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This document describes the statistical models used in MORSE to analyze survival and reproduction
data, and as such serves as a mathematical specification of the package. For a more practical introduction,
please consult the “Tutorial” vignette; for information on the structure and contents of the library, please
consult the reference manual.

Model parameters are estimated using Bayesian inference, where posterior distributions are computed
from the likelihood of observed data and prior distributions on the parameters. These priors are specified
after each model description.

1 Survival bioassays

In a survival bioassay, subjects are exposed to a controlled dose of a contaminant over a given period of
time and the number of surviving individuals is measured at certain time points during exposition. In most
standard bioassays, the dose is held constant throughout the whole experiment, which we will assume here.
An experiment is generally replicated several times and also repeated for various levels of the contaminant.

In so-called final time bioassays, the mortality is measured only at the end of the experiment. The chosen
time point is called target time. Let us see how this particular case is handled in MORSE.

1.1 Analysis of final time survival bioassays

A dataset from a final time survival bioassay is a collection D = {(ci, niniti , ni)}i of experiments, where ci
is the tested concentration, niniti the initial number of individuals and ni the number of individuals at the
target time. Triplets such that ci = 0 correspond to control experiments.

Modelling In the particular case of endpoint assays, the model used in MORSE is defined as follows.
Let t be the target time in days. We suppose the mean survival rate after t days is given by a function f
of the contaminant level c. We also suppose that the death of two individuals are two independent events.
Hence, given an initial number niniti of individuals in the bioassay, we obtain that the number Ni of surviving
individuals at time t follows a binomial distribution:

Ni ∼ B(niniti , f(ci))

Note that this model neglects inter-replicate variations, as a given concentration of pollutant implies a fixed
value of the survival rate. There may be various possibilities for f . In MORSE we assume:

f(c) =
d

1 + ( ce )b

where b, e and d are (positive) parameters. In particular d corresponds to the survival rate in absence of
pollutant and e corresponds to the LC50. The parameter b is related to the effect intensity of the contaminant.
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Inference Posterior distributions for parameters b, d and e are estimated using JAGS with the following
priors:

� we assume the range of tested concentrations in an experiment is chosen to contain the LC50 with high
probability. More formally, we choose:

log10 e ∼ N (
log10(mini ci) + log10(maxi ci)

2
,

log10(maxi ci)− log10(mini ci)

4
)

which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentration.

� we choose a quasi non-informative prior distribution for the shape parameter b:

log10 b ∼ U(−2, 2)

The prior on d is chosen as follows: if we observe no mortality in control experiments then we set d = 1,
otherwise we assume a uniform prior for d between 0 and 1.

1.2 Toxico-kinetic toxico-dynamic modeling

For datasets featuring time series measurements, more complete models can be used to estimate the effect of a
contaminant on survival. We assume the bioassay consists in exposing an initial number n0

i of individuals to a
constant dose ci of contaminant, and following the number nki of survivors at time tk (with t0 < t1 < · · · < tm
and t0 = 0), providing a collection D = (ci, tk, n

k
i )i,k of experiments. In MORSE, we implement a toxico-

kinetic toxico-dynamic (TKTD) model variant known as the reduced stochastic death model [3], which we
describe now.

Modelling The number of survivors at time tk given the number of survivors at time tk−1 is assumed to
follow a binomial distribution:

Nk
i ∼ B(nk−1

i , fi(tk−1, tk))

where f is the conditional probability of survival at time tk given survival at time tk−1. Denoting Si(t) the
probability of survival at time t, we have:

fi(tk−1, tk) =
Si(tk)

Si(tk−1)

Si can be calculated by integrating the instantaneous mortality rate hi:

Si(t) =

∫ t

0

−hi(u)du (1)

In the model, the function hi is expressed using the internal concentration of contaminant (that is, the
concentration inside an individual) CINT

i (t), more precisely:

hi(t) = ks max(CINT

i (t)−NEC, 0) +m0

where:

� ks is called killing rate and expressed in concentration−1.time−1,
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� NEC is the so-called no effect concentration and represents a concentration threshold under which the
contaminant has no effect on individuals,

� m0 is the background mortality (mortality in absence of contaminant), expressed in time−1.

The internal concentration is assumed to be driven by the external concentration, following:

dCINT
i

dt
(t) = kd(ci − CINT

i (t))

which we can integrate to obtain:
CINT

i (t) = ci(1− e−kdt) (2)

assuming CINT
i (0) = 0. We call the parameter kd of Eq. 2 the “dominant rate” (expressed in time−1). It

represents the speed at which the internal concentration in contaminant converges to the external concentra-
tion. The model could be equivalently written using an internal damage instead of an internal concentration
as a dose metric [2]. With the data we assume is available, it is not possible to distinguish dynamical effects
due to toxico-kinetic elimination and damage recovery.

In the case ci < NEC, the individuals are never affected by the contaminant:

Si(t) = exp(−m0t) (3)

When ci > NEC, it takes time tNEC
i before the internal concentration reaches NEC, where:

tNEC

i = − 1

kd
log(1− NEC

ci
).

Before that happens, Eq. 3 applies, while for t > tNEC
i , integrating Eq. 1 results in:

Si(t) = exp(−m0t− ks(ci −NEC)(t− tNEC

i )− ksci
kd

(e−kdt − e−kdt
NEC
i ))

In brief, given values for our four parameters m0, ks, kd and NEC, we can simulate trajectories by using
Si to compute conditional survival probabilities. In MORSE those parameters are estimated using Bayesian
inference. The next paragraph describes our choice of priors.

Inference Posterior distributions for m0, ks, kd and NEC are computed with JAGS. We set prior dis-
tributions on those parameters based on the actual experimental design used in a bioassay. For instance,
we assume the NEC is close to the range of tested concentrations. For each parameter θ, we derive in a
similar manner a minimum (θmin) and a maximum (θmax) value and state that the prior on θ is a log-normal
distribution. More precisely, we choose:

log10 θ ∼ N (
log10 θ

min + log10 θ
max

2
,

log10 θ
max − log10 θ

min

4
)

With this choice, θmin and θmax correspond to the 2.5 and 97.5 percentiles of the prior distribution on θ. For
each of our parameters, this gives:

� NECmin = mini,ci 6=0 ci and NECmax = maxi ci, which amounts to say that the NEC is most probably
contained in the range of experimentally tested concentrations

� for the mortality rate m0, we assume a maximum value corresponding to situations where half the
indivuals are lost at the first observation time in the control (time t1), that is:

e−m
max
0 t1 = 0.5⇔ mmax

0 = − 1

t1
log 0.5
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To derive a minimum value for m0, we set the maximal survival probability at the end of the bioassay
in control condition to 0.999, which corresponds to saying that the average lifetime of the considered
species is at most a thousand times longer than the duration of the experiment. This gives:

e−m
min
0 tm = 0.999⇔ mmin

0 = − 1

tm
log 0.999

� kd is the parameter describing the speed at which the internal concentration of contaminant equilibrates
with the external concentration. We suppose its value is such that the internal concentration can
at most reach 99.9% of the external concentration within the first observation point, implying the
maximum value for kd is:

1− e−k
max
d t1 = 0.999⇔ kmax

d = − 1

t1
log 0.001

For the minimum value, we assume the internal concentration should at least have risen to 0.1% of the
external concentration at the end of the experiment, which gives:

1− e−k
min
d tm = 0.001⇔ kmin

d = − 1

tm
log 0.999

� ks is the parameter relating the internal concentration of contaminant to the instantaneous mortality.
To fix a maximum value, we state that between the closest two tested concentrations, the survival
probability at the first observation point should not be divided by more than one thousand, assuming
(infinitely) fast equilibration of internal and external concentrations. This last assumption means we
take the limit kd → +∞ and approximate Si(t) with exp(−(m0 + ks(ci−NEC))t). Denoting ∆min the
minimum difference between two tested concentrations, we obtain:

e−k
max
s ∆mint1 = 0.001⇔ kmax

s = − 1

∆mint1
log 0.001

Analogously we set a minimum value for ks saying that the survival probability at the last observation
time for the maximum concentration should not be higher than 99.9% of what it is for the minimal
tested concentration. For this we assume again kd → +∞. Denoting ∆max the maximum difference
between two tested concentrations, this leads to:

e−k
min
s ∆maxtm = 0.001⇔ kmin

s = − 1

∆maxtm
log 0.999

2 Reproduction bioassays

In a reproduction bioassay, we observe the number of offspring produced by a population of adult indi-
viduals subjected to a certain dose of a contaminant over a given period of time. The offspring (young
individuals, clutches or eggs) are regularly counted and removed from the medium at each observation, so
that the reproducing population cannot increase. It can decrease however, if some individuals die during the
experiment. The same procedure is usually repeated with various concentrations of contaminant, in order
to establish a quantitative relationship between the reproduction rate and the concentration of contaminant
in the medium.

As mentionned already, it is often the case that part of the individuals of an bioassay die during the
observation period. In previous approaches, it was proposed to consider the cumulated number of reproduc-
tion outputs without accounting for mortality [4, 5], or to exclude replicates where mortality occurred [6].
However, individuals may have reproduced before dying and thus contributed to the observed response. In
addition, individuals dying the first are the most sensitive, so the information on reproduction of these pre-
maturely dead individuals is valuable and ignoring it is likely to bias the results in a non-conservative way.
This is particularly critical at high concentrations, when mortality may be very high.
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In a bioassay, mortality is usually regularly recorded, i.e. at each timepoint when reproduction outputs
are counted. Using these data, we can approximately estimate for each individual the period it has stayed
alive (which we assume coincides with the period it may reproduce). As commonly done in epidemiology
for incidence rate calculations, we can then calculate, for one replicate, the total sum of the periods of
observation of each individual before its death (see next paragraph). This sum can be expressed as a number
of individual-days. Hence, reproduction can be evaluated through the number of outputs per individual-day.

In the following, we denote Mijk the observed number of surviving individuals for concentration ci,
replicate j and time tk.

2.1 Estimation of the effective observation time

We define the effective observation time as the sum for all individuals of the time they spent alive in the
experiment. It is counted in individual-days and will be denoted NIDij for concentration ci and replicate
j. As mentionned earlier, mortality is observed at particular time points only, so the real life time of an
individual is unknown and in practice we use the following simple estimation: if an individual is alive at tk
but dead at tk+1, its real life time is approximated as tk+1+tk

2 .
With this assumption, the effective observation time for concentration ci and replicate j is then given by:

NIDij =
∑
k

Mij(k+1)(tk+1 − tk) + (Mijk −Mij(k+1))(
tk+1 + tk

2
− tk)

2.2 Target time analysis

In this paragraph, we describe our so-called “target time analysis”, where we model the cumulated number
of offspring up to a target time as a function of pollutant concentration and effective observation time in
this period (cumulated life times of all individuals in the experiment, as described above). A more detailed
presentation can be found in [1].

We keep the convention that the index i is used for concentration levels and j for replicates. The data
will therefore correspond to a set {(nidij , nij)}i of pairs, where nidij denotes the effective observation time
and nij the number of reproduction output. These observations are supposed to be drawn independently
from a distribution that is a function of the level of contaminant ci.

Modelling We assume here that the effect of the considered contaminant on the reproduction rate1 does
not depend on the exposure time, but only on the concentration of the contaminant. More precisely, the
reproduction rate in an experiment with a concentration ci of contaminant is modelled by a three-parameter
log-logistic model, that writes as follows:

f(c; θ) =
d

1 + ( ce )b
with θ = (e, b, d)

Here d corresponds to the reproduction rate in absence of contaminant (control condition), and e to the
value of the EC50, that is the concentration dividing the average number of offspring by two with respect to
the control condition. Now the number of reproduction outputs Nij for concentration ci in replicate j can
be modelled using a Poisson distribution:

Nij ∼ Poisson(f(ci; θ)×NIDij)

This model is later referred to as “Poisson model”. If there happens to be a non-negligible variability of
the reproduction rate between replicates for a some fixed concentration, we propose a second model, named
“gamma-Poisson model”, stating that:

Nij ∼ Poisson(Fij ×NIDij)

1that is, the number of reproduction outputs during the experiment per individual-day
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where the reproduction rate Fij for at ci in replicate j is a random variable following a gamma distribution.
Introducing a dispersion parameter ω, we assume that:

Fij ∼ gamma(
f(ci; θ)

ω
,

1

ω
)

Note that a gamma distribution of parameters α and β has mean α
β and variance α

β2 , that is here f(ci; θ)

and ωf(ci; θ) respectively. Hence ω can be considered as an overdispersion parameter (the greater its value,
the greater the inter-replicate variability)

Inference Posterior distributions for parameters b, d and e are estimated using JAGS with the following
priors:

� we assume the range of tested concentrations in an experiment is chosen to contain the EC50 with high
probability. More formally, we choose:

log10 e ∼ N (
log10(mini ci) + log10(maxi ci)

2
,

log10(maxi ci)− log10(mini ci)

4
)

which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentration.

� we choose a quasi non-informative prior distribution for the shape parameter b:

log10 b ∼ U(−2, 2)

� as d corresponds to the reproduction rate without contaminant, we set a normal prior N (µd, σd) using
the data:

µd =
1

r0

∑
j

n0j

nid0j

σd =

√∑
j(

n0j

nid0j
− µd)2

r0(r0 − 1)

where r0 is the number of replicates in the control condition. Note that since they are used to estimate
the prior distribution, the data from the control condition are not used in the fitting phase.

� we choose a quasi non-informative prior distribution for the ω parameter of the gamma-Poisson model:

log10(ω) ∼ U(−4, 4)

For a given dataset, the procedure implemented in MORSE will fit both models (Poisson and gamma-
Poisson), and use an information criterion known as Deviance Information Criterion (DIC) to choose the
most appropriate. In situations where overdispersion (that is inter-replicate variability) is negligible, using
the Poisson model will provide more reliable estimates. That is why a Poisson model is preferred unless the
gamma-Poisson model has a sufficiently lower DIC (in practice we require a difference of 10).
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