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Abstract

R package matchingMarkets implements structural estimators to correct for the sample
selection bias from observed outcomes in matching markets. This includes one-sided
matching of agents into groups as well as two-sided matching of students to schools. The
package also comes with R code for three matching algorithms: the deferred-acceptance
(or Gale-Shapley) algorithm for stable marriage and college admissions problems, the
top-trading-cycles algorithm for house allocation and a partitioning linear program for
the roommates problem.
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1. Introduction

Social scientists are often interested in understanding the outcomes of interactions. Applica-
tions range from the success of entrepreneurial teams or management boards (Hoogendoorn,
Oosterbeek, and Van Praag 2013) to the performance of bank mergers or credit groups (Klein
2015a). More generally, these questions are at the core of diversity debates on race and gender
composition in the workplace (Herring 2009).

In the economics literature, the markets that describe these interactions are referred to as
matching markets. Matching is concerned with who transacts with whom, and how. For
example, who works at which job, which students go to which school, who forms a workgroup
with whom, and so on. The empirical analysis of matching markets is naturally subject to
sample selection problems. If agents match on characteristics unobserved to the analyst but
correlated with both the exogenous variable and the outcome of interest, regression estimates
will generally be biased.

The aim of this paper is to describe the R1 package matchingMarkets (Klein 2015b) that
contains C++ code for the estimation of structural models that correct for the sample selection
bias of observed outcomes in matching markets. Specifically, the matchingMarkets package
contains

1. Bayes estimators. The estimators implemented in function stabit and stabit2 correct

∗I thank Christian Ahlin, Jiawei Chen and Morten Sørensen for their guidance and helpful discussions. All
views and errors are mine.

1The R project for statistical computing (R Core Team 2014) at http://www.r-project.org/.
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for the selection bias from endogenous matching. The current package version provides
solutions for three commonly observed matching processes: (i) the group formation
problem with fixed group sizes, (ii) the roommates problem with transferable utility,
and (iii) the college admissions problem. These processes determine which matches are
observed – and which are not – and this is a sample selection problem.

2. Post-estimation tools. Function mfx computes marginal effects from coefficients in bi-
nary outcome and selection equations and khb implements the Karlson-Holm-Breen test
for confounding due to sample selection (Karlson, Holm, and Breen 2012).

3. Design matrix generation. The estimators are based on characteristics of all feasible – i.e.
observed and counterfactual – matches in the market. Generating the characteristics of
all feasible matches from individual-level data is a combinatorial problem. The stabit

function has an argument method="model.frame" that returns a design matrix based
on pre-specified transformations to generate counterfactual matches.

4. Algorithms. The package also contains three matching algorithms: the deferred accep-
tance algorithm (daa) for stable marriages and college admissions, the top-trading-cycles
algorithm (ttc) for house allocation and a partioning linear program (plp) for the sta-
ble roommates problem. These can be used to obtain stable matchings from simulated
or real preference data.

5. Data. In addition to the baac00 dataset from borrowing groups in Thailands largest
agricultural lending program, the package provides functions to simulate one’s own
data from matching markets. stabsim generates individual-level data and the stabit

function has an argument simulation which generates group-level data and determines
which groups are observed in equilibrium based on equilibrium conditions derived in
Appendix C and in Klein (2015a).

Frequently Asked Questions

• Why can I not use the classic Heckman correction?

Estimators such as the Heckman (1979) correction (in package sampleSelection) or dou-
ble selection models are inappropriate for this class of selection problems. To see this,
note that a simple first stage discrete choice model assumes that an observed match
reveals match partners’ preferences over each other. In a matching market, however,
agents can only choose from the set of partners who would be willing to form a match
with them and we do not observe the players’ relevant choice sets.

• Do I need an instrumental variable to estimate the model?

Short answer: No. Long answer: The characteristics of other agents in the market
serve as the source of exogenous variation necessary to identify the model. The identi-
fying exclusion restriction is that characteristics of all agents in the market affect the
matching, i.e., who matches with whom, but it is only the characteristics of the match
partners that affect the outcome of a particular match once it is formed. No additional
instruments are required for identification (Sørensen 2007a).

• What are the main assumptions underlying the estimator?

The approach has certain limitations rooted in its restrictive economic assumptions.

http://en.wikipedia.org/wiki/Stable_matching
http://en.wikipedia.org/wiki/Hospital_resident
http://en.wikipedia.org/wiki/Herbert_Scarf#8._The_Housing_Market
http://en.wikipedia.org/wiki/Stable_roommates_problem
http://en.wikipedia.org/wiki/Stable_roommates_problem
http://cran.r-project.org/web/packages/sampleSelection/index.html
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1. The matching models are complete information models. That is, agents are as-
sumed to have a perfect knowledge of the qualities of other market participants.

2. The models are static equilibrium models. This implies that (i) the observed match-
ing must be an equilibrium, i.e., no two agents would prefer to leave their current
partners in order to form a new match (definition of pairwise stability), and (ii)
the equilibrium must be unique for the likelihood function of the model to be well
defined (Bresnahan and Reiss 1991).

3. Uniqueness results can be obtained in two ways. First, as is common in the in-
dustrial organization literature, by imposing suitable preference restrictions. A
necessary and sufficient condition for agents’ preferences to guarantee a unique
equilibrium is alignment (Pycia 2012). In a group formation model, pairwise pref-
erence alignment requires that any two agents who belong to the same groups must
prefer the same group over the other. A second means to guarantee uniqueness is
by assigning matches based on matching algorithms that produce a unique stable
matching, such as the well-studied Gale and Shapley (1962) deferred acceptance
algorithm.

4. Finally, the models assume bivariate normality of the errors in selection and out-
come equation. If that assumption fails, the estimator is generally inconsistent and
can provide misleading inference in small samples (Goldberger 1983).

The remainder of the paper is structured as follows. Section 2 clearly motivates the impor-
tance of correcting for sorting bias that arises from endogenous matching in group formation.
Section 3 outlines the multi-index sample selection problem, develops the structural model
and discusses the identification strategy. Section 4 presents Monte-Carlo evidence of the ro-
bustness of the estimator in small samples. Section 5 provides replication code and data for
an application of the method in microfinance group formation (see Klein 2015a). Section 6
concludes.

2. Example of sorting bias: omitted variables

This section clearly motivates the importance of the bias that arises from sorting into groups
and thereby complicates the analysis of group-level data. The focus in the following example is
on the bias that results when variables influencing peer selection are not observed in the data.
Appendix A continues this example by illustrating the bias arising when variables influencing
peer selection are measured with error. Appendix B shows that sorting bias persists – even
in the absence of omitted variables and measurement error – when the analysis is based on
market-level, rather than group-level variables.

2.1. Matching

To begin with, consider a credit market with four entrepreneurs A, B, C and D, who have no
pledgeable collateral, and one lender, who offers a group-lending contract. In this contract,
loans are given to groups of two and borrowers repay an interest rate r if their project succeeds
plus a joint-liability payment q ≤ r when they succeed and their partner defaults. Assume
that the entrepreneurs prefer to take loans in groups over the outside option of remaining
unmatched. There are three feasible group constellations or matchings. One possibility is
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that borrower A forms a match with borrower B and borrower C matches with borrower D.
Denote this matching µ1 = {AB,CD}. The other two possible matchings are µ2 = {AC,BD}
and µ3 = {AD,BC}. I will refer to M = {µ1, µ2, µ3} as the set of feasible matchings.

Which of these matchings is observed depends on all four borrowers’ preferences over feasible
matches. Each of the six potential matches between any two borrowers i and j has an as-
sociated match valuation, Vij . Using the equilibrium characterisation under non-transferable
utility in Klein (2015a), the equilibrium condition for µ1 can be written in the form of the
inequality

max{VAB, VCD} > max{VAC , VBD, VAD, VBC}. (1)

The inequality states that the equilibrium matching contains the match with the largest of
the six match valuations. The intuition is that those two borrowers who form the match
with the highest valuation have no incentive to deviate. In this simple example, the second
equilibrium group is formed by the two residual borrowers. Put differently, the valuation of
every non-equilibrium group must be smaller than the opportunity costs of its members to
leave their equilibrium groups AB and CD and form a new group.

2.2. Match valuation

The equilibrium condition is based on the six match valuation equations. These equations are
taken from the model in Ghatak (1999) with two modifications. First, I denote the borrowers’
inherent probability of default as di := 1− pi and assume – for clearer exposition – that didj
is close to zero and therefore negligible. Second, I assume that all borrowers are exposed to
the same external shocks but differ in the intensity γ with which external shocks affect their
probability of default. This results in linear match valuations as follows:

Vij = ui,j + uj,i = −q(pi + pj) + 2qpipj + 2qγiγj (2)

didj=0
= −q(di + dj) + 2qεij (3)

= α1εij + ηij . (4)

Here, di and dj give the risk type (probability of default) of borrower i and j. When risk type
is unobserved, the term −q(di + dj) is captured in the match-specific error term ηij .

For this example, let the characteristics of the four borrowers be as given in Table 1. Fur-
thermore, let the interest payment be r = 2 and set the joint liability payment to q = 1. The
six valuations, Vij , are then given in Table 2.

Table 1: Borrower-level
characteristics.
- di: failure prob.
- γi: risk exposure

di γi

A 0.2 0.3
B 0.3 0.4

C 0.3 0.2
D 0.4 0.3

Which groups are observed in equilibrium is determined by the condition in Eqn 1. In this
example, the values in Table 1 were chosen such that the observed component γi and the
unobserved component di are uncorrelated, i.e. cor(γi, di) = 0. Table 2 illustrates how, for
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observed equilibrium groups, the independent variable εij will be correlated with the error
term ηij when matching is on both these variables, i.e. when α1 6= 0. Simple algebra confirms
that for the set of feasible groups in Table 2, the correlation between εij and ηij is zero. For
the equilibrium groups in µ = {AB,CD}, however, we find cov(εij , ηij) = +0.06.

Table 2: Group-level vari-
able values of
- (di + dj): failure prob.
- εij : risk exposure
- Vij : group valuation

- Y β1=0
ij : group outcome

(di + dj) εij = γiγj Vij Y β1=0
ij

AB 0.5 0.12 −0.26 3.5
AC 0.5 0.06 −0.38 3.5
AD 0.6 0.09 −0.42 3.4
BC 0.6 0.08 −0.44 3.4
BD 0.7 0.12 −0.46 3.3
CD 0.7 0.06 −0.58 3.3

2.3. Match outcome

Let us now turn to the group outcome, Y ∗ij , which is given by the expected repayment:

Y ∗ij = (r + q)(pi + pj)− 2qpipj − 2qεij (5)

didj=0
= 2r − (r − q)(di + dj)− 2qεij (6)

= β0 + β1εij + εij . (7)

Note that
∂Vij
∂pi

= −q+2qpj > 0 for pj > 0.5 and
∂Y ∗ij
∂pi

= r+q−2qpj > 0 for r > q. That is, both
match valuation and match outcome are increasing in risk type. In fact, the unobservable
component in the outcome equation is εij = δηij with δ = (r − q)/q = +1 and the outcome
equation can be rewritten as

Y ∗ij = β0 + β1εij + δηij . (8)

Now consider estimating the parameter β1. Assume, for simplicity, that the true coefficient is
β1 = 0. That is, the group outcome Y ∗ij only depends on the unobservable risk type. A simple

OLS based on the observed data points yields an upwards-biased coefficient of β̂1 = +10/3
(see Figure 1). It is clear that the source of the bias is the correlation between the independent

variables and the error term. For the expected value of β̂1, we have E[β̂1] = β1 +
cov(εij ,εij)
var(εij) =

0 + 0.06
0.018 = 10/3.

Figure 1 also illustrates how the bias resolves when groups are assigned randomly. Then,
the expected marginal effect β̂1 can be seen as the equally weighted average of the OLS
estimates for the three equiprobable, feasible group constellations, i.e. 1

3(+10
3 −

10
3 + 0) = 0.

A comparison of the coefficient estimate for the endogenously formed groups (β̂1=10/3) and
the random assignment (β̂∗1=0) separates the bias from sorting.

The matching model in the econometric analysis below controls for this bias by estimating
both the matching and outcome equations simultaneously. The variation in borrower types
across markets serves the role of an instrumental variable and helps to identify the coefficients
in the outcome equation.
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Figure 1: Bias on coefficient
pertaining to risk exposure
term εij from endogenous
sorting when risk type is un-
observed. Bias resolves (i)
under random assignment,
or (ii) when matching is in-
dependent of risk exposure,
i.e. α1 = 0.
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3. Multi-index sample selection

This section develops a structural empirical model to estimate the direct (or causal) effect of
the independent variables, net of sorting bias. Technically, the equilibrium groups constitute a
self-selected sample.2 Heckman (1979) proposes a two-stage correction that estimates selection
and outcome equations simultaneously and explicitly models the dependence structure of
the error terms. The selection problem at hand, however, differs substantially from that in
Heckman.

3.1. Problem statement

In the four-player example from Section 2, the first-stage selection mechanism that determines
which player groups are observed (and which are not) is a one-sided matching game and not
a simple discrete choice as in the Heckman model. A discrete choice model assumes that an
observed match reveals group partners’ preferences over each other. However, the observed
matching is the outcome of complex interactions and conflicts of interest between the players
in the market.

To make this point clearer, consider the example in Section 2 where any player strictly prefers
matching with partner A or B over C or D. Assume we observe the match of agents C and
D in a market of four players A, B, C and D. With a discrete choice model, we would infer
that C’s choice of partner D suggests that uC,D > uC,A. This restriction on the latent match
valuations can then be used to derive the likelihood. However, such a conclusion has potential
flaws in matching markets. In such markets, players B, C and D compete over a match with
player A. If player A prefers to match with B instead of C, then we observe the match CD
from the example although it may well hold that uC,A > uC,D. In particular, players can only
choose from the set of partners who would be willing to form a match with them. However,
we do not observe the players’ relevant choice sets. This makes direct inference based on a
discrete choice model impossible, even if it accounts for social interactions such as the models
in Brock and Durlauf (2007) and Ciliberto and Tamer (2009).

In response to this problem, Sørensen (2007b) generalises the single-index Heckman sample

2Wooldridge (2002, Chapter 17) provides a comprehensive textbook treatment of sample selection models.
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selection model to multi-index sample selection models that allow for selection based on game
theoretical models by relaxing the index property. The index property requires that two
matches, such as AB and CD, that have the same probability of being observed also have the
same conditioning of unobserved characteristics. This requirement fails in matching markets.
Here, for safe types A and B the unobserved characteristics are truncated from below since
they would be unable to match with a safe type if their unobserved characteristics were low.
Following the same logic, for risky types C and D the unobserved characteristics are truncated
from above.

In matching markets, therefore, the index property is violated and a multi-index selection
model is called for. This model is a system of two equations. The first equation determines
when the outcome is observed, while the second equation determines the outcome.

3.2. Structural empirical model

The first part of the structural model is the selection equation. The selection process can be
written as the following system of match equations

VG = WGα+ ηG. (9)

There are |Ω| equations, where Ω is the set of feasible groups in the market. V ∈ R|Ω| is a
vector of latents and W ∈ R|Ω|×k a matrix of k characteristics for all feasible groups. α ∈ Rk
is a parameter vector and η ∈ R|Ω| a vector of random errors. Whether a group, and therefore
its outcome YG, is observed in equilibrium is indicated by DG = 1 [VG ∈ Γµ]. This is an
indicator function with DG = 1 if YG is observed, and 0 otherwise. YG is observed iff a
group is part of the equilibrium matching µ in the market. That is, its group valuation is
in the set of valuations Γµ that satisfy the equilibrium condition.3 This set of valuations is
the link between the structural empirical model and the equilibrium characterisations derived
in Klein (2015a) (for non-transferable utility) and Proposition C.1 (for transferable utility)
in Appendix C. With V ∈ R|Ω|, the vector of all valuations in the market, the equilibrium
condition can be written as a collection of inequalities that give upper and lower bounds on
the match valuations as follows

V ∈ Γµ ⇔
[
VG < VG ∀G /∈ µ

]
⇔
[
VG > VG ∀G ∈ µ

]
. (10)

Substitution of the match valuations in Eqn 9 into the equilibrium condition above, allows us
to state the condition on the error terms

µ is stable⇔ η ∈ Γµ −Wα. (11)

The likelihood of the matching model is then

L (µ;α) = P (η ∈ Γµ −Wα) =

∫
1 [η ∈ Γµ −Wα] dF (η), (12)

where 1[·] is the indicator function and estimates for α could, in principle, be obtained by
maximising this function. When several independent matching markets are observed, the

3The classical Heckman (1979) model is a special case where DG = 1[VG ≥ 0] and the set of feasible
valuations is simply Γ = [0,+∞).
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likelihood is the product over these markets. To normalise parameter level, the constant term
is excluded from W.

The second part of the model is the outcome equation. The binary outcome is given as
YG = 1[Y ∗G > 0], where the latent group outcome variable Y ∗G is

Y ∗G = XGβ + εG, (13)

with εG := δηG + ζG, where ζG is a random error. This specification allows for a linear
relationship between the error terms in the selection and outcome equation with covariance δ.
The design matrices X ∈ R|µ| and W ∈ R|Ω| do not necessarily contain distinct explanatory
variables.

3.3. Distribution of error terms

Figure 2 summarises the structural model. If there are unobservables, captured in the error
term, that determine both match valuation (the decision who matches with whom in the
market) and the outcome, then η and ε are correlated and we have an endogeneity problem.

Figure 2: The structural
empirical model.
- XG/∈µ characteristics of
non-equilibrium groups
- XG∈µ characteristics of
equilibrium groups
- DG∈µ equ. indicator
- YG∈µ equ. outcome
- η, ε correlated latents

XG/∈µ, ηG/∈µ DG∈µ

XG∈µ

ηG∈µ

YG∈µ

εG∈µ

The joint distribution of εG and ηG is assumed bivariate normal with mean zero, and constant
covariance δ. (

εG
ηG

)
∼ N

(
0,

[
σ2
ξ + δ2 δ

δ 1

])
(14)

Here, the variance of the error term of the outcome equation σ2
ε is var(δη + ξ) = δ2 + σ2

ξ . To

normalise parameter scale, the variance of η and ζ is set to 1, which simplifies σ2
ε to 1 + δ2 in

the estimation. If the covariance δ were zero, the marginal distributions of εG and ηG would
be independent and the selection problem would vanish. That is, the observed outcomes
would be a random sample from the population of interest.

3.4. Identification

The structural model allows for correlation between ε and η, and imposes necessary equilib-
rium conditions on the valuations of both observed and unobserved groups. The interaction
in the market makes estimation computationally involved but overcomes the identification
problem.
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Identification requires exogenous variation. In this model, it is the characteristics of the other
agents in the market that provide the exogenous variation. To illustrate, recall the example
in Section 2 with valuation Eqn 4 and outcome Eqn 8. The characteristics in the outcome
equation of group AB are simply X = (XAB). The characteristics in the selection equation are
W = (XAB, XCD, XAC , XAD, XBC , XBD), and the independent elements of W are then W ′ =
(XCD, XAC , XAD, XBC , XBD). The identifying assumption is thus that the characteristics of
agents outside the match (those comprised in W ′) are exogenous, i.e., uncorrelated with the
error terms. Put differently, the exclusion restriction is that D (which groups are observed in
equilibrium) depends the characteristics of all agents in the market, while the outcome of the
equilibrium groups only depends on the characteristics of the members of those groups.

In particular, other agents’ characteristics are not used as instruments in a traditional sense.
Rather than entering the selection equation directly, they pose restrictions on the match
valuations by determining the bounds in the estimation.

3.5. Estimation

In the estimation, I follow Sørensen (2007a), who uses Bayesian inference with a Gibbs sam-
pling algorithm that performs Markov Chain Monte Carlo (MCMC) simulations from trun-
cated normal distributions. The latent outcome and valuation variables, Y ∗ and V , are treated
as nuisance parameters and sampled from truncated Normal distributions that enforce suf-
ficient conditions for the draws to come from the equilibrium of the group formation game.
For the posterior distributions, see Klein (2015a). For an illustration of the simulation of the
posteriors, see Appendix D.

The conjugate prior distributions of parameters α, β and δ are Normal and denoted by
N(ᾱ,Σα), N(β̄,Σβ) and N(δ̄, σ2

δ ). In the estimation, the prior distributions of α and β have
mean zero and variance-covariance matrix Σβ = ( 1

|µ|X
′X)−1 and Σα = ( 1

|Ω|W
′W )−1. This is

the widely studied and used g-prior (Zellner 1986). For δ, the prior distribution has mean zero
and variance 10. For this parameter, the prior variance is at least 40 times larger than the
posterior variance in all estimated models. This confirms that the prior is fairly uninformative.

Under the assumption of transferable utility, estimation is computationally complex due to the
valuation of the equilibrium bounds. Here, estimation does not simply involve a maximisation
of a given set of valuations as in Klein (2015a). Instead, the bounds in Eqns 25 and 26 derived
in Appendix C require a maximisation over the set of all feasible matchings in the market –
rather than only the matches. This involves solving a partitioning linear program (see Quint
1991).

4. Monte Carlo experiments

The first part of this section presents a simple simulation study of sorting bias. The second
part presents Monte Carlo evidence of the correction method proposed in Klein (2015a) (see
Section 3) and implemented in R package matchingMarkets. It further provides Monte Carlo
studies on the robustness of the proposed estimator in small samples.

4.1. A simple example

I first provide a brief overview of the basic functionality of the matchingMarkets package
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and introduce the model specification used in the Monte Carlo experiments. In a first step,
stabsim simulates individual-level, independent variables. The code below generates data for
m=1,000 markets with gpm=2 groups per market and group size ind=5.

R> ## Simulate individual-level, independent variables

R> library(matchingMarkets)

R> idata <- stabsim(m=1000, ind=5, seed=123, gpm=2)

R> head(idata)

m.id g.id pi wst R

1 1 1 0.6437888 0 NA

2 1 1 0.8941526 0 NA

3 1 1 0.7044885 1 NA

4 1 1 0.9415087 0 NA

5 1 1 0.9702336 0 NA

6 1 2 0.5227782 0 NA

The resulting data frame contains a market identifier m.id and two independent variables
pi ∼ U(0.5, 1) and wst ∼ B(1, 0.5). The group identifier g.id and the dependent variable R
are still undefined at this stage.

Next we apply the function stabit that serves three purposes. First, it specifies the list of
variables to be included in selection and outcome equations. Second, it generates group-level
variables based on group members’ individual characteristics. For example, the operation
add="pi" generates the group average for variable pi. The operation ieq="wst" produces
the probability that two randomly drawn group members have the same value of wst. Third,
it draws group-level unobservables that enter selection and outcome equation.

R> ## Simulate group-level variables (takes a minute to complete...)

R> mdata <- stabit(x=idata, simulation="NTU", method="model.frame",

+ selection = list(ieq="wst"),

+ outcome = list(ieq="wst"))

R> mdata <- mdata$model.frame

R> head(mdata$OUT, 4)

m.id g.id intercept wst.ieq R xi epsilon

1 1 1 1 0.4 -0.7822129 -1.6679419 -0.3822129

2 1 2 1 0.4 0.1709600 0.2145388 0.5709600

3 2 1 1 0.4 -0.3740809 -1.3165104 0.0259191

4 2 2 1 0.4 0.1172254 1.4414618 0.5172254

R> head(mdata$SEL, 4)

m.id g.id wst.ieq D V eta

1 1 1 0.4 1 2.9714581 2.5714581

2 1 2 0.4 1 1.1128423 0.7128423

3 1 3 0.6 0 0.2560828 -0.3439172

4 1 4 0.4 0 1.9985088 1.5985088
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The data frame for the selection equation mdata$SEL stacks the two equilibrium groups from
the outcome equation mdata$OUT at the top (with D = 1) and all counterfactual groups (with
D = 0) below, for each market. In the stabit function, the argument simulation="NTU"

indicates that the function draws errors eta and xi from a standard normal distribution to
determine the dependent variables V and R in selection and outcome equation, respectively.
The equilibrium selection is based on the conditions for the group formation game with non-
transferable utility in Klein (2015a). The selection equation determines which groups are
observed D = 1 and which are not D = 0.

V = α · wst.ieq + η (15)

D = 1[V satisfies equilibrium condition], (16)

The outcome equation determines the group outcome R.

R = β · wst.ieq + ε, with ε = δη + ξ (17)

In the matchingMarkets package, the true parameters are hardcoded as α = 1; β = −1; δ =
0.5. Now, estimating the outcome equation of this model with OLS yields upward biased
estimates of the slope coefficient β.

R> ## Naive OLS estimation

R> lm(R ~ wst.ieq, data=mdata$OUT)$coefficients

(Intercept) wst.ieq

0.3059781 -0.2766853

The source of this bias is the positive correlation between ε and the exogenous variable wst.ieq.

R> ## epsilon is correlated with independent variables

R> with(mdata$OUT, cor(epsilon, wst.ieq))

[1] 0.1030035

The intuition behind this bias is given in the example in Section 2. From Eqn 17, we know
that ε = δη + ξ. Thus, conditional on η, the unobservables in the outcome equation are
independent of the exogenous variables (because ξ does not enter the selection equation).

R> ## xi is uncorrelated with independent variables

R> with(mdata$OUT, cor(xi, wst.ieq))

[1] 0.009238994

The selection problem is resolved when the residual from the selection equation, η̂, is controlled
for in the outcome equation.

R> ## 1st stage: obtain fitted value for eta

R> lm.sel <- lm(V ~ -1 + wst.ieq, data=mdata$SEL); lm.sel$coefficients

wst.ieq

1.004587

R> eta <- lm.sel$resid[mdata$SEL$D==1]
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R> ## 2nd stage: control for eta

R> lm(R ~ wst.ieq + eta, data=mdata$OUT)$coefficients

(Intercept) wst.ieq eta

-0.03005002 -0.95630149 0.50448486

In most real-world applications, however, the match valuations V are unobserved. The so-
lution is to estimate the selection equation by imposing equilibrium bounds (as derived in
Proposition C.1) on the latent match valuations and this is the procedure I follow in the
Monte Carlo experiments below.

4.2. Simulation results

The Monte Carlo experiments are designed to test for the validity of the estimator. I con-
tinue to use the variable wst.ieq from the original model. The true parameters are defined
as seen in the first row of Table 3. The table is composed of three blocks, each represent-
ing a different market setting and sampling strategy. The first block gives the results of a
benchmark experiment that aims to see whether the structural model can reduce the bias of
standard OLS estimates. Experiment 1 tests the robustness of the estimator when applied
to a random sample of the groups’ members. Experiment 2 works with the full population
of group members but uses random samples from the counterfactual groups to reduce the
computational burden arising from the combinatorics of large groups. I discuss motivation,
set-up, implementation and results of each experiment in turn.

Benchmark study

The following steps replicate the results of the benchmark experiment in Table 3. The R code
for replication is available in the documentation of function mce.

Implementation:

1. Following the nature of the data in the BAAC 2000 survey, I simulate individual-level,
independent variables for 40 two-group markets with groups of size five.

R> idata <- stabsim(m=40, ind=5, seed=123, gpm=2)

2. Repeat the following steps for i=1 to 1000.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.

R> mdata <- stabit(x=idata, selection=list(ieq="wst"), outcome=

+ list(ieq="wst"), simulation="NTU", method="model.frame", seed=i)

b) Obtain parameter estimates using (i) OLS and (ii) the structural model.

R> ols <- stabit(x=mdata, method="outcome", niter=400000)

R> fit <- stabit(x=mdata, method="NTU", niter=400000)
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Interpretation: The results for the benchmark study in Table 3 confirm the upward bias in
the OLS estimates of the slope coefficient β. It is seen that the structural model successfully
reduces the bias resulting from endogenous matching into groups. Note that the modes of the
simulated posterior distributions in the first row of Figure 3 correspond to the true values in
the first row of Table 3.

The benchmark study works with the full population of borrowers. The two experiments
below investigate the robustness of the estimator for the practically more relevant case of
working with random samples from the population of interest.

Table 3: Monte Carlo results for 40 two-group markets (based on 512 draws)

Parameters α (Intercept) β δ σ2
ξ

True values 1 0 -1 0.5 1

Benchmark: All group members (5/5); all counterfactual groups (250/250)
5/5; 250/250 OLS – 0.304 -0.282 – 1.501

Structural 0.958 -0.112 -0.802 0.469 1.072

Experiment 1: 5 randomly sampled group members; all counterfactual groups
5/6; 250/250 OLS – 0.377 -0.242 – 1.676

Structural 0.748 -0.108 -0.642 0.570 0.973

Experiment 2: All group members; 250 randomly sampled counterfactual groups
6/6; 250/922 OLS – 0.365 -0.121 – 1.695

Structural 1.052 0.048 -0.707 0.567 0.978

Experiment 1: randomly sampled group members

While group sizes at Grameen Bank, for example, have evolved to five members, self-help
group and village lending schemes operate with up to 30 members. Surveys, such as the BAAC
survey (Townsend 2000), are often restricted to a random sample of the groups’ members.

Set-up: I continue to work with a sample of five borrowers per group but take original group
sizes to be six borrowers. This means that one group member is dropped at random.

Implementation:

1. Simulate group-level, independent variables for all
(

2n
n

)
feasible groups of size n = 6 in

two-group markets.

2. Repeat the following steps 1,000 times.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.

b) Randomly drop one member per equilibrium group.

c) Generate new group-level, independent variables from the reduced sample of group
members (leaving the equilibrium group indicator, D, and group outcomes, R,
unchanged).

d) Obtain parameter estimates using (i) OLS and (ii) the structural model.
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Figure 3: Posterior distributions of parameters for benchmark simulations. True value are
given by vertical, dotted lines. Structural model and OLS estimates for 1,000 draws are given
by straight and dashed lines, respectively.
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Interpretation: The results for Experiment 1 in Table 3 display clear evidence of attenuation
bias (see Wooldridge 2002, Chapter 4.4.2) in both the OLS and structural estimates. The ran-
dom sampling of group members induces measurement error in the group-level, independent
variables that biases the slope estimates towards zero.

Experiment 2: randomly sampled counterfactual groups

While data on the full population of group members solves the attenuation problem encoun-
tered in Experiment 1, it creates another problem for statistical analysis. The BAAC 1997
survey (Townsend 1997), for example, comprises data from two-group markets with up to
20 members resulting in

(
40
20

)
≈ 137.85 billion feasible groups per market which renders the

analysis computationally intractable.

Set-up: As in Experiment 1, the original group size is taken to be six members. In two-group
markets, this results in

(
12
6

)
− 2 = 922 counterfactual groups, from which 250 groups are

sampled at random for the analysis.

Implementation:

1. Simulate group-level, independent variables for all
(

2n
n

)
feasible groups of size n = 6 in

two-group markets.

2. Repeat the following steps 1,000 times.

a) Draw group-level unobservables ξ and η that determine both (i) which groups are
observed in equilibrium and (ii) the equilibrium group outcomes.
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b) Randomly draw 250 groups from the set of counterfactual groups.

c) Obtain paramter estimates using (i) OLS and (ii) the structural model.

Interpretation: The results for Experiment 2 in Table 3 suggest that working with a random
sample of counterfactual groups does not affect the mode of the posterior distribution of the
coefficients. However, the standard deviation of the posterior distribution of β increases from
σ̂β̂ = 0.75 to 0.79 (not reported in Table 3). A possible explanation is that the random sam-
pling relaxes the equilibrium bounds which results in increased uncertainty in the parameter
estimates.

5. Application in microfinance

This section contains R code to replicate the results of the structural model in Table 3 of Klein
(2015a). To begin with, load the individual-level data contained in the matchingMarkets

package (Klein 2015b) and standardise the variables. The 292 borrowers, are nested within
68 groups and 39 markets.

R> ## 1. Load individual-level data

R> library("matchingMarkets")

R> data(baac00)

R> baac00$pi <- baac00$pi + (1-baac00$pi)*0.5

R> baac00$loan_size <- baac00$loan_size/sd(baac00$loan_size)

R> baac00$loan_size2 <- baac00$loan_size^2

R> baac00$lngroup_agei <- baac00$lngroup_agei/sd(baac00$lngroup_agei)

In the next step, specify variables and variable transformations for selection and outcome
equation. The function stabit generates the group-level design matrix and runs the Gibbs
sampler with 800,000 iterations to obtain the results of the structural model.

R> ## 2-a. Run Gibbs sampler

R> klein15a <- stabit(x=baac00, method="NTU",

+ selection = list(inv="pi",ieq="wst"),

+ outcome = list(add="pi",inv="pi",ieq="wst",

+ add=c("loan_size","loan_size2","lngroup_agei")),

+ offsetOut=1, binary=TRUE, gPrior=TRUE, marketFE=TRUE, niter=800000

+ )

Alternatively, the results can be loaded directly from the package.

R> ## 2-b. Load data and get marginal effects

R> data(klein15a)

R> mfx(m=klein15a)$mfx.selection[1:2,]

mx s.e. t.stat p.val stars

pi.inv -0.778 0.992 -0.785 0.216

wst.ieq 0.356 0.119 2.984 0.001 **

R> mfx(m=klein15a)$mfx.outcome[c(1:5,20),]
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mx s.e. t.stat p.val stars

pi.inv 1.571 1.813 0.867 0.195

wst.ieq -0.586 0.243 -2.413 0.010 **

loan_size.add 0.970 0.362 2.680 0.005 **

loan_size2.add -0.187 0.080 -2.338 0.012 *

lngroup_agei.add -0.395 0.109 -3.609 0.000 ***

delta 0.512 0.127 4.028 0.000 ***

The results on the attenuation bias in Experiment 1, Section 4, suggests that the difference
in the parameter estimates of the Probit and the structural model underestimate the true
confounding effect of endogenous matching. Specifically, the selection problem arising from
endogenous group formation – while already strongly significant – is still likely to be under-
rated because attenuation results in an underestimation of the positive Probit coefficient and,
at the same time, an overestimation of the negative coefficient from the structural model.

The function khb implements the statistical test for confounding in Probit models proposed in
Karlson et al. (2012). The function takes as arguments the data frame of independent variables
X=X, the dependent variable y=R, and the name of the confounding variable z="eta".

R> ## 3. Test for confounding from sample selection

R> ## model matrix

R> M <- klein15a$model.list

R> X <- do.call(rbind.data.frame, M$X)

R> eta <- c(klein15a$coefs$eta, rep(0, length(M$X)-length(M$W)))

R> X <- cbind(X,eta)

R> ## outcome

R> y <- unlist(M$R)

R> ## KHB test

R> head(khb(X=X, y=y, z="eta"),5)

Karlson-Holm-Breen method

Null hypothesis: Change in coefficient is not attributable to confounding by z.

p.value

pi.inv 0.5581

wst.ieq 0.0480

loan_size.add 0.9034

loan_size2.add 0.0442

lngroup_agei.add 0.0412

The procedure tests for differences in probit and structural model coefficients. It confirms
that the probit estimates for variables wst.ieq, loan_size2.add and lngroup_agei are
significantly confounded as a result of endogenous matching.

6. Conclusion

An extension of the estimator in the stabit2 function is currently in progress. This will allow
for two-sided matching data from the college admissions problem. Currently, only one-sided
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matching data from the group formation and stable roommates problem is supported.
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A. Example of sorting bias II: measurement error

The following example builds on the example in Section 2 and illustrates the bias arising when
variables influencing market sorting are measured with error.

A.1. Match valuation

To simplify the exposition, consider match valuations given as

Vij = α1(di + dj) + ηij . (18)

Here, di and dj give the risk type (probability of default) of borrower i and j and α1 is a
coefficient. The unobserved match valuation is captured by the match-specific error term
ηij . Now let A and B be safe types, denoted dA = dB = 5%, and C and D risky types
(dC = dD = 15%). Further, let the interest payment be r = 120 and the joint liability
payment q = 20. The six valuations, Vij , are then given in Table 4.

Table 4: Match valuations∗ of all
feasible groups

A B C D

A (dA=5%) −2 + ηAB −4 + ηAC −4 + ηAD
B (dB=5%) −4 + ηBC −4 + ηBD
C (dC=15%) −6 + ηCD
D (dD=15%)
∗parameters: di = 1− pi; r = 120; q = 20; α1 = −q = −20

A.2. Match outcome

The outcome Y ∗ij , is a latent variable that gives the expected loan repayment for a group
comprising borrower i and j as

Y ∗ij = 2r + (q − r)(di + dj) + εij (19)

= β0 + β1(di + dj) + εij , (20)

where Y ∗ij determines the binary variable Yij that indicates successful repayment of group ij by
the following threshold rule Yij = 1[Y ∗ij > 0]. Which outcomes are observed is determined by
the equilibrium matching. Now consider estimating the parameter β1. The selection problem
arises when the equilibrium is not independent of the outcome, i.e., when the distribution of
ε is not independent of the distribution of η. To investigate the nature of the selection bias
that arises in this example, note the true value of β1 = (q − r) = −100, and β0 = 2r = 240.
The observed match outcomes are given in Table 5 according to Eqn 20.

Table 5: Match outcomes with
systematic matching (partially
unobservable characteristics).∗

A B (d̄=10%) C D (d̄=10%)

A (dA=5%) 230
B
C (dC=15%) 210
D
∗true parameters: β0 = 240; β1 = −100; r = 120; q = 20
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Assume first that the researcher observes the characteristics of one borrower for every matched
group with an error.4 Thus part of the borrowers outcome-relevant quality is unobserved and
therefore captured by the error term. Let the reported characteristics of borrowers B and D
be the sample mean of d̄ = 10% and the characteristics of borrowers A and C be dA = 5%
and dC = 15% as above.

The outcome for group AB is 230, and group CD has an outcome of 210, and a natural
estimate of β1 is −200 (= [230 − 210]/[0.15 − 0.25]). However, given the nature of the
matching in this example, the estimate is severely downward biased. To see this, recall
the omitted characteristics of borrowers B and D that lead to measurement error in our
explanatory variable. The true model is Y ∗ij = β0 + (di + dj)β1 + εij . However, we estimate

Y ∗ij = β0 + (di + d̄)β1 + ε′ij with ε′ij = (dj − d̄)β1 + εij . Now, if dj is correlated with di, then
di is correlated with ε′ij and the estimate of β1 is biased. Specifically, because of assortative

matching in the market we have cov(ε′ij , di) < 0 and the estimate is downward biased.5

If we observed the omitted borrower characteristics dB = 5% and dD = 15% the measurement
error resolves. The natural and unbiased estimate of β1 is −100 (= [230 − 210]/[0.1 − 0.3]).
The bias is a consequence of the systematic selection of the observed sample of outcomes.
Table 6 shows that we can obtain unbiased estimates – even if the quality of B and D is
unobserved – when we observe the outcomes at random.

Table 6: Match outcomes with
random assignment (partially
unobservable characteristics)∗

A B (d̄=10%) C D (d̄=10%)

A (dA=5%) 230 220 220
B 220 220
C (dC=15%) 210
D
∗true parameters: β0 = 240; β1 = −100

The above is essentially the outcome of the experiment outlined in the introductory section.
A comparison of the coefficient estimate for the endogenously formed groups (β̂1=−200) and
the random assignment (β̂∗1=−100) separates the direct effect of risk type from selection bias
(Figure 4).

Figure 4 illustrates the decomposition of ex-ante (sorting) and ex-post effects on lending
outcomes. The latent outcome variable, Y ∗G, gives group G’s outcome. Following Ghatak
(1999), the risk type of group G is given by the sum of its observed borrower risk types
XG =

∑
i∈G di. The dashed line gives the estimated relationship between group risk and

lending outcome for a random assignment of borrowers into groups. This estimate coincides
with the true underlying relationship, and an increase in group risk by 10% lowers the outcome
by 10 units. The solid line gives the estimated relationship for the observed equilibrium
µ1 = {AB,CD}. Here, the equilibrium matching is the result of an assortative matching of
borrowers based on their risk type. This systematic matching leads to a downward bias in

4For example, interviews were conducted with one randomly selected group member who was also in-
terviewed on some of the characteristics of her fellow group member. Such a sampling strategy is used by
Carpenter and Sadoulet (2000), Lensink and Mehrteab (2003), and Ahlin and Townsend (2007). Assume, for
example, that the characteristics of the second group member are reported as the sample average, d̄ = 10%.

5 Assortative matching on risk-type implies that cov[dj , di] > 0 in the last argument of the straightforward
algebra: cov(ε′ij , di) = cov[(dj−d̄)β1+εij , di] = cov[djβ1−d̄β1+εij , di] = β1 ·cov[dj , di] = −100·cov[dj , di] <
0. If we observed the group constellations at random, i.e., a random sample with cov[dj , di] = 0, the bias
resolves.
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Figure 4: Decomposition of di-
rect effect of risk-type on lending
outcomes and selection effect.
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the linear probability model. If there was random assignment of borrowers to groups, the two
lines would overlap completely.

To see how this experimental result can be obtained from non-experimental data, I adapt an
example from Sørensen (2007a). Consider observing a second market with similar borrowers
but with two additional borrowers A′ and D′ of risk-types dA′ = 0% and dD′ = 20% (Table
7). The presence of A′ and D′ changes the relative rankings in the market.6 Again, we
only observe the risk-type of one borrower per match and again the estimate of β is biased
downwards, −192.9 in this case. However, a direct comparison of the two markets shows that
the expected group repayment of borrower B and D increases by 5 and 10 units when their
match partners’ default risk reduces by 5% and 10% respectively. A natural estimate of β is
−100.

Table 7: Match outcomes with
exogenous variation (partially
unobservable characteristics)

A’ A B C D D’

A’ (dA′ = 0%) 235
A’ (dA = 5%) 230 220
B
C’ (dC = 15%) 210 205
D
D’

6Suppose B breaks up her match with A to match with the safer A′. This in turn may lead D to break up
her current match with C to match with the safer single A. C then matches with the remaining high risk D′.
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B. Example of sorting bias III: market-level variables

This section shows that sorting bias persists – even in the absence of omitted variables and
measurement error – when the analysis is based on market-level, rather than group-level
variables. To illustrate, I use a measure from the village-level analysis in Ahlin and Townsend
(2007). If agents are of one of two types, this measure gives the probability that two randomly
chosen agents from the same market are of the same type. The endogeneity problem of the
market-level measure is stated and derived formally in Proposition B.1.

Proposition B.1 Market-level measures lead to an upward bias in the regression coefficient
unless the matching into groups is random w.r.t. exposure type.

Proof B.1 I illustrate the bias using two exposure types A and B with proportion θA and
θB := 1−θA respectively, (see Ahlin 2009). The probability of drawing two agents of the same
type s = A,B is θ2

s . The measure used in Ahlin and Townsend (2007) for village or market t
is then simply given by

X̃t =
∑

s∈{A,B}

θ2
st. (21)

If agents do match on exposure type, i.e. they anti-diversify, the true village-level average of
this measure will always be higher than the measure used by the authors. For example, under
assortative matching on exposure type, one group will be homogeneous in the leading exposure
type, say A. The probability of drawing two group members of the same type in this group is
1. The residual group has proportion 2θB of B-types and proportion 2(θA − 1

2) of A-types,
and the average village-level project covariation is

Xt =
1

2

[
1 +

(
2

[
θAt −

1

2

])2

+ (2θBt)
2

]
. (22)

The values for Xt (assortative matching on exposure type) and X̃t (random matching) are
plotted for different levels of θA in Figure 5. It is clear from the figure and fairly intuitive that
anti-diversification results in a higher village-level project covariation; that is, the dotted line
is always above the solid line. What is interesting about this figure is that the measurement
error (shaded area in Figure 5a) from using X̃t, when matching is assortative and the true
measure should be Xt, is negatively related to the erroneous measure X̃t (see Figure 5b).
Following a standard argument7, this results in an upward bias of the coefficient pertaining to
project covariation.

7Let the true specification be YGt = β0 + β1Xt + εGt. For this specification it holds that E[εGt|Xt] = 0.
Furthermore, let Xt be the true value of X and X̃t, the covariation measure that falsely assumes random
matching on risk exposure type. We estimate YGt = β′0 + β′1X̃t + ε′Gt with ε′Gt = β1(Xt − X̃t) + εGt. If
(Xt − X̃t) is negatively correlated with X̃t (see Figure 5), then X̃t is negatively correlated with the error term
ε′Gt and β̂1 is biased and inconsistent. Because β1 < 0, the bias is upwards.
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Figure 5: Measurement error in group-level variables

(a) Erroneous measure X̃t and correct measure
Xt against share of leading exposure type A

θA

X
t, 

X~
t

0.
5

0.
7

0.
9

0.5 0.6 0.7 0.8 0.9 1.0

assortative
random

measurement
error

(b) Measurement error X̃t − Xt against erro-
neous measure X̃t

X
~

t
X

t−
X~

t

0.
0

0.
2

0.
4

0.5 0.6 0.7 0.8 0.9 1.0



24 Analysis of Stable Matchings in R: Package matchingMarkets

C. Equilibrium characterisation

Under transferable utility, agents can write binding contracts that specify how to share the
total pay-off generated by the collective of all players in the market. As a result, the coordi-
nated efforts of borrowers lead to a matching that maximises the total market pay-off. This
pay-off is then shared between the players according to the binding contracts.

C.1. Stability and uniqueness

The group formation game under transferable utility is a special case of the Kaneko and
Wooders (1982) partitioning game. A partitioning game consists of a finite set of N players
N = {1, ..., N} and a characteristic function V that assigns a value to each group of players,
G ⊂ N . In the partitioning game, only certain coalitions – so-called basic coalitions – can
create value. These coalitions are subsets of N . In the group formation game, the basic
coalitions are all groups of size n. The collection of these basic coalitions Ω is the set of
feasible matches, i.e. borrowing groups. It can be written as Ω = {G ⊂ N : |G| = n}.8

For the partitioning game, Quint (1991) shows that the equilibrium9 coincides with the set
of optimal solutions to the dual of a linear programming problem.

C.2. Equilibrium characterisation

Let M denote the set of feasible matchings (or group constellations µ) in the sense that each
agent is matched exactly once. This set comprises both the observed group constellation in
village t and all unobserved group constellations.10 The latter contain equally sized, alter-
native groups in the same village composed of borrowers from the observed groups. Using
this definition, the objective function of the PLP can be rewritten as below. An optimal
partitioning is a matching µ that maximises the total valuation in the market. This matching
is such that it solves the following maximisation problem.

max
µ∈M

∑
G∈µ

VG (23)

The equilibrium condition for a coalition-wise (or core) stable matching is given by the follow-
ing inequality, where M\µ̃ gives the set of feasible deviations from the equilibrium matching
µ̃. ∑

G′∈µ̃
VG′ > max

µ∈M\µ̃

∑
G∈µ

VG (24)

The condition can be restated in two simple inequalities that impose upper bounds for non-
equilibrium matchings and lower bounds for the equilibrium matchings. Proposition C.1

8In the empirical context of this paper, the set of feasible groups is obtained by generating all k-for-k
borrower swaps across two groups in the same village. The total number of swaps in a village with two groups
of five borrowers is given by 5× 5 = 25 1-for-1 swaps, 10× 10 = 100 2-for-2 swaps, 10× 10 = 100 3-for-3 swaps
and 5× 5 = 25 4-for-4 swaps (= 250 in total).

9Specifically, the set of feasible allocations that cannot be improved upon. This is also referred to as the
‘core’ in the matching literature.

10In a context with two groups per market, the number of feasible matchings |M | is half the number of
feasible matches |Ω|.
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summarises the conditions for pairwise stability based on the bounds V ∗G and V ∗G derived
below.

Proposition C.1 The matching µ is stable iff VG < V ∗G ∀G /∈ µ. Equivalently, the matching
µ is stable iff VG > V ∗G ∀G ∈ µ.

Proof C.1 A matching is stable if deviation is unattractive. Alternative matchings are there-
fore bound to have lower valuations than observed ones. This naturally leads to upper bounds
VG < V ∗G for the valuation of matches G ∈ µ, not contained in the equilibrium matching µ̃.

VG <
∑
G′∈µ̃

VG′ − max
µ∈M\µ̃

∑
G′′∈µ\G

VG′′ =: V ∗G (25)

The upper bounds V ∗G are increasing in the valuation of the equilibrium matching µ̃ (first term
on RHS of the inequality in Eqn 25), and decreasing in the valuation of the optimal group
constellation of all remaining borrowers not contained in G (second term). It is possible to
invert the inequalities to obtain a lower bound VG > V ∗G for the valuation of the equilibrium
match G ∈ µ̃.

VG > max
µ∈M\µ̃

∑
G′∈µ

VG′ −
∑

G′′∈µ̃\G

VG′′ =: V ∗G (26)

The lower bound V ∗G is increasing in the valuation of the most attractive non-equilibrium
matching (first term on RHS of the inequality in Eqn 26) and decreasing in the valuations of
the other equilibrium matches without G (second term).

These conditions are equivalent, but both are important for estimation as they impose different
bounds on the latent valuation variables. These inequalities are used in the econometric model
to truncate the valuations of feasible groupings.
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D. Simulation of posterior distribution

The Bayesian estimator uses the data augmentation approach (proposed by Albert and Chib
1993) that treats the latent outcome and valuation variables as nuissance parameters. The
following four steps illustrate the first iteration of the estimator for the first-stage matching
model.

D.1. Match valuations for unobserved groups

The algorithm starts by simulating the latent match valuations for unobserved groups condi-
tional on the data and parameters. In the first iteration illustrated here, the slope parameter
alpha (blue asterisk) and the match valuations of the equilibrium groups (red asterisks) are
initially set to zero and match valuations for unobserved groups (black circles) are drawn
from a normal distribution with mean zero. For the observed groups to be in equilibrium,
the match valuation of the unobserved groups must be lower than the maximum equilibrium
group valuation. The draws from the normal are therefore censored from above (gray shades).

D.2. Match valuations for first observed group

In the next step, the match valuation is drawn from a normal distribution with mean zero
(conditional mean given by the dashed line). The equilibrium condition holds because the
valuation of the second equilibrium group is larger than that of any non-equilibrium group
(indicated by the yellow shades). Thus the valuation can be drawn from an uncensored
normal.

D.3. Match valuations for second observed group

Same procedure as in step 2.

D.4. Alpha slope parameter

Fit a regression based on the given valuations and data (solid line) and draw alpha (dashed
blue line) from a normal distribution with mean and standard deviation of the estimated
slope parameter. Use the new alpha draw in the next iteration to simulate the latent match
valuations, etc etc.
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Table 8: Simulation of posterior distribution: Conditional Draws for match valuations and
model parameters

1. Match valuations for unobserved groups 2. Match valuation for 1st observed group
before. after. before. after.

3. Match valuation for 2nd observed group 4. Alpha slope parameter
before. after. before. after.
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