666667 0.0000000 0.3333333 0.3333333 0.3333333 0.3333333
[8] 0.3333333 0.3333333 0.3333333 0.7111111 0.7111111 0.7111111 0.7111111
[15] 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111
[22] 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111 0.7111111
[29] 0.7111111 0.7111111 0.7111111 0.5000000 0.5000000 0.5000000 0.0000000
[36] 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7111111
[43] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[50] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7111111
[57] 3.0000000 0.0000000 2.3333333 2.3333333 0.0000000 0.0000000 0.0000000
[64] 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667 0.6666667
[71] 0.6666667 0.6666667 0.6666667 0.6666667 0.7111111 0.6666667 0.6666667
[78] 0.6666667 0.6666667 0.6666667 0.6666667 0.0000000

[[11]$bgPropertyValue
[1] 0.5089431

[[1]1]$pvalue
[1] 0.006771113

[[1]11$qvalue
[1] 0.5716482

([1]1]1$1fdr
[1] 0.9875398

The result is a list. It includes the following elements: ’'pathwayld’, 'pathwayName’, ’annCompo-
nentList’, "annComponentNumber’, ’annBgComponentList’, ’annBgNumber’, ’"ComponentNumber’, ’bgNum-
ber’, 'propertyName’, ’annComponentPropertyValueList’, 'propertyValue’, ’"annBgComponentProper-
tyValueList’, 'bgPropertyValue’, 'pvalue’, ’qvalue’, and ’lfdr’. The list is more flexible to store and
extract the detailed analysis result of pathways.

The result of topology-based anlysis shows that the degrees of the interesting genes in the inos-
itol phosphate metabolism graph (path:00562) are significantly high. This suggests that these genes
may play a more important role in the pathway. We can visualize the pathway using the function
plotAnnGraph.

> #visualize
> plotAnnGraph("path:00562",graphList,ann)

The result pathway graph is shown in Figure[39] The mapped nodes, which correspond to the interesting
genes, are colored red. From the figure, we can also see that degrees of these nodes are higher than the
average degrees in the pathway.

For above directed pathway graphs, we can calculate "out” degree of gene sets in pathways, which
represents ability of regulating other genes in pathways.

> ann<-identifyTopo (genelList,graphList,type="gene",
+ propertyName="degree",degree.mode="out")
> result<-printTopo (ann)

70

31— 72
Jizho

1212
1-'1 1 8

313p6313)8

33101

Figure 39: The inositol phosphate metabolism (path:00562) graph with enzymes as nodes and com-
pounds as edges. The mapped nodes are colored red. We can see that degrees of these nodes are higher
than the average degrees in the pathway.

71

The function identifyTopo is flexible. Users can change pathway graphs for different topological
analyses. The following commands can use the function getMetabolicGEGEUEMGraph (see the section
and to generate pathway graphs with genes as nodes, where each node contains only a gene
and each gene only appears once. We can then use the data to analyze topological properties of gene
sets in pathways. The following commands analyze local clustering coefficients of gene sets.

> #iget undirected pathway graphs with genes as nodes.
> graphList<-getMetabolicGEGEUEMGraph (type="EC")
> f#iget a set of genes
> geneList<-getExample (geneNumber=1000, compoundNumber=0)
> #topology-based pathway analysis
> ann<-identifyTopo (geneList,graphList,type="gene",propertyName="clusteringCoefficient")
> result<-printTopo (ann)
> #print a part of the result
> result[1:10,¢(1,3,6:8)]

pathwayId annComponentRatio propertyValue bgPropertyValue pvalue
1 path:00980 32/1000 0.2994552 0.4067389 0.005909343
2 path:00020 4/1000 0.4418651 0.5832804 0.014690575
3 path:00010 12/1000 0.6926918 0.5681654 0.023844855
4 path:00260 14/1000 0.8113791 0.5944147 0.026165910
5 path:00591 21/1000 0.8661994 0.9071813 0.054602392
6 path:00140 31/1000 0.7430575 0.7850713 0.061484669
7 path:00640 3/1000 0.0000000 0.3840278 0.120709223
8 path:00310 4/1000 0.3490119 0.6790014 0.131664235
9 path:00603 1/1000 0.0000000 0.7285714 0.151493992
10 path:00360 1/1000 0.4230769 0.6591660 0.152025014

The result shows that the local clustering coefficients of the interesting genes in the Glycolysis / Glu-
coneogenesis pathway (path:00562) are significantly high. This suggests that these genes tend to be
in the functional module of the pathway. The local clustering coefficient measures the probability
that the adjacent nodes of a node are connected [Csardi and Nepusz, 2006, Barabasi and Oltvai, 2004}
Huber et al., 2007]. We visualize the pathway using the function plotAnnGraph.

> #visualize
> plotAnnGraph("path:00010",graphList,ann,layout=layout.fruchterman.reingold)

The result graph is shown in Figure[d0] The mapped genes are colored red. We find that the interesting
genes in the Glycolysis / Gluconeogenesis pathway is highly clustered together.

3.2.2 Topology-based pathway analysis of compound sets

The following commands can do topology-based (betweenness) pathway analysis of compound sets. We
need to set the argument type of the function identifyTopo as "compound”. The list of pathway graphs
is obtained from the function getMetabolicCOCOGraph, which can get all directed metabolic pathway
graphs with compounds as nodes and enzymes as edges (see the section and Figure .

#get metabolic pathway graphs with compounds as nodes.
graphList<-getMetabolicCOCOGraph ()

#get a set of compounds
compoundList<-getExample (geneNumber=0, compoundNumber=100)
#topology-based pathway analysis

ann<-identifyTopo (compoundList,graphList,type="compound",

V V.V Vv VvyVv

72

Figure 40: The Glycolysis / Gluconeogenesis pathway (path:00010) graph with genes as nodes, where
each node contains only a gene and each gene only appears once. The mapped genes are colored red.
The local clustering coefficients of these genes are significantly high.

73

+ propertyName="betweenness")

> #data.
> result<-printTopo (ann)

frame

> #print a part of the result
> result[1:10,¢(1,3,6:8)]

pathwayId annComponentRatio propertyValue bgPropertyValue

© 00N O WN -

The result shows that the betweenness of the interesting compounds in the fructose and mannose
metabolism (path:00562) is significantly high. This suggests that many compounds in the pathway
may need to pass through these compounds for performing the biological functions. The betweenness
is (roughly) defined by the number of shortest paths going through a node [Csardi and Nepusz, 2000,
Barabasi and Oltvai, 2004, Huber et al., 2007]. The following command displays the pathway. The

path:
path:
path:
path:
path:
path:
path:
path:
path:
10 path:

00524
00051
00250
00290
00040
00300
00640
00562
00400
00062

5/100
2/100
9/100
3/100
4/100
4/100
6/100
2/100
4/100
1/100

result graph is shown in Figure

> #visualize
> plotAnnGraph("path:00051",graphList,ann)

4.40000
200.95833
15.41667
0.00000
.50000
8.50000
48.83333
.00000
.25000
.00000

N

O w O

32
48
6

14.
48.
28.
18.

69

60.
98.

.551724
.614583
.739583
321429
600000
812500
694444
.846154
814815
000000

0
0
0
0
0
0
0
0
0
0

pvalue

.04335740
.04479156
.04765265
.04963436
.07770673
.10342402
.10871681
.11871449
.13137808
.13685650

3.2.3 Topology-based pathway analysis of gene and compound sets

The following commands can do topology-based (betweenness) pathway analysis of gene and compound
sets. The list of pathway graphs is obtained from the function getMetabolicECCOGraph, which can get all
directed metabolic pathway graphs with enzymes and compounds as nodes (see the section and

Figure [13).

VVVYV +VVVYVVYV

pathwayId annComponentRatio propertyValue bgPropertyValue
1.6345756 6.040210e-06
1.5554241 6.216544e-04
0.3468234 6.385747e-04
575.3590058 1.729470e-02

W -

path:00980
path:00982
path:01040
path:00010

32/1100
29/1100

5/1100
20/1100

2.585417
1.849808
1.286364
311.945000

74

#get metabolic pathway graphs with enzymes and compounds as nodes.
graphList<-getMetabolicECCOGraph ()
#get a set of genes
componentList<-getExample (geneNumber=1000, compoundNumber=100)
#topology-based pathway analysis

ann<-identifyTopo (componentList,graphList, type="gene_compound",
propertyName="betweenness")
#data.frame
result<-printTopo (ann)
#print a part of the result
result[1:10,¢(1,3,6:8)]

pvalue

C@)96
9——e01768 CO0p 96 c@@@eas
el \ |
78

o3y
co1p 85 5@3;\6@222 Cp16 Coop47

|

CO0P37 COBLSO COILE80 C1p44

coy #4——E0307—e01p34 CO2091 CO431

3 €00B6tE: £00507

£00118
C@77

Figure 41: The fructose and mannose metabolism (path:00051). The mapped compounds are colored
red. The betweenness of these compounds is significantly high.

75

5 path:00290 3/1100 0.000000 45.0655271 3.098678e-02
6 path:00071 39/1100 320.779712 440.5192384 3.152154e-02
7 path:00140 31/1100 68.066436 95.2388193 3.475395e-02
8 path:00051 2/1100 2368.854695 552.05651755 3.664233e-02
9 path:00040 6/1100 177.500000 972.0039326 4.005685e-02
10 path:00770 8/1100 87.625000 190.5374677 8.605941e-02

The results show that betweenness of the nodes mapped by genes and compounds in the Glycol-
ysis / Gluconeogenesis pathway (path:00010) is significantly low. This suggests that these genes and
compounds may be located in the functionally and topologically peripheral region of the Glycolysis
/ Gluconeogenesis pathway. We can visualize the result pathways using the function plotAnnGraph.
The following command displays the Glycolysis / Gluconeogenesis pathway (path:00010). The mapped
nodes are colored red.

> #visualize
> plotAnnGraph ("path:00010",graphList,ann)

The result graph is shown in Figure From Figure [A2] and we found that these mapped genes
and compounds were located in the ethanol and pyrurate metablism, which is the downstream of the
Glycolysis / Gluconeogenesis pathway in KEGG pathway.

3.3 Annotate cellular component sets and identify entire pathways

The section mainly introduces the annotation and identification of entire pathways. Currently, our
system can support input of three kinds of cellular component sets: gene sets, compound (metabolite)
sets, and gene and compound sets at the same time. Therefore, our system can support the annotation
and identification of pathways based on gene sets (see the section, compound sets (see the section
7 and gene and compound sets (see the section . For example, if users have interesting gene
sets and interesting compound sets, the combined set of compounds and genes can be annotated at
the same time to pathways. The enrichment significance of pathways can be evaluated based on the
combined set.

3.3.1 Annotate gene sets and identify entire pathways

The function identifyGraph in the iSubpathwayMiner package facilitates the annotation and identification
of entire pathways. Firstly, we need to construct a list of pathway graphs. We then input the interesting
gene set and the list of pathway graphs to the function identifyGraph. Through performing the function,
the interesting gene set can be annotated to pathway graphs. Finally, the enrichment significance of
pathways can be evaluated using hypergeometric test.

The return value of the function identifyGraph is a list of the annotated information. Each element
of the list is another list. It includes the following elements: ’pathwayld’, 'pathwayName’, ’annCom-
ponentList’, ’annComponentNumber’, ’annBgComponentList’, ’"annBgNumber’, ’"ComponentNumber’,
‘bgNumber’, 'pvalue’, 'qvalue’, and ’lfdr’. They correspond to pathway identifier, pathway name, the
submitted components annotated to a pathway, numbers of submitted components annotated to a
pathway, the background components annotated to a pathway, numbers of background components an-
notated to a pathway, numbers of submitted components, numbers of background components, p-value
of the hypergeometric test, q-values (Fdr), and local fdr values. The list of results returned from the
function identifyGraph can also be converted to data.frame using the function printGraph.

The following commands annotate a gene set to metabolic pathways and identify significantly en-
riched metabolic pathways.

> ##Convert all metabolic pathways to graphs.
> metabolicEC<-get ("metabolicEC",envir=k2ri)
> graphList<-getMetabolicGraph(metabolicEC)

76

Figure 42: The Glycolysis / Gluconeogenesis pathway (path:00010) graph with enzymes and compounds
as nodes. The mapped nodes are colored red. The betweenness of these nodes is significantly low.

7

> ##get a set of genes
> geneList<-getExample (geneNumber=1000)
> #annotate gene sets to pathway graphs
> #and identify significant pathway graphs
> ann<-identifyGraph(geneList,graphList)
> #convert ann to data.frame
> result<-printGraph(ann)
> #print a part of the results to screen
> result[1:10,]
pathwayId pathwayName annComponentRatio
1 path:00071 Fatty acid metabolism 36/1000
2 path:00140 Steroid hormone biosynthesis 31/1000
3 path:00232 Caffeine metabolism 20/1000
4 path:00380 Tryptophan metabolism 28/1000
5 path:00591 Linoleic acid metabolism 21/1000
6 path:00830 Retinol metabolism 30/1000
7 path:00980 Metabolism of xenobiotics by cytochrome P450 32/1000
8 path:00982 Drug metabolism - cytochrome P450 29/1000
9 path:00983 Drug metabolism - other enzymes 27/1000
10 path:00564 Glycerophospholipid metabolism 24/1000
annBgRatio pvalue qvalue 1fdr
1 67/21796 0.000000e+00 0.000000e+00 7.859423e-13
2 73/21796 0.000000e+00 0.000000e+00 7.859423e-13
3 27/21796 0.000000e+00 0.000000e+00 7.859423e-13
4 65/21796 0.000000e+00 0.000000e+00 7.859423e-13
5 42/21796 0.000000e+00 0.000000e+00 7.859423e-13
6 61/21796 0.000000e+00 0.000000e+00 7.859423e-13
7 80/21796 0.000000e+00 0.000000e+00 7.859423e-13
8 82/21796 0.000000e+00 0.000000e+00 7.859423e-13
9 70/21796 0.000000e+00 0.000000e+00 7.859423e-13
10 76/21796 2.220446e-14 7.859423e-14 1.285016e-12

Each row of the result (data.frame) is a pathway. Its columns include pathwayld, pathwayName,
annComponentRatio, annBgRatio, pvalue, qvalue, lfdr. The annComponentRatio is the ratio of the
annotated components. For example, 30/1000 means that 30 components in 1000 components are
annotated to the pathway. When many correlated pathways are considered, a false positive discovery
rate is likely to result. We provide g-values (Fdr) and local fdr values for reducing the false positive
discovery rate [Strimmer, 2008]. Because the result is a data.frame, it is able to use the function
write.table to export the result to a tab delimited file. If setting the argument detail as TRUE,
we can also get more detailed result. For example, the annotated components and the annotated
background components can be exported using ”;” as separator.

##write the annotation results to tab delimited file.
write.table(result,file="result.txt",row.names=FALSE,sep="\t")

#detailed information is also outputed

resultl<-printGraph (ann,detail=TRUE)

##write the annotation results to tab delimited file.
write.table(resultl,file="resultl.txt",row.names=FALSE,sep="\t")

vV VVVVYVYyV

The following command displays a part of the return result of the function identifyGraph.

78

> #list of the result
> ann[1]

[[1]1]
[[1]]$pathwayId
[1] "path:00071"

[[1]]$pathwayName
[1] "Fatty acid metabolism"

[[1]]1$annComponentList

[1] "10449" "10455" "11001" "124" "125" "126" "126129" "127"

[9] "128" "130" 131" "1374" "1375" "1376" "'1543" "1544"
[17] "1545" "'1548" "1549" "1551" "1553" "1555" "1557" "1558"
[25] "1559" "1562" "1565" "1571" "1572" "1573" "1576" "1577"
[33] "1579" "1588" "1632" "1892"

[[1]]$annComponentNumber
(1] 36

[[1]]$annBgComponentList

[1] "10449" "10455" "11001" "124" "125" "126" "126129" "127"
[o] "128" "130" "131" "1374" "1375" "1376" "1543" "1544"
[17] "1545" "1548" "1549" "1551" "1553" "1555" "1557" "1558"
[25] "1659" "1562" "1565" "1571" "1572" "1573" "1576" "1577"
[33] "1579" "1580" "1588" "1632" "1892" "1962" "199974" "217"
[41] "2180" "2181" "2182" "219" "223" "224" "23305" "260293"
[49] "2639" "284541" "29785" "30" "3028" "3030" "3032" "3033"
[57]1 "3295" "33" "34" "35" "3g" "39" "501" "51"

[65] "51703" "64816" "8310"

[[1]]$annBgNumber
[1] 67

[[1]]$componentNumber
[1] 1000

[[1]]1$bgNumber
[1] 21796

[[1]]1$pvalue
(11 o

[[11]$qvalue
[11 0

([1]]$1fdr
[1] 7.859423e-13

The result is a list. It includes the following elements: ’pathwayld’, 'pathwayName’, ’annCompo-
nentList’, "annComponentNumber’, "annBgComponentList’, ’annBgNumber’, ’‘ComponentNumber’, ’bgNum-
ber’, 'pvalue’, 'qvalue’, and ’Ifdr’.

79

The Glycolysis / Gluconeogenesis pathway (path:00010) is significant in the analysis result of path-
way. We can see the identified result of the pathway as follows:

> result[result[,1] Jinj, "path:00010",]

pathwayId pathwayName annComponentRatio annBgRatio
20 path:00010 Glycolysis / Gluconeogenesis 12/1000 64/21796
pvalue qvalue 1fdr

20 2.942795e-05 5.208114e-05 0.0009081511

This means that the submitted interesting genes are significantly enriched to the Glycolysis / Gluco-
neogenesis pathway. If these genes is disease-related genes (e.g., risk genes associated with lung cancer),
the Glycolysis / Gluconeogenesis pathway may be highly associted with the disease.

We can visualize the annotated pathways using the function plotAnnGraph. The following com-
mand displays the Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

> #visualize
> plotAnnGraph("path:00010",graphList,ann)

The result graph is shown in Figure The red nodes in the result graph represent the enzymes which
include the submitted genes.

3.3.2 Annotate compound sets and identify enire pathways

Our system can provide the annotation and identification of pathways based on compound sets. Users
only need to set the value of the argument type of the function identifyGraph as "compound”. We still
use the above pathway graphs. We then input the interesting compound set and the list of pathway
graphs to the function identifyGraph. Through performing the function identifyGraph, the interesting
gene set can be annotated to pathway graphs. Finally, the enrichment significance of pathways can
be evaluated using hypergeometric test. The following commands can annotate a compound set and
identify statistically significantly enriched metabolic pathways.

> #get a set of compounds
> compoundList<-getExample (geneNumber=0, compoundNumber=100)
> #annotate compound sets and identify significant pathways
> ann<-identifyGraph (compoundList,graphList, type="compound")
> #convert ann to data.frame
> result<-printGraph (ann)
> #display a part of the result
> result([1:10,c¢(1,3,4,5)]
pathwayId annComponentRatio annBgRatio pvalue
1 path:00190 11/100 16/14931 0.000000e+00
2 path:00230 17/100 92/14931 0.000000e+00
3 path:00970 14/100 53/14931 0.000000e+00
4 path:00250 9/100 24/14931 2.253753e-14
5 path:00270 11/100 56/14931 8.026912e-14
6 path:00920 8/100 18/14931 1.260103e-13
7 path:00020 8/100 20/14931 3.589351e-13
8 path:00620 9/100 32/14931 4.636291e-13
9 path:00330 12/100 90/14931 7.361889e-13
10 path:00260 10/100 49/14931 7.587264e-13

80

TITLE:GchonIuconeogenesis

Starch and se metabolism

Pentose

'

hate pathwi

Carbon fixation in

31
421011

Citrate ¢

3.1 26106255 o2—1.1.p7——E00186

.13 c@?Z Propandate fetabolism
1.2.1]

———— e

Figure 43: The Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

81

We can also see the identified result of the pathway as follows:

> result[result([,1] Jinj, "path:00010",]

pathwayId pathwayName annComponentRatio annBgRatio
15 path:00010 Glycolysis / Gluconeogenesis 8/100 31/14931
pvalue qvalue 1fdr

156 2.115752e-11 4.261451e-11 8.353875e-08

The following command displays the Glycolysis / Gluconeogenesis pathway (path:00010). The com-
pounds identified in the submitted compounds are colored red.

> #visualize
> plotAnnGraph("path:00010",graphList,ann)

The result graph is shown in Figure [{4]

3.3.3 Annotate compound and gene sets and identify entire pathways

If users have not only interesting gene sets but also interesting compound sets, then users can anno-
tate them at the same time and identify significant entire pathways. To do this, we need to set the
argument type of the function identifyGraph as "gene_compound”. We input the interesting compound
set and the list of pathway graphs to the function identifyGraph. Through performing the function
identifyGraph, the interesting gene and compound set can be annotated to pathway graphs. Finally,
the enrichment significance of pathways can be evaluated using hypergeometric test. The following
commands can annotate a combined set of genes and compounds and identify statistically significantly
enriched metabolic pathways.

> #iget a set of compounds and genes
> componentList<-getExample (geneNumber=1000, compoundNumber=100)
> #annotate gene and compound sets to metabolic graphs
> #and identify significant graphs
> ann<-identifyGraph (componentList,graphList, type="gene_compound")
> #convert ann to data.frame
> result<-printGraph (ann)
> #display a part of results
> result[1:10,c¢(1,3,4,5)]
pathwayId annComponentRatio annBgRatio pvalue
1 path:00071 39/1100 117/36727 0.000000e+00
2 path:00190 32/1100 146/36727 0.000000e+00
3 path:00230 44/1100 243/36727 0.000000e+00
4 path:00232 21/1100 48/36727 0.000000e+00
5 path:00240 32/1100 153/36727 0.000000e+00
6 path:00830 30/1100 85/36727 0.000000e+00
7 path:00980 32/1100 161/36727 0.000000e+00
8 path:00983 27/1100 109/36727 0.000000e+00
9 path:00260 24/1100 88/36727 1.110223e-16
10 path:00380 30/1100 146/36727 1.110223e-16

The result graph is shown in Figure We can also see the identified result of the pathway as
follows:

> result[result([,1] Jinj, "path:00010",]

82

TITLE:GchonIuconeogenesis

Carbon fixation in

Starch and se metabolism

Pentose

31
421011

Citrate ¢

3.1.% (6256
ho CrssmH{ET—S0
1.2.1]
— 21

oL —eios

'

hate pathwi

Propandate fetabolism

Figure 44: The Glycolysis / Gluconeogenesis pathway (path:00010). The nodes identified in the sub-

mitted compounds are colored red.

83

pathwayId pathwayName annComponentRatio annBgRatio

18 path:00010 Glycolysis / Gluconeogenesis 20/1100 95/36727
pvalue qvalue 1fdr
18 5.808687e-12 4.321078e-12 5.910418e-10

The following command displays the Glycolysis / Gluconeogenesis pathway (path:00010). The nodes
identified in the submitted compounds and genes are colored red.

> #visualize
> plotAnnGraph("path:00010",graphList,ann)

3.3.4 Other examples

The function identifyGraph is flexible in input of pathway data. We can change pathway data for
different analyses. For example, we can use reference pathways linked to KO identifiers to support the
identification of not only metabolic pathways but also non-metabolic pathways. The following com-
mands annotate a gene set and identify significantly enriched metabolic and non-metabolic pathways:

> ##Convert all metabolic pathways to graphs.
> metabolicKO<-get ("metabolicK0",envir=k2ri)
> gm<-getMetabolicGraph(metabolicK0)
> ##Convert all non-metabolic pathways to graphs,
> nonMetabolicKO<-get ("nonMetabolicK0",envir=k2ri)
> gn<-getNonMetabolicGraph (nonMetabolicK0)
> graphList<-c(gm,gn)
> ##get a set of genes
> geneList<-getExample (geneNumber=1000, compoundNumber=0)
> #annotate gene sets and identify significant pathways
> ann<-identifyGraph(geneList,graphlist, type="gene")
> result<-printGraph(ann)
> #display part of results
> result[1:10,c(1:5)]
pathwayId pathwayName annComponentRatio
1 path:00830 Retinol metabolism 29/1000
2 path:00980 Metabolism of xenobiotics by cytochrome P450 26/1000
3 path:04080 Neuroactive ligand-receptor interaction 66/1000
4 path:04142 Lysosome 35/1000
5 path:04740 Olfactory transduction 76/1000
6 path:04974 Protein digestion and absorption 33/1000
7 path:00982 Drug metabolism - cytochrome P450 24/1000
8 path:04270 Vascular smooth muscle contraction 29/1000
9 path:00564 Glycerophospholipid metabolism 24/1000
10 path:04144 Endocytosis 38/1000
annBgRatio pvalue
1 65/21796 0.000000e+00
2 71/21796 0.000000e+00
3 272/21796 0.000000e+00
4 117/21796 0.000000e+00
5 384/21796 0.000000e+00
6 79/21796 0.000000e+00
7 73/21796 7.993606e-15

84

TITLE:GchonIuconeogenesis

Carbon fixation in

Starch and se metabolism

Pentose

31
421011

Citrate ¢

3.1.1 (6256
ho CrssmH{ETe—S0
1.2.1]
— 21

oI —eios

'

hate pathwi

Propandate fetabolism

Figure 45: The Glycolysis / Gluconeogenesis pathway. The nodes identified in the submitted compounds

and genes are colored red.

85

8 114/21796 2.509104e-14
9 79/21796 5.873080e-14
10 203/21796 1.116884e-13

The result includes both metabolic pathways and non-metabolic pathways.
The following command displays the MAPK signaling pathway (path:04010). The compounds iden-
tified in the submitted compounds are colored red.

> #visualize
> plotAnnGraph("path:04010",graphList,ann)

The result graph is shown in Figure We can see the identified result of the pathway as follows:

> result[result[,1] Jinj, "path:04010",]

pathwayId pathwayName annComponentRatio annBgRatio pvalue
42 path:04010 MAPK signaling pathway 33/1000 266/21796 2.170619e-07
qvalue 1fdr

42 3.194669e-07 2.478532e-06

Note that for metabolic pathways, the results of pathway analyses based on KO may be slightly
different from that based on EC. We suggest users to use reference pathways linked to KO identifiers to
analyze metabolic pathways because KEGG uses KO to annotate genes to pathways. In this vignette,
many examples of pathway analyses use reference pathways linked to EC identifiers because enzymes
may be more easily understood by users. The following commands can annotate a gene set and identify
significantly enriched metabolic pathways by using KO metabolic pathways:

> ##Convert all metabolic pathways to graphs.
> metabolicKO<-get ("metabolicK0",envir=k2ri)
> graphList<-getMetabolicGraph (metabolicK0)
> ##get a set of genes
> geneList<-getExample (geneNumber=1000, compoundNumber=0)
> #annotate gene sets and identify significant pathways
> ann<-identifyGraph (geneList,graphList)
> result<-printGraph (ann)
> #display part of results
> result[1:10,c¢(1,3,4,5)]

pathwayId annComponentRatio annBgRatio pvalue
1 path:00830 29/1000 65/21796 0.000000e+00
2 path:00980 26/1000 71/21796 0.000000e+00
3 path:00982 24/1000 73/21796 7.993606e-15
4 path:00564 24/1000 79/21796 5.873080e-14
5 path:00071 16/1000 42/21796 1.851408e-11
6 path:00140 18/1000 56/21796 2.838807e-11
7 path:00561 16/1000 49/21796 2.749426e-10
8 path:00240 22/1000 99/21796 5.635397e-10
9 path:00190 25/1000 132/21796 1.388163e-09
10 path:00591 12/1000 29/21796 2.051083e-09

3.4 The k-cliques method to identify subpathways

The section mainly introduces the annotation and identification of subpathways. We developed the k-
cliques subpathway identification method [Li et al., 2009] according to pathway structure data provided

86

'ITLE:MAPaling pathway

Phosphatidylinl signaling system

CO0057 044 6—
coF T Bes

K76 {04345 {04380
1434400 < L 04381

0252 y (+7
‘se T Kjasdi080 o
KqaSp K43 /a3t goiat
0435 ?' i 0437 0437
‘“‘. (0308 -- K043t —uun- 04379
0459494365 .) p —-n_043]

06082

04377
K(4345-K08053 04352

06 044
44 6. .

044
1

Cell |
— 404453 sig paling pathway Affoptd si)
QarboiRtis—
'- 4386

KI04376
,‘!*'l“ 52
p3

404389404390
-g‘w.

043 ___>_—044
T « L
445 ' /)
0 (04428 R 0444604374
104429

Figure 46: The MAPK signaling pathway (path:04010). The nodes identified in the submitted genes
are colored red.

87

by KEGG. Firstly, each pathway is converted to an undirected graph. Secondly, according to parameter
k, all subpathways (k-cliques) can be constructed using k-cliques algorithm [Huber et al., 2007] on each
above graph. The identifier of each subpathway is given with its pathway identifier plus a subpathway
number (e.g., path:00010_1). For each subpathway (k-clique), distance among nodes within it is no
greater than the parameter k (a user-defined distance). Component sets can then be annotated to these
subpathways through assigning EC (KO) numbers for them and matching them to these subpathways.
Finally, the significantly enriched subpathways can be identified using hypergeometric test.

3.4.1 Annotate gene sets and identify subpathways

Users can annotate the interesting gene sets and identify significantly enriched subpathways. Firstly,
we need to construct a list of the undirected pathway graphs with enzymes as nodes. Enzymes in a
graph are connected by an edge if their corresponding reactions have a common compound. Secondly,
we use the function getKcSubiGraph to mine subpathways with the parameter k. We then input the
interesting gene set and the list of subpathways to the function identifyGraph. Through performing the
function, the interesting gene set can be annotated to subpathways. Finally, the enrichment significance
of pathways can be evaluated using hypergeometric test.

The following commands can annotate gene sets and identify statistically significantly enriched
metabolic subpathways based on the k-cliques method. The list of pathway graphs is obtained from the
function getMetabolicECECUGraph, which can get all undirected metabolic pathway graphs with enzymes
as nodes and compounds as edges (see the section and Figure 22).

> ##identify metabolic subpathways based on gene sets
> #iget the enzyme-enzyme pathway graphs
> graphList<-getMetabolicECECUGraph ()
> #iget all 4-clique subgraphs
> subGraphList<-getKcSubiGraph (k=4,graphList)
> #get a set of genes
> genelist<-getExample (geneNumber=1000, compoundNumber=0)
> #annotate gene sets to subpathways
> #and identify significant graphs
> ann<-identifyGraph(geneList,subGraphList,type="gene")
> #convert ann to data.frame
> result<-printGraph (ann)
> #display a part of results
> result[1:15,]

pathwayld pathwayName annComponentRatio annBgRatio
1 path:00071_8 Fatty acid metabolism 27/1000 38/21796
2 path:00140_5 Steroid hormone biosynthesis 25/1000 36/21796
3 path:00140_6 Steroid hormone biosynthesis 25/1000 43/21796
4 path:00140_7 Steroid hormone biosynthesis 25/1000 43/21796
5 path:00140_8 Steroid hormone biosynthesis 24/1000 41/21796
6 path:00140_9 Steroid hormone biosynthesis 25/1000 43/21796
7 path:00140_10 Steroid hormone biosynthesis 28/1000 64/21796
8 path:00140_19 Steroid hormone biosynthesis 27/1000 63/21796
9 path:00140_20 Steroid hormone biosynthesis 27/1000 63/21796
10 path:00140_21 Steroid hormone biosynthesis 27/1000 63/21796
11 path:00232_1 Caffeine metabolism 20/1000 27/21796
12 path:00232_2 Caffeine metabolism 20/1000 27/21796
13 path:00380_5 Tryptophan metabolism 24/1000 40/21796
14 path:00591_1 Linoleic acid metabolism 21/1000 42/21796

88

15 path:00830_1 Retinol metabolism 30/1000 61/21796
pvalue gvalue 1fdr
0 .691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14
.691050e-14

© 00 N O W N+~

=
= O

12
13
14
15

O O O OO OO OO OO O oo
O O O OO OO OO OO OO oo
L T = T T T S o e S e S Sy S =Y

We find that the subpathway "path:00010_3”, which is a subpathway of the Glycolysis / Gluco-
neogenesis pathway, is statistically significant. We can see the identified result of the subpathway as
follows:

> result[result[,1] 7inj, "path:00010_3",]

pathwayld pathwayName annComponentRatio annBgRatio
72 path:00010_3 Glycolysis / Gluconeogenesis 11/1000 36/21796
pvalue qvalue 1fdr

72 3.747776e-07 2.37853e-06 2.863054e-05
The following commands can display the subpathway.
> plotAnnGraph("path:00010_3", subGraphList,ann)

The result is shown in Figure The nodes identified in the submitted genes are colored red. The
subpathway is located in the bottom of Figure

The following command can display the annotated genes in the subpathway to the corresponding
entire pathway in KEGG website. The nodes identified in the submitted genes are colored red.

> #visualize
> plotAnnGraph("path:00010_3",subGraphList,ann,displayInR=FALSE, gotoKEGG=TRUE)

The result map is shown in Figure

3.4.2 Annotate compound sets and identify subpathways

Users can annotate the interesting compound sets and identify significant subpathways. Users need to
set the value of the argument type of the function identifyGraph as compound”. Firstly, we construct
a list of pathway graphs with compounds as nodes and enzymes as edges. Secondly, we use the function
getKcSubiGraph to mine subpathways with the parameter k. We then input the interesting compound
set and the list of subpathways to the function identifyGraph. Through performing the function, the
interesting compound set can be annotated to subpathways. Finally, the enrichment significance of
pathways can be evaluated using hypergeometric test.

The following commands can annotate compound sets and identify statistically significantly enriched
metabolic subpathways. The list of pathway graphs is obtained from the function getMetabolicCOCOU-
Graph, which can get all undirected metabolic pathway graphs with compounds as nodes and enzymes

as edges (see the section and Figure [30).

89

Figure 47: A significant subpathway of the Glycolysis / Gluconeogenesis pathway, which is located
in the bottom of Figure 22] The subpathway is constructed based on the k-clique method. In the
subpathway, the distance between any two nodes is no greater than 4. The nodes identified in the
submitted genes are colored red.

90

| GLYCOLYSIS / GLUCONEOGENESIS | —

LAY

|
v
o-D-Glucose-1P

27141

[5422]
] LB —O e
o-D-Glucose — - (\
2712271141 PO . . Glsose 6P +
5133 5310
271127163 wP-D-Glucose6P
o » 53190 _D-Fructose-6P
B-D-Glucose 2712|2744 L e S
31311 [27.1.11)[2711% phosplute
Arbutin 6P I I] pathwray
(extzacellular) [2.7.1.69] ———
LB -1,6P2
(exmellular) [2.7.1.69] C Y.
Salicin-6P
O 5311
BT [5311]

[z

Glyrerate-1,3P2 v

(e

Glyrerate-2,3F2 { 2 [2.723]
Carbon fixation

in photosymthetic organisras

41132
% s 11

Oxaloacetate [4.1.1.49

O‘-—-—’l 1 "‘ O L-Lactate
41.1.1 Pyruvate
V
Propanoate metabolism
L1113
#-O Ethanol
1123 oG
1128

00010 12127710
(c) Kanehisa Laboratories

Figure 48: Display the annotated genes in the subpathway "path:00010-3” to the corresponding entire
pathway in KEGG website. The nodes identified in the submitted genes are colored red.

91

> #iget the compound-compound pathway graphs
> graphList<-getMetabolicCOCOUGraph ()
> #get all 4-clique subgraphs
> subGraphList<-getKcSubiGraph (k=4,graphList)
> #get a set of compounds
> compoundList<-getExample (geneNumber=0, compoundNumber=100)
> #annotate compound sets and identify significant subpathways
> ann<-identifyGraph(compoundList,subGraphList,type="compound")
> #convert ann to data.frame
> result<-printGraph (ann)
> #display part of results
> result[1:10,c(1,3,4,5)]

pathwayIld annComponentRatio annBgRatio pvalue
1 path:00260_2 9/100 26/14931 5.340173e-14
2 path:00620_1 9/100 27/14931 7.960299%e-14
3 path:00260_5 9/100 28/14931 1.166844e-13
4 path:00620_2 8/100 21/14931 5.765388e-13
5 path:00010_1 7/100 13/14931 8.110179e-13
6 path:00920_1 6/100 9/14931 6.408540e-12
7 path:00920_3 6/100 9/14931 6.408540e-12
8 path:00910_1 7/100 20/14931 3.526102e-11
9 path:00010_2 6/100 12/14931 6.935852e-11
10 path:00240_7 6/100 13/14931 1.281135e-10

We find that the subpathway "path:00010_1", which is a subpathway of the Glycolysis / Gluco-
neogenesis pathway, is statistically significant. We can see the identified result of the subpathway as
follows:

> result[result[,1] 7inj, "path:00010_1",]

pathwayld pathwayName annComponentRatio annBgRatio
5 path:00010_1 Glycolysis / Gluconeogenesis 7/100 13/14931
pvalue qvalue 1fdr

5 8.11018e-13 1.144620e-10 1.974999e-09

The following commands can display the subpathway.
> plotAnnGraph ("path:00010_1",subGraphList,ann)

The result is shown in Figure The nodes identified in the submitted genes are colored red. The
subpathway is located in the bottom of Figure

3.4.3 Annotate compound and gene sets and identify subpathways

Users can annotate the interesting gene and compound sets simultaneously and identify significant sub-
pathways. To do this, we need to set the argument type of the function identifyGraph as "gene_compound”.
Firstly, we construct a list of undirected pathway graphs with enzymes and compounds as nodes. Sec-
ondly, we use the function getKcSubiGraph to mine subpathways with the parameter k. We then input
the interesting gene and compound set and the list of subpathways to the function identifyGraph.
Through performing the function, the interesting gene and compound set can be annotated simulta-
neously to subpathways. Finally, the enrichment significance of subpathways can be evaluated using
hypergeometric test.

92

C@Sl

CO0036 00074
68
C@)%\ € \ / 25 C@JZZ 0@186
RO s am—— GG
C@?ﬂ C@84

Figure 49: A significant subpathway of the Glycolysis / Gluconeogenesis pathway. The subpathway is
constructed based on the k-clique method. In the subpathway, the distance between any two nodes is
no greater than 4. The nodes identified in the submitted compounds are colored red.

93

The following commands can annotate gene and compound sets and identify statistically significantly
enriched metabolic subpathways. The list of pathway graphs is obtained from the function getMetabo-
1icECCOUGraph, which can get all undirected metabolic pathway graphs with enzymes and compounds

as nodes (see the section and Figure [14).

graphList<-getMetabolicECCOUGraph ()

#get all 8-clique subgraphs

subGraphList<-getKcSubiGraph (k=8,graphList)

#get a set of compounds and genes

componentList<-getExample (geneNumber=1000, compoundNumber=100)
#annotate gene and compound sets and identify significant subpathways
ann<-identifyGraph (componentList,subGraphList,type="gene_compound")
#convert ann to data.frame

result<-printGraph (ann)

#display part of results

result[1:15,¢(1,3,4,5)]

VVVVVVVVVVYV

pathwayId annComponentRatio annBgRatio pvalue

1 path:00071_12 28/1100 44/36727 0
2 path:00071_15 28/1100 46/36727 0
3 path:00140_1 22/1100 65/36727 0
4 path:00140_6 25/1100 57/36727 0
5 path:00140_19 25/1100 61/36727 0
6 path:00140_20 27/1100 88/36727 0
7 path:00140_21 24/1100 67/36727 0
8 path:00140_22 24/1100 67/36727 0
9 path:00140_23 24/1100 71/36727 0
10 path:00140_24 22/1100 64/36727 0
11 path:00140_25 22/1100 61/36727 0
12 path:00140_26 22/1100 60/36727 0
13 path:00232_1 20/1100 41/36727 0
14 path:00232_2 20/1100 39/36727 0
15 path:00232_3 20/1100 40/36727 0

The following commands can display a subpathway of the Glycolysis / Gluconeogenesis pathway.
> plotAnnGraph("path:00010_3",subGraphList,ann)
The result graph is shown in Figure We can see the identified result of the subpathway as follows:
> result[result[,1] Jinj, "path:00010_3",]

pathwayld pathwayName annComponentRatio annBgRatio
62 path:00010_3 Glycolysis / Gluconeogenesis 17/1100 43/36727
pvalue qvalue 1fdr

62 2.220446e-15 2.51838e-14 1.366221e-12

3.4.4 Other examples

We can use KO referenece pathways to support the annotation and identification of not only metabolic
subpathways but also non-metabolic subpathways. The following commands can identify subpathway
of non-metabolic pathways based on gene sets. The list of pathway graphs is obtained from the function
getNonMetabolicKOKOUGraph, which can get all undirected non-metabolic pathway graphs with KOs as

nodes (see the section and Figure [26).

94

Cgop74

00186

Figure 50: A significant subpathway of the Glycolysis / Gluconeogenesis pathway. The subpathway is
constructed based on the k-clique method. In the subpathway, the distance between any two nodes is
no greater than 8. The nodes identified in the submitted compounds and genes are colored red.

95

##identify non-metabolic subpathways based on gene sets
#get the KO-KO pahway graphs
graphList<-getNonMetabolicKOKOUGraph ()

#get all 4-clique subgraphs
subGraphList<-getKcSubiGraph (k=4,graphList)

#get a set of genes

genelList<-getExample (geneNumber=1000, compoundNumber=0)
#annotate gene sets to subpathways

#and identify significant subpathways
ann<-identifyGraph (geneList,subGraphList,type="gene")
#convert ann to data.frame

result<-printGraph (ann)

result([1:15,]

VVVVVVVVVVYVYV

We can also get all undirected metabolic pathway graphs with enzymes as nodes and compounds
as edges, in which each node contains only one enzyme and each enzyme only appears once in the
graph. The kinds of pathway data are used by the SubpathwayMiner system to identify metabolic
subpathways. For the iSubphathwayMiner system, the list of pathway graphs can be obtained from the
function getMetabolicECECUEMGraph (see the section and Figure . The following commands use
the list to identify statistically significantly enriched metabolic subpathways:

#get metabolic pathway graphs with enzymes as nodes and compounds as edges
#each node contains only one enzyme and each enzyme only appears once.
graphList<-getMetabolicECECUEMGraph ()

#get all 4-clique subgraphs

subGraphList<-getKcSubiGraph (k=4,graphList)

##get a set of genes

genelList<-getExample (geneNumber=1000, compoundNumber=0)

#annotate gene sets and identify significant subpathways
ann<-identifyGraph (genelList,subGraphList,type="gene")
result<-printGraph (ann)

VVVVVVVVVYV

4 Visualize a pathway graph

We provide the function plotGraph for visualization of a pathway graph. The function can display a
pathway graph using varieties of layout styles. The default is the KEGG style. We implement it by using
detailed information about pathway map obtained from KGML files, which are converted to attributes
of the corresponding graph, including graphics_x, graphics_y, graphics_name, graphics_type, names,
type, etc. The function is developed based on the function plot.igraph in the igraph and the function
plot. Therefore, most of functions in plot.igraph and plot are also available for the plotGraph. We
will detailedly describe how to efficiently use the function. The following command is a simple usage
for the function to visualize pathway graphs with the KEGG style.
We firstly generate a pathway graph.

> path<-paste(system.file(package="iSubpathwayMiner"),
+ "/localdata/kgml/metabolic/ec/",sep="")
> gm<-getMetabolicGraph (getPathway (path,c("ec00010.xm1")))

We can use plotGraph to visualize the pathway graph as follows:

> #visualize
> plotGraph(gm([[1]])

The result graph is shown in Figure The default layout style of the function is the KEGG style.

96

TITLE:GchonIuconeogenesis

Pentose hate pathwi

‘

Carbon fixation in

Citrate ¢ 7
02p 1.1 00186

Propandate fetabolism

Figure 51: The Glycolysis / Gluconeogenesis pathway graph with the KEGG style

97

4.1 Change node label of the pathway graph

We can change node labels into the gene identifiers of the current organism as follows:

> plotGraph(gm[[1]],vertex.label=getNodeLabel (gm[[1]],
+ type="currentId",displayNumber=1))

The result graph is shown in Figure Because the default type of gene identifiers of the current
organism is Human Entrez Gene IDs. Therefore, many node labels are changed into Human Entrez
Gene IDs. If nodes don’t correspond to any Human Entrez Gene IDs, then node labels will not be
changed.

When there are many gene identifiers in a node, we can use the argument displayNumber to limit
the number of gene identifiers displayed. The default value of the argument is 1. This means that if
there is more than one gene in a node, the symbol ”...” is added to the node.

We can change node labels of a non-metabolic pathway into gene official symbols as follows:

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/non-metabolic/ko/",sep="")

> gn<-getNonMetabolicGraph (getPathway (path,c("ko04010.xm1")))
> plotGraph(gn[[1]],vertex.label=getNodeLabel)

The result graph is shown in Figure Compared with Figure [2 node labels with KO identifiers are
changed into gene official symbols. Note that the change is only used as visualization of the pathway
graph. Node data in a pathway graph are not changed.

4.2 Zoom a part of pathway graph

The following commands can zoom in the left-top part of the MAPK signaling pathway graph and gene
symbols as node labels.

> plotGraph(gn[[1]],vertex.label=getNodeLabel,xlim=c(-1,-0.5),ylim=c(0,1))

For a graph, the limits for the horizontal and vertical axis is (-1,1). When we set them as (-1,-0.5)
and (0,1), we can zoom in the left-top part of graphs.

4.3 The basic commands to visualize a pathway graph with custom style

We can display a pathway graph with different styles by using some basic commands. For example, we
can set a color vector and then use it to change color of each node frame. Figure |55 shows an example
of changing the certain enzyme node as red frame. The commands are as follows:

> #add red frame to the enzyme "ec:4.1.2.13"
> vertex.frame.color<-ifelse(V(gm[[1]])$names=="ec:4.1.2.13","red", "dimgray")
> vertex.frame.color

[1] "red" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[8] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[15] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[22] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[29] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[36] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[43] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[50] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[67] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"

98

TITLE:GchonIuconeogenesis

Starch and se metabolism

Pentose hate pathwi

'

Carbon fixation in

Citrate ¢

e

:«4» 00084

Figure 52: The Glycolysis / Gluconeogenesis pathway graph. We can change node labels into the gene
identifiers of the current organism.

99

'ITLE:MAPaling pathway
Phosphatidylinl signaling system

MAP3K14_ o
IK..."::

LK I
; sigfaling pathway As(i: ©

TR —
LB, -HIR2E ok _
FASL i S MAP2KS, e BDITR
TFB R, My —-!El‘ﬁ
capsercon

L 15TV

RIKAPI2

CB

Wnt sig pathway

N

Figure 53: The MAPK signaling pathway graph and gene symbols as node labels

100

TITLE:MAPK signallng pathway

Phosphatidylino:

C00575
C01245 €00165
PRKACB, /.
COACNA1S Y- €00076
—1>
+p
—>
NGF RAP1A, ..
RAPGEF?
ASGRF2|..
BDNF
NTF3,... A PRKCB.. X
L
e BRAF
FGF12,.. FGFR3,..§ GRB2 f¢=F SOSL,... RAF1
PDGFA,...——‘irDGFRA, . \\A .
NF1
GNG12,.k RASA2 I
____/
MAP4K3 MAP3K8
MAP3K1
MAF’4K4/J°|g+

Figure 54: Zoom in the left-top part of the MAPK signaling pathway graph and gene symbols as node
labels

101

[64] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[71] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[78] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[85] "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray" "dimgray"
[92] "dimgray" "dimgray" "dimgray"

> #display new graph
> plotGraph(gm[[1]],vertex.frame.color=vertex.frame.color)

TITLE:GchonIuconeogenesis

Starch and se metabolism

hate pathwi

‘

Carbon fixation in

Citrate ¢ F

022——1.1 p7——E00186

Propanetabolism

Figure 55: The graph with the frame of enzyme "ec:4.1.2.13” colored red

102

Operations to change other settings are similar to the example. In order to change styles of a graph,
we only need to get and change the value of vectors related to styles and then transfer them to the
function plotGraph. Detailed information can be provided in the help of the function plot.igraph in the
igraph package and the function plot in the graphics package. Here, we only provide some examples of
setting some styles for interpreting the usages of the function plotGraph. For instance, we can change
node color, size, label font, x-y coordinates, etc. Figure shows the results and the corresponding
commands as follows:

#add green label to the comound "cpd:C00111"
vertex.label.color<-ifelse(V(gm[[1]])$names=="cpd:C00111", "green", "dimgray")
#change node color

vertex.color<-sapply (V(gm[[1]])$type, function(x) if(x=="enzyme"){"pink"}
else if (x=="compound"){"yellow"} else{"white"})

#change node size

size<-ifelse(V(gm[[1]])$graphics_name=="Starch and sucrose metabolism",20,8)
#change a compound label

#font size
vertex.label.cex<-ifelse(V(gm[[1]])$names=="cpd:C00036",1.0,0.6)

#italic

vertex.label.font<-ifelse(V(gm[[1]])$names=="cpd:C00036",3,1)

#change y coordinate of an enzyme

layout<-getLayout (gm[[1]])

index<-V(gm[[1]]) [V(gm[[1]])$names=="ec:4.1.1.32"]

layout [index+1,2]<-layout [index+1,2]+50

#display the new graph
plotGraph(gm[[1]],vertex.frame.color=vertex.frame.color,
vertex.label.color=vertex.label.color,vertex.color=vertex.color,
vertex.size=size,vertex.size2=size,vertex.label.cex=vertex.label.cex,
vertex.label.font=vertex.label.font,layout=layout)

+ + +VVVVVVVVVVVVV+VVVYV

For a non-metabolic pathway graph, we can change colors of edge with high betweenness as red.

> path<-paste(system.file(package="iSubpathwayMiner"),

+ "/localdata/kgml/non-metabolic/ko/",sep="")

> gn<-getNonMetabolicGraph(getPathway (path, c("k004010.xm1")))
> #change color of edges with top 10J, betweenness as red

> eb<-edge.betweenness (gn[[1]])

> edge.color<-ifelse(eb>quantile(eb,0.9), "red", "dimgray")

> plotGraph(gn[[1]],edge.color=edge.color)

The result is shown in Figure

4.4 The layout style of a pathway graph in R

The argument layout of the function plotGraph is used to determine the placement of the nodes for
drawing a graph. There are mainly two methods to determine the placement of the nodes for drawing a
pathway graph: the KEGG layout style and layout provided in the function plot.igraph of the igraph
package. The default layout is the KEGG layout style, for which the coordinates of nodes in KEGG
pathway maps is used to determine the placement of the nodes for drawing a graph. Therefore, the
returned figure by the function can be very similar to the KEGG pathway graph. Figure [51] displays a
pathway graph with the KEGG layout style.
The layout styles provided in igraph include layout.random, layout.circle, layout.sphere, lay-
out.sphere, layout.fruchterman.reingold, layout.kamada.kawai, layout.spring, layout.lgl, layout.fruchterman.reingold.g

103

TITLE:GchonIuconeogenesis
Starch ahd sucrosg metabolism

2]7.1.

hate pathway

cgop31
4 1

1.1 #0186
Propanetabolism
@469

Figure 56: The new graph after changing some setting of visualization

104

'ITLE:MAPaling pathway
Phosphatidylinl signaling system

CO0RTS 044 ° — aqh2ss|

<gg§u1

Gzhe otokr
:-& e K0435 // / Boazya

04357043 " =g 65— 40437 _,Ju

<,...: GE oists 01t Rosora— Lo fpustoaoasto
1 404363.. ‘ 2 ¢ s l p ‘ 77
Kﬁgalh“iﬁaﬁﬁg ‘QHE“Z 044534 gall
K§434B...
<m .
o44 ' 7 ks
4' 7 44 9
= X @5

B

04375 Céilcycle

044953 sigaling pathway Asi

043 (6

0aas?
043

. ..._—— Ne— N ‘
i A Z
445

Em

Figure 57: The new graph after changing edge color

105

layout.graphopt, layout.mds, layout.svd, layout.norm, layout.drl, and layout.reingold.tilford. As
shown in Figure the layout.random places the nodes randomly. The layout.circle (e.g., Figure
places the nodes on an unit circle. The layout.sphere (e.g., Figure places the nodes (approximately)
uniformly on the surface of a sphere. The layout.fruchterman.reingold uses a force-based algorithm pro-
posed by Fruchterman and Reingoldl. The layout.kamada.kawai is another force based algorithm. The
layout.spring is a spring embedder algorithm. The layout.1gl is for large connected graphs, it is similar
to the layout generator of the Large Graph Layout software. The layout.fruchterman.reingold.grid
is similar to layout.fruchterman.reingold but repelling force is calculated only between nodes that are
closer to each other than a limit, so it is faster. The layout.graphopt is a port of the graphopt layout
algorithm by Michael Schmuhl. The layout.mds uses metric multidimensional scaling for generating
the coordinates. The layout.svd is a currently experimental layout function based on singular value
decomposition. The layout.norm normalizes a layout, it linearly transforms each coordinate separately
to fit into the given limits. The layout.drl is another force-driven layout generator, it is suitable for
quite large graphs. The layout.reingold.tilford generates a tree-like layout.
The following command displays a pathway graph using layout.random style.

> plotGraph(gm[[1]],layout=layout.random)

The result is shown in Figure
The following command displays a pathway graph using layout.circle style.

> plotGraph(gm[[1]],layout=Ilayout.circle)
The result is shown in Figure

4.5 Edit a pathway graph

The function tkplot is able to edit a pathway graph. One way to visualize a pathway graph is to
display the pathway graph with the function tkplot, handtune the placement of the nodes, query the
coordinates by the function tkplot.getcoords and use them with the function plotGraph to visualize
the graph. The following commands visualize a pathway graph using the function tkplot. Figure
shows the result. We can then change coordinates by handtuning the placement of the nodes. Figure
is an example graph after handtuning some nodes (red). Finally, we can get new coordinates of
nodes using the function tkplot.getcoords and display the graph with new node coordinates using the
function plotGraph (Figure [62).

> #display a pathway graph using tkplot

> tkp.id<-tkplot(gm[[1]],layout=getLayout(gm[[1]]),
+ vertex.label=V(gm[[1]])$graphics_name,

+ vertex.color=V(gm[[1]])$graphics_bgcolor,

+ vertex.size=8,vertex.label.cex=0.5)

> #users can handtune the placement of the nodes and then obtain new
> #coordinates using the function tkplot.getcoords.
> layout<-tkplot.getcoords (tkp.id)

> layout<-cbind(layout[,1],-layout[,2])

> #display the graph with new corrodinates

> plotGraph(gm[[1]],layout=layout)

4.6 Visualize a pathway graph through linking to the KEGG website
We can display a metabolic pathway graph using links to the KEGG as follows:

> gm[[1]]$1ink

106

A | — -~ —

/v, 6

\\ T u' 4'/ ‘
~.~\ ,¢ ,4,, y\\ %

‘ \Roooge\ Hr ik~ 590084
Pyruv \ "‘ \\“’ ‘4'37/, \ /A\ ‘\ _A!zo 18

AL o -\\ s

7 "‘5\:\’}. ‘ﬂ" \\
/,44!%;\ 'A\ V\? ‘
86

bolism
e05125 /1.1.2/8 : 1632, he Bjeta
< i i I
41.1. 4 74

TI%E/Z‘ﬂo@r‘mcom-}o63 C@ZSS 1

S{1ajr-egss7s
C@l

Figure 58: The pathway graph with the layout.random style

107

TITLE:Glycolysis /

7.1f1
13

311.3.

2,7.1.

.8.1
7.2
2
217.1.

2\7.1.
217.1.

3
3

2.1.
2.1.

| o]

72

tic organisms

ucrpse metabolism

cycle)
PyRivate metabolism
oL,
ol
24|11
.2.4|1
111
1141
1.1{2
1101
0S osphate pathway
33
.2.15
2.1.13
.2.1{3
1.2.13
.1.218
.1.147
.1.147
.1.146
.2.1|1
18
4.2|4
1.3.13
59
.2.7/5
2.7|1
.2.1]9
2.
2.10
at abolism
1.1

Figure 59: The pathway graph with the layout.circle style

108

@- :‘-‘:4 Pyruvab0|i5m ‘M
AS@O« @« OUPPO
@(g O*000 O o

‘@’__ ' =<@i

Figure 60: The graph using tkplot

109

TITLE:Gchon ooooo genesis

Figure 61: The graph after editing the pathway graph

110

TITLE:GchonIuconeogenesis

ross

hate pathw

38#E7: $00074
1.1,
Pyruvafe mptabolism 57"

Citrate cygle (§

Figure 62: Display the pathway graph with new node coordinates using the function plotGraph

111

[1] "http://www.genome.jp/kegg-bin/show_pathway?ec00010"

> #link to KEGG
> browseURL (gm[[1]]1$1ink)

The result graph is shown in Figure [63]
We can display a non-matabolic pathway graph using links to the KEGG as follows:

> gn[[1]]$1ink
[1] "http://www.genome.jp/kegg-bin/show_pathway?ko04010"

> #link to KEGG
> browseURL(gn[[1]1$1ink)

The result graph is shown in Figure

4.7 Visualize the result graph of pathway analyses

We can use the function plotAnnGraph to visualize the result graph of a pathway analysis (e.g., most
of result graphs in the section . We take an example of visualizing a metabolic pathway, which is
obtained from the annotation and identification method of entire pathways based on gene sets.

The following commands annotate a gene set to metabolic pathways and identify significantly en-
riched metabolic pathways.

##Convert all metabolic pathways to graphs.
metabolicEC<-get ("metabolicEC",envir=k2ri)
graphList<-getMetabolicGraph(metabolicEC)
##get a set of genes

geneList<-getExample (geneNumber=1000)
#annotate gene sets to pathway graphs

#and identify significant pathway graphs
ann<-identifyGraph(genelList,graphList)

vV VVVVYVVYV

The following command displays the Glycolysis / Gluconeogenesis pathway (path:00010). Users need
to input pathway identifier, a list of pathway graphs, and the result variable ann of pathway analysis.

> #visualize
> plotAnnGraph("path:00010",graphList,ann)

The result graph is shown in Figure The red nodes in the result graph represent the enzymes which
include the submitted genes. In fact, the function plotAnnGraph can obtain the annotated genes from
the variable ann , match the genes to the given pathway, and display the pathway with the annotated
genes colored red.

We can also use the function plotAnnGraph to visualize pathways not only in R but also in KEGG
web site. The annotated genes are also colored red in KEGG maps.

> #visualize
> plotAnnGraph ("path:00010",graphList,ann, gotoKEGG=TRUE)

The visualization of pathway in R is the same as Figure The visualization of pathway through
linking to KEGG is shown in Figure [66]

112

| sLycoLysis / GLUCONEOGENESIS | —
and YOS
A

<} —

27141 a-D-Glucose-1P

o D-Glucoss 271127163 i
2712271147 B . D-Glicoss-6P 2
5133 513.15|[5319 5319
271127163 p-D-Glucose-6P
o > 5310 -D-Fructose-6P
— 2712271147 = PR —
, 1311 [27.111)[2711%] Pl ephate
oy Atbutin6P
{extracellular) © 27169 321386
Salicin 37160 - B-D-Fructose-1,6P 2
{extracellular) - Salicin 6P EE!EE
{ Glyreraldehyde-3P
Oe— {5311 —®oF—————————
Gl ? [531.1] .~

121.12)]12.1.59

Glyrerate-1,3F2

54240 1275 |[1276
Glyverate-2,3P2 { 2723 L
[Caxbon fixation 31313 =0

in photosymthetic organisms

Glyrerate-2P O<}

42111
— 41132

A & @O Phosphoenol-
Oxaloacetate [4.1.1.49 pyruvate

2111 O 1.1.1.27 CI) L-Lactate
oL Pynrvate |
v
l Propanoate metabolism }
:.l.“ L e OEtaml
127 G >
1128

00010 12/27/10 X
{c) Kanehisa Laboratories

Figure 63: The Glycolysis / Gluconeogenesis pathway in KEGG website

113

| MaPK SIGNALING PATHWAY |

JNK and p38 MAP kinase
pathway

Serum, cytotoxic
reactve oxygen species,

of

DNA darage

ERKS pathway

Serum, EGF,
sactive oaygez aecion,

do wmstream

04010 2/4/10
(c) Kanehisa Laboratories

MAPKKKK MAPKKK

MEKS |+ ERIG |] N7 | o

“Transcrip tion.
MAPKK MAPK o

—
|
v
Proliferation,
aon. | Cel
cycle
+
J
Nt

— Proliferati
> £ ration,

Figure 64: The MAPK signaling pathway in KEGG website

114

TITLE:GchonIuconeogenesis

Starch and se metabolism

Pentose

'

hate pathwi

Carbon fixation in

31
421011

Citrate ¢

3.1 26106255 o2—1.1.p7——E00186

.13 c@?Z Propandate fetabolism
1.2.1]

———— e

Figure 65: The Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

115

I GLYCOLYSIS / GLUCONEOGENESIS I e
St

2\
|

27141 v

o-D-Glucose-1P

a-D-Glucose
5.13.15
B-D-Glucose-6P
5319 OpB-D-Fructose-6P
Pentose
[Eiz11][27.1.11)[2711%] B eEnate
{exty
B-D-Fructose-1,6P 2
{exty
v Glyveraldehyde-3P
Os—{5311 —»oF————————
Glycerone-P fl’ ‘—|—/
12112)[121.59 I
Glyrerate-1,3P2 v |
|
5424 ™0 [1275]|[1236 I
Glycerate-2,3F2 272. == I
Carbon fixation X I
in photosymthetic organisras :
|
|
]
|
|
|
— 41132
O :
Oxaloacetate [4.1.1.49 P I
raetabolisra |
|
Citrate {1271} -~
cycle ——— THEP

1241
<} 3 -
O 24 O 1.1.127 O L-Lactate
R S-Acetyl- 4111| Pynmvate FEEE I
dihydrolipoaraide-E |
v
[1814]
[63.11 | o- Lipoaraide-E { Propanoate metabolism}
1213 ¥ ”;; B ..
1215 PS8 :':'2'8 EutG S

00010 12127110 ;
(c) Kanehisa Laboratories

Figure 66: The Glycolysis / Gluconeogenesis pathway (path:00010). The enzymes identified in the
submitted genes are colored red.

116

4.8 Export a pathway graph

The function write.graph can export a pathway graph to foreign file formats. The following command
exports a metabolic pathway graph to the GML format http://www.infosun.fim.uni-passau.de/
Graphlet/GML/. The format is supported by Cytoscape software [Shannon et al., 2003 that provides
more advanced visualization facilities http://www.cytoscape.org,.

> write.graph(gm[[1]], "ec00010.txt", "gml")

5 Data management

The environment variable k2ri, which is used as the database of the system, stores many data relative
to pathway analyses. We can use the function 1s to see the environment variable and use 1s(k2ri)
to see data in it. These data include gene2ec, gene2ko, metabolicEC, metabolicK0, nonMetabolicKO, etc.
For example, the variable gene2ec stores relation betweeen genes and enzymes in the current organism
(e.g., relation between human genes and enzymes). The variable metabolicEC stores reference metabolic
pathways linked to EC identifiers. The variable metabolicK0 stores reference metabolic pathways linked
to KO identifiers. The variable nonMetabolicK0 stores reference non-metabolic pathways linked to KO
identifiers.

> ##data in environment variable k2ri

> 1s(k2ri)
[1] "compound" "gene2ec" "gene2ko" "gene2path"
[5] "gene2symbol" "keggGene2gene" "metabolicEC" "metabolicK0"
[9] "nonMetabolicK0" "orgAndIdType" "taxonomy"

We can obtain these data in the environment variable k2ri using the function get. The following
command gets reference metabolic pathways linked to EC identifiers in the variable metabolicEC in R.

> #iget all metabolic pathway data
> metabolicEC<-get ("metabolicEC",envir=k2ri)

The section will introduce the functions relative to the data management of the environment variable
k2ri.

5.1 Set or update the current organism and the type of gene identifier

When using the pathway analysis functions of iSubpathwayMiner, users need to know the type of
organism and identifier in the current study. Users can check the type of organism and identifier in the
current study through the function getOrgAndIdType:

> getOrgAndIdType ()
[1] "hsa" "ncbi-geneid"

The result means that the type of organism and identifier in the current study are Homo sapiens and
Entrez gene identifiers, which is the default value of the system. Users should ensure that the organism
and gene identifiers in the expected study accord with the return value of the function getOrgAndIdType.
If the result is different from the type of your genes, you need to change them through some functions,
e.g., updateOrgAndIdType and loadK2ri.

The function updateOrgAndIdType can download data relative to organism and gene identifiers, and
then treat and store them in the environment variable k2ri. The following command can set the
type of organism and identifier in the current study as Saccharomyces cerevisiae and sgd identifier in
Saccharomyces Genome Database.

117

http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.cytoscape.org

> updateOrgAndIdType("sce", "sgd-sce")

The function updateCompound is able to update the variable compound in the environment variable k2ri.
The function updateTaxonomy is able to update the variable taxonomy in the environment variable k2ri.
The variable stores information about organism name and the three- or four-letter KEGG organism
code.

Through these functions, iSubpathwayMiner can support multiple species in KEGG and different
gene identifiers (KEGG compound, Entrez Gene IDs, gene official symbol, NCBI-gi IDs, UniProt IDs,
PDB IDs, etc.). It can also provide the most up-to-date pathway analysis results for users.

5.2 Update pathway data

The function updatePathway can update pathways in the environment variable k2ri from KEGG ftp site.
The function importPathway can construct the pathway variable metabolicEC, metabolicKO, and non-
MetabolicKO from local system. Firstly, users need to download KGML pathway files from KEGG ftp
site. They can be obtained from ftp://ftp.genome. jp/pub/kegg/xml/kgml/metabolic/ec, ftp://
ftp.genome. jp/pub/kegg/xml/kgml/metabolic/ko, and ftp://ftp.genome. jp/pub/kegg/xml/kgml/
non-metabolic/ko.

5.3 Load and save the environment variable of the system

Through the above functions, data in the environment variable of the system can be updated. The
system provides two functions (saveK2ri and loadK2ri) to easily save and load the new environment
variable. The following command is used to save the environment variable of Saccharomyces cerevisiae.

> saveK2ri("sce_sgd-sce.rda")

When one needs to use the environment variables of Saccharomyces cerevisiae next time, one can
use the function loadk2ri to load the last environment variable. The following command is used to load
the environment variables of Saccharomyces cerevisiae.

> loadK2ri("sce_sgd-sce.rda")

118

ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ec
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ko
ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/ko
ftp://ftp.genome.jp/pub/kegg/xml/kgml/non-metabolic/ko
ftp://ftp.genome.jp/pub/kegg/xml/kgml/non-metabolic/ko

6 Session Info

The script runs within the following session:

R version 2.12.1 (2010-12-16)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=Chinese_People's Republic of China.936
[3] LC_MONETARY=Chinese_People's Republic of China.936
[4] LC_NUMERIC=C

[6] LC_TIME=Chinese_People's Republic of China.936

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] iSubpathwayMiner_1.0 fdrtool_1.2.6 XML_3.2-0.2
[4] igraph_0.5.5-1 RBGL_1.26.0 graph_1.28.0

loaded via a namespace (and not attached):
[1] tools_2.12.1

References

[Antonov et al., 2008] Antonov, A.V., et al. (2008) Kegg Spider: Interpretation of Genomics Data in
the Context of the Global Gene Metabolic Network. Genome Biol, 9, R179.

[Barabasi and Oltvai, 2004] Barabasi, A.L. and Oltvai, Z.N. (2004) Network Biology: Understanding
the Cell’s Functional Organization. Nat Rev Genet, 5, 101-113.

[Csardi and Nepusz, 2006] Csardi, G. and Nepusz, T. (2006) The igraph software package for complex
network research. InterJournal, Complex Systems, 1695.

[Draghici et al., 2007] Draghici, S., et al. (2007) A Systems Biology Approach for Pathway Level Anal-
ysis. Genome Res, 17, 1537-1545.

[Gentleman et al., 2004] Gentleman, R.C., et al. (2004) Bioconductor: Open Software Development for
Computational Biology and Bioinformatics. Genome Biol, 5, R80.

[Goffard and Weiller, 2007] Goffard, N. and Weiller, G. (2007) Pathexpress: A Web-Based Tool to
Identify Relevant Pathways in Gene Expression Data. Nucleic Acids Res, 35, W176-181.

[Guimera and Nunes Amaral, 2005] Guimera, R. and Nunes Amaral, L.A. (2005) Functional Cartogra-
phy of Complex Metabolic Networks. Nature, 433, 895-900.

[Huber et al., 2007] Huber, W., et al. (2007) Graphs in Molecular Biology. BMC Bioinformatics, 8 Suppl
6, S8.

[Hung et al., 2010] Hung, J.H., et al. (2010) Identification of Functional Modules That Correlate with
Phenotypic Difference: The Influence of Network Topology. Genome Biol, 11, R23.

[Jeong et al., 2000] Jeong, H., et al. (2000) The Large-Scale Organization of Metabolic Networks. Na-
ture, 407, 651-654.

119

[Kanehisa et al., 2006] Kanehisa, M., et al. (2006) From Genomics to Chemical Genomics: New Devel-
opments in Kegg. Nucleic Acids Res, 34, D354-357.

[Klukas and Schreiber, 2007] Klukas, C. and Schreiber, F. (2007) Dynamic Exploration and Editing of
Kegg Pathway Diagrams. Bioinformatics, 23, 344-350.

[Koyuturk et al., 2004] Koyuturk, M., et al. (2004) An Efficient Algorithm for Detecting Frequent Sub-
graphs in Biological Networks. Bioinformatics, 20 Suppl 1, i200-207.

[Li et al., 2009] Li, C., et al. (2009) Subpathwayminer: A Software Package for Flexible Identification
of Pathways. Nucleic Acids Res, 37, el31.

[Ogata et al., 2000] Ogata, H., et al. (2000) A Heuristic Graph Comparison Algorithm and Its Appli-
cation to Detect Functionally Related Enzyme Clusters. Nucleic Acids Res, 28, 4021-4028.

[Schreiber et al., 2002] Schreiber, F. (2002) High Quality Visualization of Biochemical Pathways in
Biopath. In Silico Biol, 2, 59-73.

[Shannon et al., 2003] Shannon, P., et al. (2003) Cytoscape: A Software Environment for Integrated
Models of Biomolecular Interaction Networks. Genome Res, 13, 2498-2504.

[Smart et al., 2008] Smart, A.G., et al. (2008) Cascading Failure and Robustness in Metabolic Networks.
Proc Natl Acad Sci U S A, 105, 13223-13228.

[Strimmer, 2008] Strimmer, K. (2008) fdrtool: a versatile R package for estimating local and tail area-
based false discovery rates. Bioinformatics, 24, 1461-1462.

[Team , 2004] Team, R.D.C. (2008) R: A Language and Environment for Statistical Computing. R
Foundation Statistical Computing.

[Xia and Wishart, 2010] Xia, J. and Wishart, D.S. (2010) Metpa: A Web-Based Metabolomics Tool for
Pathway Analysis and Visualization. Bioinformatics, 26, 2342-2344.

[Zhang and Wiemann, 2009] Zhang, J.D. and Wiemann, S. (2009) Kegggraph: A Graph Approach to
Kegg Pathway in R and Bioconductor. Bioinformatics, 25, 1470-1471.

120

	Overview
	The methods of graph-based reconstruction of pathways
	Convert KGML files of KEGG pathways to a list in R
	Convert metabolic pathways to graphs
	The method to convert metabolic pathways to graphs
	Some simple examples of operating pathway graphs

	Convert non-metabolic pathways to graphs
	The default method to convert non-metabolic pathways to graphs
	The alternative method to convert non-metabolic pathways to graphs

	Convert pathway graphs to other derivative graphs
	Convert pathway graphs to undirected graphs
	Map current organism-specific gene identifiers to nodes in pathway graphs
	Filter nodes of pathway graphs
	Simplify pathway graphs as graphs with only gene products (or only compounds) as nodes
	Expand nodes of pathway graphs
	Get simple pathway graphs
	Merge nodes with the same names

	The integrated application of pathway reconstruct methods
	Example 1: enzyme-compound (KO-compound) pathway graphs
	Example 2: enzyme-enzyme (KO-KO) pathway graphs
	Example 3: compound-compound pathway graphs
	Example 4: organism-specific gene-gene pathway graphs

	Methods to analyze pathway graphs
	The basic analyses based on graph model
	Node methods: degree, betweenness, local clustering coefficient, etc.
	Edge method: shortest paths
	Graph method: degree distribution, diameter, global clustering coefficient, density, module, etc.

	Topology-based pathway analysis of cellular component sets
	Topology-based pathway analysis of gene sets
	Topology-based pathway analysis of compound sets
	Topology-based pathway analysis of gene and compound sets

	Annotate cellular component sets and identify entire pathways
	Annotate gene sets and identify entire pathways
	Annotate compound sets and identify enire pathways
	Annotate compound and gene sets and identify entire pathways
	Other examples

	The k-cliques method to identify subpathways
	Annotate gene sets and identify subpathways
	Annotate compound sets and identify subpathways
	Annotate compound and gene sets and identify subpathways
	Other examples

	Visualize a pathway graph
	Change node label of the pathway graph
	Zoom a part of pathway graph
	The basic commands to visualize a pathway graph with custom style
	The layout style of a pathway graph in R
	Edit a pathway graph
	Visualize a pathway graph through linking to the KEGG website
	Visualize the result graph of pathway analyses
	Export a pathway graph

	Data management
	Set or update the current organism and the type of gene identifier
	Update pathway data
	Load and save the environment variable of the system

	Session Info

