An Introduction to Estimating Monte Carlo
Standard Errors with R Package mcmcse

Dootika Vats

July 1, 2017

Contents

1 Introduction

2 An MCMC Example

3 Estimating Monte Carlo Standard Error
4 Confidence Regions

5 Effective Sample Size

6 Graphical Diagnostics

11

14

1 Introduction

The R package mcmcse provides estimates of Monte Carlo standard errors for
Markov chain Monte Carlo (MCMC). This package is useful when estimating
means and quantiles of functions of the MCMC output. In addition to
MCMC output, the package can be used for time series and other correlated
processes.

The package is predominantly useful after MCMC output has been obtained
by the user. In addition to estimating the Monte Carlo standard errors,
the package also provides univariate and multivariate estimates of effective
sample size and tools to determine whether enough Monte Carlo samples
have been obtained. There are also some graphical tools to ascertain the
behavior of the Monte Carlo estimates.

2 An MCMC Example

To illustrate the use of our package, we present the following simple multi-
variate AR(1) process. The process is defined for t = 1,2,3,... as,

Y =w + Ayi—1 + €,

where w is a constant vector in RP, 3, € RP, A is a p x p matrix and
et ~ Np(0,C). In our example, we let A and C' be diagonal matrices. The
invariant distrbution for this process is F' = N, (0, V') where V is a function
of A and C.

The function mAr.sim in package mAr draws samples from the above model.
We let p = 3.

library (mAr)

Loading required package: MASS

p <-3
A <- diag(c(.1, .5, .8))
C <- diag(rep(2, 3))

N <- 1eb
set.seed(100)
chain <- mAr.sim(w = rep(2,p), A=A, C=C, N =N)

For using the mcmcse package the rows of the MCMC output should store

each iteration of the algorithm. Thus the output should have n rows and p

columns. We will denote each row 7 of the output as (ygl), y§2),y53)).

head(chain)

Y1 Y2 Y&
1 -0.3101768 3.967189 8.421232
2 5.2384324 6.391334 10.407224
3 2.5886888 6.497850 11.156644
4 3.8339966 4.992644 12.447253
5 -0.2396186 4.900606 13.565273
6 2.2108764 5.144180 13.927434

This vignette will discuss estimating two sets of features of interest of F'.

e Ery: For estimating u = Ery, the estimator is the Monte Carlo sample

mean
1 n
Hn ::Tlgzgyb

In R, py, is obtained using the usual colMeans function. If p = 1, then
use mean instead oc colMeans.

colMeans (chain)

#i# Y1 Y2 Y3
2.225577 4.012947 10.007805

o Ep(y(M2 44224 9B)2); When interested in estimating the sum of the
second moments of each component of 7, define the function g : R3 —
R as g((z1,22,73)) = 22 + 23 + 23. This is defined in R by creating a
function that takes a vector argument.

g <- function(x)

{
}

return(sum(x~2))

The Monte Carlo estimator for g is

1 n
Hgn = o Zg(yt),
t=1

gofy <- apply(chain, 1, g)

mean (gofy)

[1] 131.4661

Thus, to obtain Monte Carlo estimates from MCMC output, the base pack-
age is sufficient (generally). However, Monte Carlo estimates must be re-
ported with Monte Carlo standard error. That is, if the following central
limit theorems hold

Vi, — 1) % Ny(0,5) (1)

and

Vilpgn — 1) % Ny(0,%,), 2)

then estimates of 3 and Y, must be reported. Since the samples obtained
are correlated, these quantities require more sophisticated tools than usual
sample estimators. (Note that a Markov chain CLT is not always guaranteed
to hold. In fact, it depends on the rate of convergence of the Markov chain.
Most of the functions in this package assume that a Markov chain CLT
holds. Such an assumption is also made when using many of the convergence
diagnostics).

3 Estimating Monte Carlo Standard Error

In this package, the functions mcse, mcse.mat, mcse.multi, and mcse.initseq
estimate the Monte Carlo standard error of i, (or jign).

e mcse: consistent estimates of /X /n (standard error) when ¥ is 1 x 1.

e mcse.mat: consistent estimates of the square root of the diagonals of
¥/n.

e mcse.multi: consistent estimates of X.

e mcse.initseq: asymptotically conservative estimates of 3 using ini-
tial sequence estimators.

Using the mcmcse package we can estimate ¥ in (1) with the mcse.multi
and mcse.initseq function.

library(mcmcse)

mcmcse: Monte Carlo Standard Errors for MCMC

Version 1.3-1 created on 2017-06-06.

copyright (c) 2012, James M. Flegal, University of California,
Riverside

John Hughes, Untversity of Colorado, Denver
Dootika Vats, University of Warwick
Ning Dai, University of Minnesota

For citation information, type citation("mecmcse").
Type help("mcmcse-package”) to get started.

mcerror_bm <- mcse.multi(x = chain, method = "bm",

size = "sqroot", g = NULL, level = .95, large = FALSE)
mcerror_bart <- mcse.multi(x = chain, method = "bartlett",

size = "cuberoot", g = NULL, level = .95, large = FALSE)
mcerror_tuk <- mcse.multi(x = chain, method = "tukey",

size = "sqroot", g = NULL, level = .95, large = FALSE)
mcerror_is <- mcse.initseq(x = chain, g = NULL,
level = .95, adjust = FALSE)
mcerror_isadj <- mcse.initseq(x = chain, g = NULL,
level = .95, adjust = TRUE)

e x takes the n x p MCMC data. x can take only numeric entries in the
form of a matrix or data frame. The rows of x are the iterations of

the MCMC.

e method = ‘‘bm’’, ‘‘bartlett’’, ‘‘tukey’’ calculatesthe estimate
using the batch means method and spectral variance methods with the
modified-Bartlett and Tukey-Hanning windows.

e size is the batch size for the bm method and the truncation point for
tukey and bartlett methods. size = ‘sqroot’’ sets the size as
|\/n] and size = ¢‘cuberoot’’ sets it at [n'/?]. An integer value
of size less than n is also valid.

For reference on bm (batch means estimators) see Jones et al. (2006)
and Vats et al. (2017a).

For reference on bartlett and tukey (spectral variance estimators)see
Flegal et al. (2010) and Vats et al. (2017Db).

e g is a function that is applied to each row of x and represents the

features of interest of the process. Since here we are interested in only
means, g is NULL. g will be explained in later examples.

e level is the confidence level of the resulting confidence region. This

is required to calculate the volume of the confidence region.

e large is a logical argument. If large is TRUE the volume of the con-

fidence region is the large sample volume obtained using x? critical
values. By default, volume is calculated using F' distribution critical
values.

e adjust is a logical argument only used for the mcse. initseq function.

If adjust is TRUE, the eigenvalues of the initial sequence estimator are
increased slightly.

For reference on mcse.initseq (initial sequence estimators) see Dai
and Jones (2017).

mcse.multi and mcse.initseq return a list with multiple components. cov
stores the estimate of ¥ obtained using the method chosen, vol returns the
volume to the pth root of the resulting confidence region, est stores the
estimate of g applied on the Markov chain and nsim stores the arguments
used to calculate 3. mcse.multi also returns size which indicates the size
of batches/truncation, method used, and whether a large sample volume
is returned. mcse.initseq also returns cov.adj, vol.adj, and whether an
adjusted estimator was used (adjust).

mcerror_bm$cov

##
##
##
##

[,1] [,2] [,3]
[1,] 2.54156743 -0.03432219 0.1910580
[2,] -0.03432219 7.21141694 0.8609699
[3,] 0.19105799 0.86096994 48.1650871

mcerror_bart$cov

[,1] [,2] [,3]
[1,] 2.46757319 -0.09722749 0.07579761
[2,] -0.09722749 7.80304805 -0.08045297
[3,] 0.07579761 -0.08045297 45.63237887

mcerror_tuk$cov

#it [,1] [,2] [,3]
[1,] 2.5776854 -0.2770822 0.3590341
[2,] -0.2770822 7.5494259 0.2492997
[3,] 0.3590341 0.2492997 48.3199332

mcerror_is$cov

#it [,1] [,2] [,3]
[1,] 2.5029696 -0.10902926 0.11007175
[2,] -0.1090293 8.18913933 0.02202062
[3,] 0.1100717 0.02202062 50.96199582

mcerror_isadj$cov.adj

[,1] [,2] [,3]
[1,] 2.58127094 -0.060426547 0.083477237
[2,] -0.06042655 8.242248961 -0.002410464
[3,] 0.08347724 -0.002410464 51.034334815

rbind (mcerror_bm$est, mcerror_bart$est, mcerror_tuk$est,
mcerror_is$est, mcerror_isadj$est)

#i# Y1 Y2 Y3
[1,] 2.225577 4.012947 10.00781
[2,] 2.225577 4.012947 10.00781
[3,] 2.225577 4.012947 10.00781
[4,] 2.225577 4.012947 10.00781
[5,] 2.225577 4.012947 10.00781

c(mcerror_bm$vol, mcerror_bart$vol, mcerror_tuk$vol,
mcerror_is$vol, mcerror_isadj$vol)

[1] 0.04450036 0.04409869 0.04456552 0.04538659 0.04538659

Note: the Monte Carlo estimates of y are not affected by the choice of
the method.

Note: the initial sequence estimators of 3 have larger volume than the
consistent estimators. This is expected since initial sequence estimators are
intentionally conservative.

Note: for consistent estimation, the batch means estimators are signifi-
cantly faster to calculate than the spectral variance estimators. The user is
advised to use the default method = ¢ ‘bm’’ for large input matrices.

Note: cov returns an estimate of 3 and not X /n.

If the diagonals of ¥ are 02, the function mcse and mcse . mat returns o;; /v/n.

mcse does it for one component and mcse.mat does it for all diagonals.
mcse(x = chain[,1], method = "bm", g = NULL)

$est

[1] 2.225577

##

$se

[1] 0.005041396

mcse.mat(x = chain, method = "bm", g = NULL)

#i# est se
Y1 2.225577 0.005041396
Y2 4.012947 0.008492006
Y3 10.007805 0.021946546

In order to estimate 1, ; and ¥4 as in (2), we use the R function g we had
defined before. Recall that g should be a function that takes vector inputs.

g

function(x)

{

return(sum(x~2))

}

<bytecode: 0x7fa63f437eb0>

mcerror_g_bm <- mcse.multi(x = chain, g = g)
mcerror_g_is <- mcse.initseq(x = chain, g = g)

mcerror_g_bm$cov

#it [,1]
[1,] 20258.01

Initial Sequence error ts larger than batch means, as expected.

mcerror_g_is$cov

#i# [,1]
[1,] 21293.28

Returned value ©s asymptotic variance.
So we calculate the standard error here.
sqrt (mcerror_g_bm$cov/N)

[,1]
[1,] 0.450089

sqrt (mcerror_g_is$cov/N)

[,1]
[1,] 0.4614465

4 Confidence Regions

Using the function confRegion in the package, the user can create joint con-
fidence regions for two parameters. The input for this function is the output
list from the mcse.multi or mcse.initseq function. The function uses the
attributes cov, est, and nsim from the output list. If the mcse.initseq is
input and adjust = TRUE had been used, then cov.adj is used instead of
cov. mcse.multi also uses the attribute size.

plot(confRegion(mcerror_bm, which = c(1,2), level = .90), type =

'1', asp = 1)

lines(confRegion(mcerror_bart, which = c(1,2), level = .90), col = "red")

4.00
|

2.21 2.22 2.23 2.24

e which should be a vector of size 2 that indicates the two components
for which the confidence ellipse is to be constructed.

e level is the confidence level of the confidence region. The default is
.95

NOTE: The argument confRegion calls on the function ellipse in package
ellipse to draw the ellipse.

NOTE: Since the confidence region is created for two parameters only, the
size of the ellipse is determined by setting p = 2 irrespective of the original
dimension of the problem.

To determine the effect of the confidence level, we draw two regions with
difference confidence levels. We use mcse.initseq this time.

plot (confRegion(mcerror_is, which = c(1,2), level = .95), type
lines(confRegion(mcerror_is, which = c(1,2), level = .90), col

10

'1', asp = 1)
llredll)

403
|

4.02
|

401
|

4.00
|

399
|

2.20 2.21 2.22 2.23 2.24 2.25

5 Effective Sample Size

Reporting p x p covariance matrix estimates is impractical and uninter-
pretable. The motivation of estimating Monte Carlo standard error is to
ensure that said error is small. This is essentially the idea behind estimat-
ing effective sample size and ensuring that the estimated effective sample
size is larger than a prespecified lower bound.

Before sampling the Markov chain, the user is advised to used the function
minESS to ascertain what is the minimum effective sample size needed for
stable analysis. See Vats et al. (2017a) for theoretical details.

minESS(p = 3, alpha = .05, eps = .05)
minESS

8123

minESS(p = 1, alpha = .05, eps = .05)

minESS
6146

e p is the dimension of the estimation problem.

11

e alpha is the confidence level

e eps is the tolerance level. Default is .05. Reasonable levels are any-
where from .01 to .05. The smaller the tolerance, the larger the min-
imum effective samples. eps represents a tolerance level relative to
the variability in the target distribution. It is akin to the idea of
margin-of-error.

minESS is independent of the Markov chain or process, and is only a function
of the p, a,, and €. The user should find minESS and then sample their process
until the required minimum samples are achieved.

Alternatively, we often don’t have to luxury of obtaining a lot of samples,
and reaching a minimum effective sample size os not possible. In such a
scneario, it is useful to know the € tolerance level the number of estimated
effective samples correspond to. So if we can only obtain 1000 effective
samples,

minESS(p = 3, alpha = .05, ess = 1000)

Ht Epsilon
0.1425016

minESS(p = 1, alpha = .05, ess = 1000)

Epsilon
0.123959

Thus, if you obtained a sample with estimates effective sample size equaling
1000 for estimating py and pip 4, then the precision level of your estimate is
€ = .143 and € = .124, respectively. multiESS and ess are two functions that
calculate the effective sample size of a correlated sample. ess calculations
are based on Gong and Flegal (2016) and is component-wise, and multiESS
utilizes the multivariate nature of the problem.

ess(chain)

Y1 Y2 Y3
79119.49 36626.45 11628.72

12

Since ess produces a different estimate for each component, conservative
practice dictates choosing the smallest of the values. multiESS returns one
estimate of the effective sample size based on the whole sample. The function
calls mcse.multi function to obtain a batch means estimate of 3. The user
can provide another estimate of ¥ using the covmat argument.

multiESS(chain)
[1] 32327.07

Using spectral variance estimators
multiESS(chain, covmat = mcerror_bart$cov)

[1] 32356.83

Using initial sequence estimators
Since this 1s a conservative estimator, ess will be smaller
multiESS(chain, covmat = mcerror_is$cov)

[1] 30544.9

Since the effective sample size is less than the minimum effective samples, we
should simulate more. Looking at the ratio of the Monte Carlo samples size
of 10* and multiESS, we might need around 28,000 Monte Carlo samples.

set.seed(100)
chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 28000)

larger than 8123
multiESS(chain)

[1] 8832.498

larger than 8123
multiESS(chain, covmat = mcerror_bart$cov)

[1] 9085.629

larger than 8123
multiESS(chain, covmat

mcerror_is$cov)

[1] 8576.849

13

So no matter which estimator we choose for the Monte Carlo standard error,
28000 Monte Carlo samples are sufficient to have € = .05 relative tolerance.
NOTE: Ideally, we do not want to get more samples using the last iteration
of the previous Markov chain. However, mAr.sim does not allow user spec-
ified starting values, so to demonstrate the use of minESS and multiESS,
we get a new sample altogether. When making R packages that simulate a
Markov chain, it is often very useful to allow user specific starting values for
this reason.

6 Graphical Diagnostics

The function estvssamp plots the Monte Carlo estimates versus the sample
size for a component of the MCMC output. This plot indicates whether the
Monte Carlo estimate has stabilized.

estvssamp(chain[,1])

Estimates vs Sample Size

MC Estimate
2.18 2.20 2.22
1 1 1

2.16
1

2.14
1

212
|

T T T T T T
0 5000 10000 15000 20000 25000

Sample Size

Additionally, if p is not too small, due to the central limit theorem in (1)
and an estimate of 3 using the mcse.multi function, a QQ plot of the stan-
dardized estimates gives an idea of whether asymptopia has been achieved.
We generate a new Markov chain with p = 50.

p <- 50
A <- diag(seq(.1, .9, length = p))

14

C <- diag(rep(2, p))

set.seed(100)
chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 10000)

For this new Markov chain, we find an estimate of ¥ to use for the qqTest
function.

mcerror_bm <- mcse.multi(chain, method = "bm")
mcerror_isadj <- mcse.initseq(chain, adjust = TRUE)
qqTest (mcerror_bm)

Normal Q-Q Plot

Sample Quantiles

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

qqTest (mcerror_isadj)

15

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Thus, we see here that the chain has not quite reached asymptopia.
References

Dai, N. and Jones, G. L. (2017). Multivariate initial sequence estimators in
Markov chain Monte Carlo. Journal of Multivariate Analysis (to appear).

Flegal, J. M., Jones, G. L., et al. (2010). Batch means and spectral vari-
ance estimators in Markov chain Monte Carlo. The Annals of Statistics,
38:1034-1070.

Gong, L. and Flegal, J. M. (2016). A practical sequential stopping rule for
high-dimensional Markov chain Monte Carlo. Journal of Computational
and Graphical Statistics, 25(3):684-700.

Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006). Fixed-width
output analysis for Markov chain Monte Carlo. Journal of the American
Statistical Association, 101:1537-1547.

Vats, D., Flegal, J. M., and Jones, G. L. (2017a). Multivariate output
analysis for Markov chain Monte Carlo. arXiv preprint arXiv:1512.07713.

Vats, D., Flegal, J. M., and Jones, G. L. (2017b). Strong consistency of
multivariate spectral variance estimators in Markov chain Monte Carlo.
Bernoulli (to appear).

16

