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Originally, the ‘mev’ package was introduced to implement the exact unconditional sampling
algorithms in Dombry et al. (2016) to simulate simple max-stable random vectors. The implemen-
tation will work efficiently for moderate dimensions and does not currently take improvements
for large spatial domains.

1 Functions and use

There are two main functions, rmev and rmevspec. rmev samples from simple max-stable pro-
cesses, meaning it will return an n× d matrix of samples, where each of the column has a sample
from a unit Frechet distribution. In constrast, rmevspec returns sample on the unit simplex from
the spectral (or angular) measure. One could use this to test estimation based on spectral densities,
or to construct samples from Pareto processes.

The syntax is

library(mev)

#Sample of size 1000 from a 5-dimensional logistic model

x <- rmev(n=1000, d=5, param=0.5, model="log")

#Marginal parameters are all standard Frechet, meaning GEV(1,1,1)

apply(x, 2, function(col){ismev::gev.fit(col, show=FALSE)$mle})

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.003 0.9724 0.9780 0.9995 1.0216

## [2,] 0.988 1.0059 0.9586 1.0107 1.0145

## [3,] 1.010 1.0538 1.0143 1.0171 0.9739

#Sample from the corresponding spectral density

w <- rmevspec(n=1000, d=5, param=0.5, model="log")

#All rows sum to 1 by construction

head(rowSums(w))

## [1] 1 1 1 1 1 1
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#The marginal mean is 1/d

round(colMeans(w),2)

## [1] 0.20 0.20 0.21 0.20 0.20

2 Description of the models implemented

The different models implemented are described in Dombry et al. (2016), but some other models
can be found and are described here.

1. logistic distribution (log) The logistic model of Gumbel (1960) (the Gumbel Archimedean
copula)

P (X ≤ x) = exp

−( n
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1
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)α
) 1

α


for α > 1. By default, rmev will transform an argument in (0, 1) without warning, to conform
with the implementation. The spectral measure density is

hW (w) =
1
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Γ(d− α)
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, w ∈ Sd

2. asymmetric logistic distribution (alog) This model proposed by Tawn (1990) uses the parametriza-
tion of the evd package, merely replacing the algorithm for the generation of logistic variates.
The distribution function is

P (X ≤ x) = exp
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xi

)αb
) 1
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
while the spectral density corresponds to

hW (w) =
1
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j=1 (jαb − 1)
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The parameters θi,b must be provided in a list and represents the asymmetry parameter. In
the d-variate case, where B is the power set of the collection {1, . . . , d}, without the empty
set. This corresponds to generating samples Zb from a logistic distribution of dimension |b|
(or Fréchet variates if |b| = 1) with parameter αb (possibly recycled). Then, each marginal
value corresponds to the maximum of the weighted corresponding entry. That is, Xi =
maxb∈B θi,bZi,b for all i = 1, . . . , d. The max-mixture is valid provided that ∑b∈B θi,b = 1 for
i = 1, . . . , d. As such, empirical estimates of the spectral measure will almost surely place
mass on the inside of the simplex rather than on subfaces.
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3. negative logistic distribution (neglog) The distribution function of the min-stable distribu-
tion due to Galambos (1975) is

P (X ≤ x) = exp

− ∑
b∈B

(−1)|b|
(

∑
i∈b

xi
−α

) 1
α


for αb ≤ 0 and corresponds to the model in Dombry et al. (2016).

hW (w) =
1
d ∑

b∈B:c⊂b
(−1)|b|
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)−(α+1) (
∑
i∈c

w−α
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4. asymmetric negative logistic distribution (aneglog) The construction of this distribution is
exactly the same as for the asymmetric logistic distribution, with distribution function

P (X ≤ x) = exp

− ∑
b∈B

∑
c∈b

(−1)|c|
(

∑
i∈c

(
xi

θi,b

)αb
)− 1

αb

 .

In particular, it does not correspond to the “negative logistic distribution” given in Joe (1990),
which is not a valid distribution function according to Stephenson.

5. multilogistic distribution (bilog) This multivariate extension of the logistic, proposed by
Boldi (2009), places mass on the interior of the simplex. Let W ∈ Sd be the solution of

Wj

Wd
=

CjU
−αj
j

CdU−αd
d

, j = 1, . . . , d

where Cj = Γ(d− αj)/Γ(1− αj) for j = 1, . . . , d and U ∈ Sd follows a d-mixture of Dirichlet
with the jth component being D(1− δjαj), so that the mixture has density function

hU(u) =
1
d

d

∑
j=1

Γ(d− αj)

Γ(1− αj)
u
−αj
j

for 0 < αj < 1, j = 1, . . . , d. The spectral density is given by

hW (w) =
1
d
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for αj ∈ (0, 1)

6. Coles and Tawn Dirichlet distribution (ct) The Dirichlet model of Coles & Tawn (1991)

hW (w) =
1
d

Γ
(

1 + ∑d
j=1 αj

)
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j=1 αjwj
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for αj > 0.
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7. scaled extremal Dirichlet (dir) The angular density of the scaled extremal Dirichlet model
with parameters ρ > 0 and α ∈ Rd

+ is given, for all w ∈ Sd, by

hW (w) =
Γ(ᾱ + ρ)

dρd−1 ∏d
i=1 Γ(αi)

〈
{c(α, ρ)}1/ρ, w1/ρ

〉−ρ−ᾱ
d

∏
i=1
{c(αi, ρ)}αi/ρwαi/ρ−1

i .

where c(α, ρ) is the d-vector with entries Γ(αi + ρ)/Γ(αi) for i = 1, . . . , d.

8. scaled negative extremal Dirichlet (negdir) The angular density of the scaled negative ex-
tremal Dirichlet model with parameters 0 < ρ < min(α1, . . . , αd) and α is given, for all
w ∈ Rd

+, by

hW (w) =
Γ(ᾱ− ρ)

dρd−1 ∏d
i=1 Γ(αi)

〈
{c(α,−ρ)}−1/ρ, w−1/ρ

〉ρ−ᾱ
d

∏
i=1
{c(αi,−ρ)}−αi/ρw−αi/ρ−1

i .

9. Hüsler–Reiss (hr), due to Hüsler & Reiss (1989). It is a special case of the Brown–Resnick
process. While Engelke et al. (2015) state that Hüsler–Reiss variates can be sampled fol-
lowing the same scheme, the spatial analog is conditioned on a particular site (s0), which
complicates the comparisons with the other methods.
Let I−j = {1, . . . , d} \ {j} and λ2

ij ≥ 0 be entries of a strictly conditionally negative definite

matrice Λ, for which λ2
ij = λ2

ji. Then, following Nikoloulopoulos et al. (2009) (Remark 2.5)
and Huser & Davison (2013), we can write the distribution function as

P (X ≤ x) = exp

[
−

d

∑
j=1

1
xj

Φd−1,Σ−j

(
λij −

1
2λij

log
( xj

xi

)
, i ∈ I−j

)]
.

where the partial correlation matrix Σ−j has elements

$i,k;j =
λ2

ij + λ2
kj − λ2

ik

2λijλkj

and λii = 0 for all i ∈ I−j so that the diagonal entries $i,i;j = 1.1

The evd package implementation has a bivariate implementation of the Hüsler–Reiss distri-
bution with dependence parameter r, with rik = 1/λik or 2/r =

√
2γ(h) for h = ‖si− si‖ for

the Brown–Resnick model. In this setting, it is particularly easy since the only requirement
is non-negativity of the parameter. For inference in dimension d > 2, one needs to impose
the constraint Λ = {λ2

ij}d
i,j=1 ∈ D (cf. Engelke et al. (2015), p.3), where

D =

{
A ∈ [0, ∞)d×d : x>Ax < 0, ∀ x ∈ Rd \ {0}

with
d

∑
i=1

xi = 0, aij = aji, aii = 0 ∀ i, j ∈ {1, . . . , d}
}

.

1Engelke et al. (2015) uses the covariance matrix with entries are ς = 2(λ2
ij + λ2

kj − λ2
ik), so the resulting expression is

evaluated at 2λ2
.j − log

( xj
x−j

)
instead. We recover the same expression by standardizing, since this amounts to division by

the standard deviations 2λ.j
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An avenue to automatically satisfy these requirements is to optimize over a symmetric pos-
itive definite matrix parameter Σ = L>L, where L is an upper triangular matrix whose
diagonal element are on the log-scale to ensure uniqueness of the Cholesky factorization; see
?. By taking

Λ(Σ) =

(
0 diag(Σ)>

diag(Σ) 1 diag(Σ)> + diag(Σ)1> − 2Σ

)
one can perform unconstrained optimization for the non-zero elements of L which are in
one-to-one correspondence with those of Λ.
It easily follows that generating Z from a d− 1 dimensional log-Gaussian distribution with
covariance Cov (Zi, Zk) = 2(λ2

ij + λ2
kj − λ2

ik) for i, k ∈ I−j with mean vector −2λ2
•j gives

the finite dimensional analog of the Brown–Resnick process in the mixture representation of
Dombry et al. (2016).
The rmev function checks conditional negative definiteness of the matrix. The easiest way
to do so negative definiteness of Λ with real entries is to form Λ̃ = PΛP>, where P is an
d × d matrix with ones on the diagonal, −1 on the (i, i + 1) entries for i = 1, . . . d − 1 and
zeros elsewhere. If the matrix Λ ∈ D, then the eigenvalues of the leading (d− 1)× (d− 1)
submatrix of Λ̃ will all be negative.

10. Brown–Resnick (br) The Brown–Resnick process is the extension of the Hüsler–Reiss distri-
bution, and is a max-stable process associated with the log-Gaussian distribution.
It is often in the spatial setting conditioned on a location (typically the origin). Users can
provide a variogram function or the resulting covariance function. See Engelke et al. (2015)
or Dombry et al. (2016) for more information.

11. Extremal Student (extstud) of Nikoloulopoulos et al. (2009), eq. 2.8, with unit Fréchet mar-
gins is

P (X ≤ x) = exp

− d

∑
j=1

1
xj

Td−1,ν+1,R−j

√ ν + 1
1− ρ2

ij

( xi
xj

)1/ν

− ρij

 , i ∈ I−j

 ,

where Td−1 is the distribution function of the d− 1 dimensional Student-t distribution and
the partial correlation matrix R−j has diagonal entry

ri,i;j = 1, ri,k;j =
ρik − ρijρkj√

1− ρ2
ij

√
1− ρ2

kj

for i 6= k, i, k ∈ I−j.
The user must provide a valid correlation matrix (the function checks for diagonal elements),
which can be obtained from a variogram.

12. Dirichlet mixture (dirmix) proposed by Boldi & Davison (2007), see Dombry et al. (2016) for
details on the mixture. The spectral density of the model is

hW (w) =
m

∑
k=1

πk
Γ(α1k + · · ·+ αdk)

∏d
i=1 Γ(αik)

(
1−

d−1

∑
i=1

wi

)αdk−1 d−1

∏
i=1

wαik−1
i
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The argument param is thus a d × m matrix of coefficients, while the argument for the m-
vector weights gives the relative contribution of each Dirichlet mixture component.

13. Smith model (smith), from the unpublished report of Smith (1990). It corresponds to a
moving maximum process on a domain X. The de Haan representation of the process is

Z(x) = max
i∈N

ζih(x− ηi), ηi ∈ X

where {ζi, ηi}i∈N is a Poisson point process on R+ ×X with intensity measure ζ−2dζdη and
h is the density of the multivariate Gaussian distribution. Other h could be used in principle,
but are not implemented.
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