
Spatial Interpolation via Inverse Path Distance

Weighting

Joseph Stachelek

Abstract

The R package ipdw provides functions for interpolation of georeferenced point data
via Inverse Path Distance Weighting. Useful for coastal marine applications where bar-
riers in the landscape preclude interpolation with Euclidean distances. This method of
interpolation requires significant computation and is only practical for relatively small
and coarse grids. The ipdw implementation may provide additional flexibility and greater
speed relative to alternatives.

Keywords: geospatial analysis, connectivity, least-cost path, least-cost distance,R.

1. Introduction

This vignette describes ipdw, an R package which provides the functionality to perform inter-
polation of georeferenced point data using inverse path distance weighting (Suominen et al.
2010). Interpolation is accomplished in two steps. First, path distances are calculated from
each georeferenced (measurement) point to each prediction point. Path distances, which honor
barriers in the landscape, are calculated based on cell-to-cell movement through an underlying
Raster object (Hijmans 2014) that represents movement cost. These path distances are sub-
sequently used as interpolation weights. The two-step routine follows the order of operations
described in Suominen et al. (2010) substituting the ESRI path distance algorithm (Mitchell
2012) with the gdistance (van Etten 2014) wrapped version of the igraph (Csardi and Nepusz
2006) adjacency algorithm.

The ipdw package was developed with coastal marine applications in mind where path dis-
tances (as the fish swims) rather than Euclidean (as the crow flies) distances more accurately
represent spatial connectivity (Little et al. 1997). Interpolation of sparse grids in coastal areas
otherwise end up bleeding through land areas. The remainder of this vignette provides an
example of such a situation using the Kattegat salinity dataset (Diggle and Lophaven 2006)
found within the geoR package.

2. Data Preparation

To begin, we load the Kattegat dataset.This dataset contains several slots representing the
coordinates of point data, the data values, and polylines representing portions of the Kattegat
coastline.

2 Spatial Interpolation via Inverse Path Distance Weighting

R> library("ipdw")

R> library("geoR")

R> data(kattegat)

R> katproj<-c("+proj=utm +zone=32 +ellps=GRS80 +units=m +no_defs")

R> pols1<-Polygons(list(Polygon(kattegat$dk[1])),"pol1")

R> pols2<-Polygons(list(Polygon(kattegat$dk[2])),"pol2")

R> pols3<-Polygons(list(Polygon(kattegat$dk[3])),"pol3")

R> pols4<-Polygons(list(Polygon(kattegat$dk[4])),"pol4")

R> pols5<-Polygons(list(Polygon(kattegat$dk[5])),"pol5")

R> pols6<-Polygons(list(Polygon(kattegat$dk[6])),"pol6")

R> pols7<-Polygons(list(Polygon(kattegat$dk[7])),"pol7")

R> pols8<-Polygons(list(Polygon(kattegat$dk[8])),"pol8")

R> pols9<-Polygons(list(Polygon(kattegat$dk[9])),"pol9")

R> pols10<-Polygons(list(Polygon(kattegat$dk[10])),"pol10")

R> pols11<-Polygons(list(Polygon(kattegat$dk[11])),"pol11")

R> pols12<-Polygons(list(Polygon(kattegat$dk[12])),"pol12")

R> pols<-SpatialPolygons(list(pols1,pols2,pols3,pols4,pols5,pols6,

+ pols7,pols8,pols9,pols10,pols11,pols12),1:12)

Each polyline is converted seperately to an object of class Polygons. Next, all 12 objects are
combined into a SpatialPolygons object. We can use this SpatialPolygons object to create
a cost raster defining travel through land areas with a very high cost. As a result, interpolation
neighborhoods will be defined based on in-water rather than Euclidean distances. Cost raster
creation is accomplished with the ipdw function costrasterGen. By default, open water
areas are set to a per unit travel cost of 1 whereas land areas are set to a per unit travel cost
of 10,000. Note that a projection is defined for the costrasterGen function by the projstr

parameter. It is critical to check the resolution of the cost raster before proceeding. The
resolution of the cost raster will determine the resolution of the interpolated output. If the
resolution is too fine, this will result in very long processing times. If neccesary, coarsen the
cost raster with the raster function aggregate.

R> projection(pols)<-katproj

R> costras<-costrasterGen(kattegat$coords,pols,extent="pnts",katproj)

R> #insert contiguous barrier

R> costras[160:170,1:80] <- 10000

In order to evaulate the utility of IPDW, we split the dataset into seperate training and
validation datasets. The training dataset is created in a spatially balanced manner by building
a grid and randomly selecting one measurement point per grid cell. In the following code
block, the size of this grid is defined as 2 times the average distance among measurement
points. Average distance is computed using the spatstat package (Baddeley and Turner 2005).
Random selection is accomplished with the gdata function resample (Warnes et al. 2014).
Subsetting the full dataset is not required to run ipdw. Alternative means of estimating
interpolation errors, such as leave-one-out cross validation, are in development.

Joseph Stachelek 3

R> #find average nearest neighbor

R> library(spatstat)

R> W=owin(range(kattegat$coords[,1]),range(kattegat$coords[,2]))

R> kat.pp<-ppp(kattegat$coords[,1],kattegat$coords[,2],window=W)

R> mean.neighdist<-mean(nndist(kat.pp))

R> #grid building

R> gridsize<-mean.neighdist*2

R> grainscale.fac<-gridsize/res(costras)[1]

R> gridras<-aggregate(costras,fact=grainscale.fac)

R> gridpol<-rasterToPolygons(gridras)

R> gridpol$value<-row.names(gridpol)

R> #spatial join

R> kat.df<-data.frame(kattegat)

R> coordinates(kat.df)<-~x.utm+y.utm

R> projection(kat.df)<-katproj

R> fulldataset.over<-over(kat.df,gridpol)

R> fulldataset.over<-cbind(data.frame(fulldataset.over),data.frame(kat.df))

R> #grid selection

R> set.seed(2)

R> gridlev<-unique(fulldataset.over$value)

R> for(i in 1:length(gridlev)){

+ activesub<-subset(fulldataset.over,fulldataset.over$value==gridlev[i])

+ selectnum<-gdata::resample(1:nrow(activesub),1)

+ if(i==1){

+ training<-activesub[selectnum,]

+ }

+ else{

+ training<-rbind(training,activesub[selectnum,])

+ }

+}

Next, we save the training and validation datasets as objects of class SpatialPointsDataFrame.
Note that the projection of the training and validation datasets matches the cost raster we cre-
ated previously. Calculations within the ipdw package require projected datasets. More about
R projections can be found from the PROJ.4 documentation at the Open Source Geospatial
Foundation (http://trac.osgeo.org/proj/).

4 Spatial Interpolation via Inverse Path Distance Weighting

R> validate<-fulldataset.over[!(row.names(fulldataset.over) %in% row.names(training)),]

R> xy<-cbind(training$x.utm,training$y.utm)

R> training<-SpatialPointsDataFrame(xy,training)

R> xy<-cbind(validate$x.utm,validate$y.utm)

R> validate<-SpatialPointsDataFrame(xy,validate)

R> projection(training)<-katproj

R> projection(validate)<-katproj

550 600 650 700 750

62
50

63
00

63
50

64
00

2000

4000

6000

8000

10000

Figure 1: Cost raster representing the high cost of travel through land areas. Training and
validation points are shown in black and red respectively.

3. Interpolation

We have assembled an object of class SpatialPointsDataFrame to be interpolated and an
underlying cost raster of class Raster. We can either proceed in a single step using the high-
level ipdw function ipdw or in two steps using calls to the pathdistGen and ipdwInterp

functions. For simplicity, the single step option, ipdw, is shown below. The two step option
would be useful for the case where we want interpolate multiple parameters of the same
SpatialPointsDataFrame object using a single RasterStack of path distances.

R> paramlist <- c("data")

R> final.ipdw <- ipdw(training, costras, range = mean.neighdist * 10, paramlist,

Joseph Stachelek 5

+ overlapped = TRUE)

550 600 650 700 750

62
50

63
00

63
50

64
00

Kattegat salinity (ppt)

20
22
24
26
28
30
32

Figure 2: Interpolated salinity surface by IPDW.

4. Comparison with Inverse Distance Weighting

We can evaluate the benefits of IPDW by comparing its output against Inverse Distance
Weighting with Euclidean distances. The following section generates an interpolated surface
via IDW. First, prediction points are generated. Then the gstat (Pebesma 2004) IDW func-
tionality is called with the same inputs as the previous section above. Differences between
the outputs of two methodologies are shown in Figure 3.

R> idw.grid<-rasterToPoints(costras,fun=function(x){x<10000},spatial=TRUE)

R> gridded(idw.grid)=TRUE

R> kat.idw<-gstat::idw(data~1,training,idw.grid,maxdist=mean.neighdist*10,debug.level=0)

R> final.idw<-raster(kat.idw)

6 Spatial Interpolation via Inverse Path Distance Weighting

600 650 700

62
00

62
50

63
00

63
50

64
00

IPDW

20

22

24

26

28

30

32

600 650 700

62
00

62
50

63
00

63
50

64
00

IDW

20

22

24

26

28

30

32

600 650 700

62
00

62
50

63
00

63
50

64
00

IDW versus IPDW

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 3: Comparison between IPDW and IDW outputs. Note the overestimation of salinity
on the upstream (south) side of the contiguous barrier.

We can compare interpolation errors quantitatively using the errorGen function. Figure 4
shows a plot of the validation dataset against the interpolated estimates at those points. The
validation dataset enters into the function both as a SpatialPointsDataFrame object and as
the underlying values contained in the data slot.

R> measured.spdf<-data.frame(validate$data)

R> coordinates(measured.spdf)<-coordinates(validate)

R> valid.ipdw<-errorGen(final.ipdw,measured.spdf,measured.spdf@data)

R> valid.idw<-errorGen(final.idw,measured.spdf,measured.spdf@data)

20 25 30 35

22
24

26
28

30
32

34

IPDW

Measured

In
te

rp
ol

at
ed

20 25 30 35

22
24

26
28

30
32

34

IDW

Measured

In
te

rp
ol

at
ed

Figure 4: Comparison between IPDW and IDW interpolation error. A one-to-one line and
best-fit line are shown in black and red respectively.

Joseph Stachelek 7

Results from IDW and IPDW appear similar because no validation points are present in the
area downstream (south) of the contiguous barrier (Figure 2,Figure 3) . Up to this point, we
have seen a simple implementation of IPDW requiring only a SpatialPointsDataFrame and
a cost Raster.

Test comparisons between the ipdw and the ESRI (Mitchell 2012; Suominen et al. 2010)
implementations of IPDW found ipdw to be much faster and more flexible. In particular,
the high-level function ipdw provides the ability to run IPDW in one step while the lower-
level function ipdwInterp can be called multiple times following pathdistGen in order to
interpolate multiple parameters of a single SpatialPointsDataFrame. This is accomplished
by saving the output from pathdistGen.

References

Baddeley A, Turner R (2005). “spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1–42.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695(5).

Diggle P, Lophaven S (2006). “Bayesian Geostatistical Design.” Scandinavian Journal of
Statistics, 33(1), 53–64.

Hijmans R (2014). raster:raster: Geographic data analysis and modeling. R package version
2.2-12, URL http://CRAN.R-project.org/package=raster.

Little L, Edwards D, Porter D (1997). “Kriging in Estuaries: as the Crow Flies or as the Fish
Swims?” Journal of Experimental Marine Biology and Ecology, 213.

Mitchell A (2012). The Esri Guide to GIS Analysis, Volume 3: Modeling Suitability, Move-
ment, and Interaction. Esri Press.

Pebesma EJ (2004). “Multivariable geostatistics in S: the gstat package.” Computers and
Geosciences, 30, 683–691.

Suominen T, Tolvanen H, Kalliola R (2010). “Surface Layer Salinity Gradients and Flow Pat-
terns in the Archipelago Coast of SW Finland, Northern Baltic Sea.”Marine environmental
research, 69(4), 216–226.

van Etten J (2014). gdistance: distances and routes on geographical grids. R package version
1.1-5, URL http://CRAN.R-project.org/package=gdistance.

Warnes GR, Bolker B, Gorjanc G, Grothendieck G, Korosec A, Lumley T, MacQueen D,
Magnusson A, Rogers J (2014). gdata: Various R programming tools for data manipulation.
R package version 2.13.3, URL http://CRAN.R-project.org/package=gdata.

Affiliation:

Joseph Stachelek
South Florida Water Management District
West Palm Beach, FL, USA
E-mail: jstachel@sfwmd.gov

http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=gdistance
http://CRAN.R-project.org/package=gdata
mailto:jstachel@sfwmd.gov

	Introduction
	Data Preparation
	Interpolation
	Comparison with Inverse Distance Weighting

