
Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel i

Guide to the pbdBASE Package

Version 2.0

Drew Schmidt1, Wei-Chen Chen2, George Ostrouchov1,2,
Pragneshkumar Patel1

1Remote Data Analysis and Visualization Center
University of Tennessee,

Knoxville, TN, USA

2Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

Contents

Acknowledgement ii

Abstract 1

1. Introduction 1

1.1. Installation . 1

1.2. Indented Audience . 1

1.3. Terminology . 2

2. Using pbdBASE 2

2.1. BLACS Communicators . 2

2.1.1. Construction . 2

2.1.2. Destruction . 3

2.2. Notes for Developers . 3

References 5

© 2012 pbdR Core Team.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This publication was typeset using LATEX.

ii Quick Guide for pbdBASE

Acknowledgement

Ostrouchov, Schmidt, and Patel were supported in part by the project “NICS Remote Data
Analysis and Visualization Center” funded by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. Chen and Ostrouchov were supported in part by the project “Visual Data Exploration
and Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Con-
tract No. DE-AC05-00OR22725.

This work used resources of National Institute for Computational Sciences at the University
of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. This work also used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725. This work used resources
of the Newton HPC Program at the University of Tennessee, Knoxville.

We thank our colleague, Ed D’Azevedo from the Computational Mathematics Group, Com-
puter Science and Mathematics Division, Oak Ridge National Laboratory (ORNL), for his
discussions and illuminating advice using ScaLAPACK and distributed matrix computation.

We also thank Brian D. Ripley, Kurt Hornik, Uwe Ligges, and Simon Urbanek from the R
Core Team for discussing package release issues and helping us solve portability problems on
different platforms.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 1

Abstract

With the size of data ever growing, the use of multiple processors in a single analysis
becomes more and more a necessity. The Programming Big Data in R (pbdR) project
attempts to address the R language’s current shortcomings in parallel distributed compu-
tations. The pbdBASE package for R provides a set of BLACS, PBLAS, and ScaLAPACK
wrappers, as well as numerous new functionality in the block-cyclic matrix paradigm. In
addition to performance improvements through parallelism, use of this system with more
than one processor allows the user to break R’s local memory barrier, namely the require-
ment that a vector be indexed by a 32-bit integer, by only storing subsets of the vector
on each processor.

1. Introduction

The Programming with Big Data in R˜(Ostrouchov et˜al. 2012), abbreviated pbdR or just
pbd, is a project which seeks to elevate the R language to supercomputers. This package, pb-
dBASE˜(Schmidt et˜al. 2012a), contains a set of wrappers of the high performance libraries
BLACS, PBLAS, and ScaLAPACK˜(Blackford et˜al. 1997), and also a host of new subrou-
tines for performing distributed matrix computations in R. The package is a dependency of
pbdDMAT˜(Schmidt et˜al. 2012b), which is meant to greatly simplify the pbdBASE system
into something that intimately resembles the R language. Since these two packages ultimately
rely on the ScaLAPACK library, the data type used with each is the block-cyclic distributed
matrix. See the pbdDMAT vignette for more details.

Updates and bug releases for this and other pbd projects may, especially while in infancy,
be much more frequent than CRAN releases. So for up to date packages, as well as evolving
information about the pbd project, see the pbdR project’s github http://code.r-pbd.org

or our website http://r-pbd.org/.

1.1. Installation

The pbdBASE package is available from the CRAN at http://cran.r-project.org, and
can be installed via a simple

Installing pbdBASE� �
install.packages("pbdBASE")� �
This assumes only that you have MPI installed and properly configured on your system. If
the user can successfully install the package’s two principal dependencies, pbdMPI˜(Chen
et˜al. 2012a) and pbdSLAP˜(Chen et˜al. 2012c) (each available from the CRAN), then the
installation for pbdBASE should go smoothly. If you experience difficulty installing either
these packages, you should see their documentation.

1.2. Intended Audience

The pbdBASE package is a dependency of pbdDMAT, and so anyone who wishes to use the
latter package must first install pbdBASE. However, much of the direct use of pbdBASE
is intended only for extremely advanced users and developers. A few exceptions are the

http://cran.r-project.org/
http://code.r-pbd.org
http://r-pbd.org/
http://cran.r-project.org

2 Quick Guide for pbdBASE

init.grid() and finalize() functions, which will be outlined in the sections to follow. The
overwhelming majority of the remaining functions are either internal or for people deeply
familiar with ScaLAPACK.

1.3. Terminology

Before beginning, we will make frequent use of concepts from the Single Program/Multiple
Data (SPMD) paradigm. If you are entirely unfamiliar with this approach to parallelism, or
if you are unfamiliar with the pbdMPI package, then you are strongly encouraged to read
the vignette˜(Chen et˜al. 2012b) contained in the pbdMPI package, as well as examine and
digest its many examples in order to better understand what follows.

A concise explanation of SPMD is that it is an approach to parallel, distributed program-
ming in which one program is written, and each processor runs that same program, though
that program locally will often be interacting with different data. This, in contrast to the
manager/worker paradigm where one processor, the manager, is in charge of its workers, each
of whom swear fealty to the manager. So in SPMD, each processor believes itself to be the
manager, the one in charge. As a colleague, Dr. Russell Zaretzki put it, “it’s like academia.”

2. Using pbdBASE

2.1. BLACS Communicators

Briefly, distributed matrix computations using ScaLAPACK require specialized MPI com-
municators, via the BLACS library. As with any MPI communicator, you must initialize it
before getting started with communications, and you must terminate it when you are finished
with communications. For most users, this will amount to calling

� �
library(pbdBASE , quiet = TRUE)

init.grid() # initialize

...

finalize () # terminate� �
This special communicator may be used with pbdMPI communicator(s) without causing
problems, and by default one finalize() call will terminate all communicators, whether
they be from pbdMPI or pbdBASE (see the pbdBASE reference manual for more details and
options).

Construction

BLACS communicators are not identical to pbdMPI communicators. Indeed, while a pb-
dMPI communicator is a one-dimensional array of processors, BLACS communicators are
two-dimensional (row-major) grids. These values are simply referred to as the number of
processor rows and the number of processor columns, as a communicator really is thought of

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 3

as a matrix of processors. When a grid is initialized with init.grid() and no arguments are
passed, then three communicators are created. These grids are referenced by their “integer
context” value, or ICTXT. These grids are numbered 0, 1, and 2. Context 0 tries to be the
“best possible” context (see (Blackford et˜al. 1997)). Here we make 2 choices:

1. Grids are always as close to square as possible.

2. In the event a grid can not be made to be square, the larger value is used for the number
of processor rows.

So for example, if we have 4 processors, then by default this would create a 2 × 2 grid for
context 0. However, if we have 6 processors, then by default this will create a 3 × 2 grid of
processors.

On the other hand, context 1 is always a 1×n grid, where n is the total number of processors.
Likewise, context 2 is always a n × 1 grid of processors. These can be extremely valuable,
especially for performing data movement operations.

The function init.grid() does a great deal of (useful) hand-holding, so the much more ad-
vanced user who is familiar with BLACS may be more interested in the function blacs_gridinit(),
which does not reserve contexts 0, 1, or 2. However, many pbdDMAT functions make as-
sumptions about the existence and shapes of contexts 0, 1, and 2 (as described above), so
this functionality is not supported when using that package.

Destruction

The user can halt all communicators — both BLACS communicators and, optionally, those
created by pbdMPI (or others) — by calling finalize(). To destroy just a single BLACS
context (for example, one used to read in data on a subset of processors), then the user should
use gridexit(). See the pbdBASE reference manual for full details.

2.2. Notes for Developers

The pbdBASE package also has several useful routines for package developers who need to
deal with distributed matrices (such as pbdDMAT’s ddmatrix object). Chief among these is
the numroc() function. Here, numroc stands for number of rows or columns. This routine is
used for determining local storage dimensions. If you need to construct a distributed matrix
and know its (global) dimension, blocking factor, and BLACS context, then you can determine
the local problem size by making the call:

� �
numroc(dim=dim , bldim=bldim , ICTXT=ICTXT)� �
This will return a numeric pair of values, with the first being the number of rows of the local
matrix, and the second being the number of columns in the local matrix. No communication
is performed with this call. However, it is possible that the above can return seemingly non-
sensical values. For example, if a processor owns no piece of the global matrix, then the local
dimension information returned from numroc() could be less than 1 in some dimension (rows,
columns, or both). By default, this should not happen because of an automatic correction,

4 Quick Guide for pbdBASE

with the smallest return possible being 1. To allow for the aforementioned possibility, pass
the additional argument fixme=FALSE.

We always make the convention that every processor owns something, even if one does not
actually own any portion of the global matrix. The default in this even is a 1 row, 1 column
matrix consisting of the single entry 0.0. This convention is to prevent problems when passing
off data to compiled code (C and Fortran), and care should be taken to preserve this. As such,
the reader may wish to exclusively use numroc() for its intended purpose (with correction),
but may still need to know about the case when the local storage is “in name only.” For this,
use the ownany() routine, which answers the question “does the calling processor own any
of the global matrix?” with a TRUE (“yes”) or FALSE (“no”). The call is virtually identical to
numroc():

� �
ownany(dim=dim , bldim=bldim , ICTXT=ICTXT)� �
See the pbdBASE reference manual for full details.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 5

References

Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997). ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-
397-8 (paperback). URL http://netlib.org/scalapack/slug/scalapack_slug.html/.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012a). “pbdMPI: Programming with
Big Data – Interface to MPI.” R Package, URL http://cran.r-project.org/package=

pbdMPI.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012b). “A Quick Guide for the pbdMPI
package.” R Vignette, URL http://cran.r-project.org/package=pbdMPI.

Chen WC, Schmidt D, Ostrouchov G, Patel P (2012c). “pbdSLAP: Programming with Big
Data – Scalable Linear Algebra Packages.” R Package, URL http://cran.r-project.

org/package=pbdSLAP.

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012). “Programming with Big Data in R.”
URL http://r-pbd.org/.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012a). “pbdBASE: Programming with Big
Data – Core pbd Classes and Methods.” R Package, URL http://cran.r-project.org/

package=pbdBASE.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012b). “pbdDMAT: Programming with
Big Data – Distributed Matrix Algebra Computation.” R Package, URL http://cran.

r-project.org/package=pbdDMAT.

http://netlib.org/scalapack/slug/scalapack_slug.html/
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdSLAP
http://cran.r-project.org/package=pbdSLAP
http://r-pbd.org/
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdDMAT

	Acknowledgement -0.3cm
	Abstract -0.3cm
	1. Introduction
	1.1. Installation
	1.2. Indented Audience
	1.3. Terminology

	2. Using pbdBASE
	2.1. BLACS Communicators
	2.1.1. Construction
	2.1.2. Destruction

	2.2. Notes for Developers

	References

