An Infra-Structure for Performance Estimation

and Experimental Comparison of Predictive
Models

Luis Torgo
FCUP - LIAAD/INESC Tec
University of Porto
ltorgo@dcc.fc.up.pt, ltorgo@inescporto.pt

December 29, 2013

Abstract

This document describes an infra-structure provided by the R pack-
age performanceEstimation that allows to estimate the predictive per-
formance of different approaches (workflows) to predictive tasks. The
infra-structure is generic in the sense that it can be used to estimate the
values of any performance metrics, for any workflow on different predictive
tasks, namely, classification, regression and time series tasks. The pack-
age also includes several standard workflows that allow users to easily set
up their experiments limiting the amount of work and information they
need to provide. The overall goal of the infra-structure provided by our
package is to facilitate the task of estimating the predictive performance
of different modeling approaches to predictive tasks in the R environment.

1 Introduction

The goal of this document is to describe the infra-structure that is available
in package performanceEstimation to estimate the performance of different
approaches to predictive tasks. The main goal of this package is to provide
a general infra-structure that can be used to estimate the performance using
several predictive performance metrics of any modelling approach to different
predictive tasks, with a minimal effort from the user. The package provides this
type of facilities for classification, regression and time series tasks. There is no
limitation on the type of approaches to these tasks for which you can estimate
the performance - the user just needs to provide a workflow function (following
some interface rules) that implements the approach for which the predictive
performance is to be estimated. The package includes some standard workflow
functions that implement the standard learn—+test—+evaluate approach that most
users will be interested in. This means that if you just want to estimate the
performance of some variants of a method already implemented in R (e.g. an
SVM), on some particular tasks, you will be able to use these standard workflow
functions and thus your input will be limited to the minimum. The package also
provides a series of predictive performance metrics for different tasks. Still, you



are not limited to these metrics and can use any metric as long as it exists in R
or you provide a function calculating it.

This infra-structure implements different methods for estimating the pre-
dictive performance. Namely, you can select among: (i) cross validation, (ii)
holdout and random subsampling, (iii) leave one out cross validation, (iv) (eg
and .631) bootstrap and also (v) Monte-Carlo experiments for time series fore-
casting tasks. For each of these tasks different options are implemented (e.g.
use of stratified sampling).

Most of the times experimental methodologies for performance estimation
are iterative processes that repeat the modelling task several times using dif-
ferent data samples with the goal of improving the accuracy of the estimates.
The estimates are the result of aggregating the scores obtained on each of the
repetitions. For each of these repetitions different training and testing samples
are generated and the process being evaluated is "asked” to: (i) obtain the pre-
dictive model using the training data, and then (ii) use this model to obtain
predictions for the respective test sample, which in turn (iii) can be used to
calculate the scores of the performance metrics being estimated. This means
that there is a workflow that starts with a predictive task for which training
and testing samples are given, and that it should produce as result the scores
of the performance metrics being estimated. There are far too many possible
approaches and sub-steps for the implementation of this workflow. To ensure
full generality of the infra-structure, we ask the user to provide a function that
implements this workflow for each of the predictive approaches he/she wishes to
compare and/or evaluate. This function can be parametrizable in the sense that
there may be variants of the workflow that the user wishes to evaluate and/or
compare. Still, the goal of this workflow implementation functions is very clear:
(i) receive as input a predictive task for which training and test samples are
given, as well as any eventual workflow specific parameters; and (ii) produce as
result a set of scores for the evaluation metrics being estimated. These scores
should be obtained by applying some modelling technique to the training sample
and then use the resulting to model to obtain predictions for the test sample.
These predictions should then be used to obtain the scores of the predictive
metrics for which the user is interested in obtaining reliable estimates.

The infra-structure we describe here provides means for the user to indicate:
(1) a set of predictive tasks with the respective data sets; (ii) a set of workflows
and respective variants; and (iii) an experimental methodology. The infra-
structure then takes care of all the process of experimentally estimating the
predictive performance of the different approaches on the tasks, producing as
result an object that can be explored in different ways to obtain the results of the
estimation process. The infra-structure also provides several utility functions to
explore these results objects, for instance to obtain summaries of the estimation
process both in textual format as well as visually. Moreover, it also provides
functions that carry out statistical significance tests based on the outcome of
the experiments.

Finally, the infra-structure provides utility functions implementing frequently
used workflows for common modelling techniques, as well as functions that fa-
cilitate the automatic generation of variants of workflows by specifying sets of
parameters that the user wishes to consider in the comparisons.



2 A Simple Illustrative Example

Let us assume we are interested in estimating the predictive performance of
several variants of an SVM on the Iris classification problem. More specifically,
we want to obtain a reliable estimate of the error rate of these variants using 10-
fold cross validation. The following code illustrates how these estimates could
be obtained with our proposed infra-structure.

library(performanceEstimation)
library(e1071)

data(iris)

res <- performanceEstimation(
PredTask(Species ~ .,iris),
workflowVariants('standardWF',
learner='svm',
learner.pars=list(cost=c(1,5,10),gamma=c(0.1,0.001))
Dg
CvSettings(nReps=1,nFolds=10))

This simple example illustrates several key concepts of our infra-structure.
First of all, we have the main function - performanceEstimation(), which is
used to carry out the estimation process. It has 3 arguments: (i) a vector of
predictive tasks (in the example a single one); (ii) a vector of workflows; and
(iii) the estimation settings.

Predictive tasks are S4 objects of class PredTask. This class, also defined
in our package, describes a predictive task by: (i) a formula; (ii) the source data
set (an R data frame); and (iii) an optional name of the task (a string).

Workflows are S4 objects of class Workflow, which are also defined within
the package. These objects include two pieces of information: (i) the name of the
function (a string) implementing the workflow; and (ii) the list of parameters to
this function. The function will be called from within performanceEstimation()
with a formula in the first argument, a training sample (a data frame) on the
second argument, a test sample (another data frame) on the third, and then all
the parameters the user specifies in the list of parameters used when creating
the Workflow object. This means that the object
Workflow(’svmTrial’,pars=1list(cost=10,gamma=0.5)),
if used in a call to performanceEstimation, will generate calls of the type
svmTrial (someFormula, someTrainingSample, someTestSample, cost=10,
gamma=0.5). In the illustrative example above we are using the function
workflowVariants() from our package to automatically generate a vector of
Workflow objects. This function can be used to generate different variants of
a workflow function using all combinations of some parameters of the workflow.
In the code above the workflow function is standardWF which is another auxiliar
function we provide. This function implements a typical workflow for different
modelling techniques that are indicated through its parameter learner. Above
we are using it to generate variants of calls to the svm() function, which is an
implementation of an SVM available in package e1071 [MDH™12|. Later we
will provide more details on the standardWF function. For now we can think of
the call to the workflowVariants () function as generating the following vector:



c(Workflow('standardWF',
pars=list(learner='svm',
learner.pars=list(cost=1,gamma=0.1))
Do
Workflow('standardWF',
pars=list(learner='svm',
learner.pars=list(cost=5,gamma=0.1))

))

The workflow implemented through function standardWF() by default cal-
culates the error rate of the used modelling techniques if handling classification
tasks, though we will see later that we can specify other metrics.

Finally, the third parameter of the function performanceEstimation() spec-
ifies the estimation settings to use in the process. It is an S4 object of class
EstimationSettings that in effect is an union that includes among others the
S4 class CvSettings. Objects of this latter class include information on the
number of repetitions of the cross validation process (in our example 1 single
repetition, which is the default), the number of folds (10 above, which is also the
default), the random number generator seed and a logical indicating whether
stratified samples should be used (defaulting to FALSE, i.e. no stratification).

The result of the call to performanceEstimation() is an S4 object of the
class ComparisonResults. These objects tipically are not directly explored by
the end-user so we ommit their details herdﬂ There are several utility functions
that allow the users to explore the results of the experimental comparisons.
Here are a few illustrative examples:

summary (res)

##

## == Summary of a Cross Validation Performance Estimation Experiment ==
## 1 x 10 - Fold Cross Validation run with seed = 1234
##

## * Predictive Tasks :: iris

## * Workflows :: svm.vl, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6
##

## * Summary of Experiment Results:

##

## -> Datataset: iris

##

## *Workflow: svm.vl

## err

## avg 0.04667

## std 0.05488

## min 0.00000

## max 0.13333

## invalid 0.00000

##

## *Workflow: svm.v2

## err

## avg 0.04000

lInterested readers may have a look at the corresponding help page -
class?ComparisonResults .



## std 0.04661

## min 0.00000

## max 0.13333

## invalid 0.00000

##

## *Workflow: svm.v3
## err

## avg 0.04000

## std 0.04661

## min 0.00000

## max 01113333

## invalid 0.00000

##

## xWorkflow: svm.vé4
## err

## avg 0.6867

## std 0.2014

## min 0.3333

## max 0.9333

## invalid 0.0000

##

## *Workflow: svm.vb
## err

## avg 0.15333

## std 0.11780

## min 0.06667

## max 0.46667

## invalid 0.00000

##

## *Workflow: svm.v6
## err

## avg 0.10667

## std 0.06441

## min 0.00000

## max 0.20000

## invalid 0.00000

The generic function summary allows us to obtain the estimated scores for
each compared approach on each predictive task. For each performance metric
(in this case only the error rate), the function shows the estimated average per-
formance, the standard error of this estimate as well as minimum and maximum
scores on the different iterations of the experimental comparison. Moreover, in-
formation is also given on eventual failures on some of the iterations.

The best scores for each predictive task and metric can be obtained as fol-
lows:

topPerformers(res)

## $iris
## Workflow Estimate
## err svm.v2 0.04

The generic function plot can be used to obtain a graphical display of the
distribution of performance metrics across the different iterations of the estima-
tion process using box-plots, as show in Figure



Cross Validation Performance Estimation Results
iris

0.75-

0.50 -

Distribution of Statistics Scores
18

0.25-

I B Eb

& s
Alternative Workflows

TA'WAS —
ZNWAS -
A'WAS —
A'WAS —
GA'WAS —
OA'WAS -

Figure 1: The distribution of the error rate on the 10 folds.

plot(res)

You might have observed that the infra-structure uses some IDs to describe
each workflow variant (e.g. svm.v1). The user can check the parameter config-
uration corresponding to some ID as follows:

getWorkflow('svm.v1l',res)

## Workflow Object:

## Workflow ID :: svm.vl

## Workflow Function :: standardWF
## Parameter values:

##  learner.pars -> cost=1 gamma=0.1
## learner -> svm

3 Predictive Tasks

Predictive tasks are data analysis problems where we want to obtain a model
of an unknown function ¥ = f(X1, X, -, X,) that relates a target variable
Y with a set of p predictors X, Xa,:--,X,. The model is usually obtained
using a sample of n observations of the mapping of the unknown function,
D = {(x;,Y;)}?_,, where x; is a vector with the p predictors values and Y;
the respective target variable value. These data sets in R are usually stored in
data frames, and formula objects are used to specify the form of the functional



dependency that we are trying to model, i.e. which is the target variable and
the predictors.

Objects of class PredTask encapsulate the information of a predictive task,
i.e. the functional form and the data required for solving it. For convenience
they also allow the user to assign a name to each task. These S4 objects can
be created using the construtor function PredTask(), as seen in the following
example:

data(iris)
PredTask(Species ~ .,iris,'irisClassificationTask')

## Prediction Task Object:

## Task Name :: irisClassificationTask
## Formula :: Species ~

## Task Data ::

## 'data.frame': 150 obs. of 5 variables:

## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111 ...
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ..

## §$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

## ¢ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.41.51.41.5

## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

We should remark that the objects of this class only store the data required
for the specified task, as it should be clear from this other simple example:

data(iris)
PredTask(Species ~ Petal.Length + Sepal.Length,iris, 'ShortIrisTask')

## Prediction Task Object:

## Task Name :: ShortlIrisTask

## Formula :: Species ~ Petal.Length + Sepal.Length
## Task Data ::

## 'data.frame': 150 obs. of 3 variables:

## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111 ...

## §$ Petal.Length: num 1.4

io 3151.41.71.41.51.41.5 ...
## $ Sepal.Length: num 5.1 4.

41.
94.74.655.44.654.44.9 ...

So, although we have supplied the full data frame to the constructor function,
as the task only uses 3 of the columns, the resulting PredTask object only
includes the information on the columns required for this task.

4 Workflows

Estimation methodologies work most of the times by re-sampling the available
data set D in order to create different train and test samples from D (an excep-
tion being a single repetition of hold-out). The goal is to estimate the predictive
performance of a proposed workflow to solve the task, by using these different
samples to increase our confidence on the estimates. This workflow consists on
the process of obtaining a model from a given training sample and then use it to
obtain predictions for the given test set. This process can include several steps,
e.g. specific data pre-processing steps, and may use any modelling approach,
eventually developed by the user.



4.1 User-defined Workflows

With the goal of ensuring that the proposed infra-structure is able to cope with
all these possible usage scenarios, we ask the user to take care of the writing
of a function implementing each workflow being compared/evaluated. These
user-defined workflow functions should be written assuming that the first three
parameters are: (i) the formula defining the predictive task; (ii) the provided
training sample; and (iii) the test sample where to evaluate the obtained model.
The functions may eventually accept other arguments with specific parameters
of the workflow. The following is a general sketch of a user-defined workflow
function:

myWorkFlow <- function(form,train,test,...,
.outPreds=TRUE, .outModel=TRUE) {
require (mySpecialPackage,quietly=T)

myTrain <- mySpecificPreProcessingSteps(train)

myModel <- myModelingTechnique(form,myTrain,...)

preds <- predict(myModel,test)

scores <- mySpecialEvaluationMetrics(responseValues(form,test) ,preds)

res <- WFoutput(scores)
if (.outPreds)
workflowPredictions(res) <- list(responseValues(form,test),
preds,
rownames (test))
if (.outModel) workflowInformation(res) <- list(model=myModel)
res

Not all workflows will require all these steps, though some may even require
more. This is clearly something that is up to the user. The only strict re-
quirements for these functions are: (i) the first 3 parameters of the workflow
function should be the formula, train and test data frames; and (ii) the result
of the function should be an object of the S4 class WFoutput.

Objects of class WFoutput contain the result of applying the workflow to a
train+test partition. They are created using the constructor function WFout-
put() that takes as argument a named vector with the scores of the metrics
being estimated. These objects may optionally contain information on the true
and predicted values for the target variable in the provided test set, as well as
any other information the creator of the workflow function deems important
to return. These two optional pieces of information are typically ”attached” to
the object using the replacement functions workflowPredictions() and work-
flowInformation(), respectively. The workflowPredictions() function takes
as value a list with at least two components. The first component is a vector
with the true values of the target variable in the test set. The second com-
ponent are the corresponding predictions made by the workflow. Finally, you
may optionally provide a vector with the names of the rows in the test set.
Regarding the workflowInformation() function it accepts as value also a list



but whose content is completely free and left to the creator of the workflow
function. Both these two functions can also be used to obtain the respective
content from WFoutput objects, as we will see later in some of the illustrative
examples.

The sketch shown above also illustrates the use of the function responseValues ()
that can be used to obtain the values of the target variable given a formula and
a data frame.

Users should write one such workflow function for each process they want
to evaluate/compare. As mentioned before these functions may accept further
parameters on top of the 3 mandatory parameters. These extra parameters
will typically be parameters of the modelling technique being used within the
workflow but it is up to the user to control this. As we have seen in Section
we provide the function workflowVariants() to facilitate the specification of
different variants of any workflow function by trying all combinations of several
of its specific parameters. For instance, if the modelling function in the above
example workflow (function myModelingTechnique()) had an integer parameter
x and a Boolean parameter y, we could generate several Workflow objects to be
evaluated/compared using the performanceEstimation() function, as follows:

workflowVariants ('myWorkFlow',x=c(0,3,5,7),y=c(T,F))

This would generate 8 variants of the same workflow with all combinations of
the specified values for the 2 parameters. This means that any parameter of the
workflowVariants() function that has more than one element is assumed to
be a source for generation of variants. There may be situations where this is not
intended, because a particular argument of the workflow function is supposed
to be a vector. In these cases the user needs to “tell” the workflowVariants()
function that it should not generate variants from the values of that parameter.
Suppose that on the above example the parameter x takes as values a vector,
and thus your meaning in the above statement is that you only have two variants
of the workflow (the different values of the parameter y). You could get that
effect by calling the workflowVariants() function as follows:

workflowVariants ('myWorkFlow',x=c(0,3,5,7),y=c(T,F),as.is=c('x"'))

While the previous call would generate 8 variants, this one only generates 2.

Let us see a concrete example of a user supplied workflow function. Imagine
we want to evaluate a kind of ensemble model formed by a regression tree and a
multiple linear regression model on an algae blooms data set [Tor10]. Moreover,
let us suppose we are interested in using the correlation between the predictions
and true values as evaluation metric. We could start by writing the following
workflow function that implements our modelling approach:

RLensemble <- function(f,tr,ts,weightRT=0.5,step=FALSE,...) {
require (DMwR,quietly=F)
noNAsTR <- knnImputation(tr)
noNAsTS <- knnImputation(ts)
r <- rpartXse(f,tr,...)
1 <- 1m(f,noNAsTR)
if (step) 1 <- step(l,trace=0)



pr <- predict(r,ts)

pl <- predict(l,noNAsTS)

ps <- weightRT#*pr+(1-weightRT) *pl

WFoutput (c(correlation=cor(responseValues(f,ts),ps)))

This workflow starts by building two modified samples of the training and
testing sets, with the NA values being filled in using a nearest neighbour strategy
(see the help page of the function knnImputation() of package DMwR [Torl(]
for more details). These versions are to be used by the 1m() function that is un-
able to cope with cases with missing values. After obtaining the two models and
their predictions the function calculates a weighted average of both predictions
before obtaining and returning the respective correlation score.

To evaluate different variants of this workflow we could run the following
experiment:

data(algae,package='DMwR')
expRes <- performanceEstimation(
PredTask(al ~ .,algael[,1:12],'algal'),
workflowVariants ('RLensemble',
se=c(0,1) ,step=c(T,F) ,weightRT=c(0.4,0.5,0.6)),
BootSettings (nReps=100,type='e0'))

In this experimental comparison we have used 100 repetitions of a ¢y boot-
strap estimation procedure as estimation methodology (further details on this
and other methodologies will be given later), to compare 12 variants of our
workflow.

4.2 Generic Workflows

Writing workflow functions may be tedious on large comparisons, particularly
when few details change among them. Moreover, the most frequent use of
our infra-structure will probably be to compare existing modelling techniques
(or variants of them) on one or more problems. This means that the most
frequently used workflows will essentially build a model using some existing
algorithm, obtain its predictions and then calculate some standard prediction
error metrics. To facilitate this type of tasks, we also provide generic workflow
functions that carry out this type of process for any modelling technique. The
idea is to save the user from having to write these functions provided his/her
workflow fits this generic schema.

4.2.1 Classification and Regression Tasks

Function standardWF() implements a typical workflow for both classification
and regression tasks. Apart from a formula, a training set data frame and a test
set data frame, this function has the following parameters that help the user to
specify is intended workflow:

learner - the name of a R function that obtains a model from the training data.
This function will be called with a formula in the first argument and the
training set data frame in the second.

10



learner.pars - a list specifying any extra parameter settings that should be
added to the formula and training set, at the time the learner function is
called (defaults to NULL).

predictor - the name of a R function that is able to obtain the predictions of
the model obtained with learner. This function will be called with the
object resulting from the learner call on the first argument and the test
set data frame in the second (it defaults to function predict()).

predictor.pars - a list specifying any extra parameter settings that should be
added to the model and test set, at the time the predictor function is
called (defaults to NULL).

evaluator - the name of a R function that is able to calculate the evaluation
metrics you want to estimate based on the predictions of the model and
the true values of the target variable on the given test set (it will default
to classificationMetrics() function if it is a classification task, and
to regressionMetrics() if a regression task - check the respective help
pages to see what are the default metrics that are calculated for each).
This function will be called with the values of the target variable in the test
set on the first argument and with the result of the call to the predictor
function on the second.

evaluator.pars - a list specifying any extra parameter settings that should
be added to the true values and predictions, at the time the evalua-
tor function is called (defaults to NULL). A typical usage here would be
to use the parameter stats of functions classificationMetrics() and
regressionMetrics() to specify the metrics you want to calculate, pro-
vided you are using these functions as evaluators.

Below you find an example of one of the most frequent type of comparisons
users carry out - checking which is the “best” model for a given predictive task.
Let us restrict the search to a small set of models for illustrative purposes and
let us play with the well-known Boston housing regression task:

data(Boston,package="'MASS')
library (DMwR)
library(e1071)
library(randomForest)
bostonRes <- performanceEstimation(
PredTask(medv ~ .,Boston),
workflowVariants ('standardWwF',
learner=c('rpartXse', 'svm', 'randomForest')),
CvSettings (nReps=1,nFolds=10)
)

Notice that on this simple example we have used all modelling tools with
their default parameter settings which is not necessarily a good idea when we are
looking for the best performance. Still, the goal of this illustration is to show you
how simple this type of experiments can be if you are using a standard workflow
setting. In case you want to use the modelling tools with other parameter

11



settings then you should separate them in different workflowVariants() calls,
as shown in the following example:

data(Boston,package="'MASS')
library (DMwR)
library(el1071)
library(randomForest)
bostonRes <- performanceEstimation(
PredTask(medv ~ .,Boston),
c(workflowVariants('standardWF',learner='rpartXse',
learner.pars=list(se=c(0,1))),
workflowVariants('standardWF',learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.01,0.1))),
workflowVariants('standardWF',learner='randomForest',
learner.pars=list(ntree=c(500,1000)))),
CvSettings (nReps=1,nFolds=10)
)

Notice that this code involves estimating the mean squared error on the
Boston Housing task for 8 different models through 10-fold cross validation.

4.2.2 Time Series Tasks

Our infra-structure also includes another generic workflow function that is spe-
cific for predictive tasks with time-dependent data (e.g. time series forecasting
problems). This workflow function implements two different approaches to the
problem of training a model with a set of time-dependent data and then use it
to obtain predictions for a test set in the future. These two approaches con-
trast with the standard approach of learning a model with the available training
sample and then use it to obtain predictions for all test period. This standard
approach could be applied using the previously described standardWF() func-
tion. However, there are alternatives to this procedure, two of the most common
being the sliding and growing window approaches, which are implemented in an-
other workflow function developed specifically for time series tasks.

Predictive tasks for time-dependent data are different from standard classifi-
cation and regression tasks because they require that the test samples have time
stamps that are more recent then training samples. In this context, experimen-
tal methodologies handling these tasks typically do not shuffle the observations
to maintain the time ordering in the original data. The most common setup is
that we have a L time steps training window containing observations in the pe-
riod [t1,tr] and a F time steps test window typically containing the observations
in the time window [try1,tr+r].

The idea of the sliding window method is that if we want a prediction for
time point ¢ belonging to the test interval [t;41,tr4+r] then we can assume
that all data from ¢y till ¢5_; is already past, and thus usable by the model.
In this context, it may be wise to use this new data in the interval [t 1,t5—1]
to update the original model obtained using only the initial training period
data. This is particularly advisable if we suspect that the conditions may have
changed since the training period has ended. Model updating using the sliding
window method is carried out by using the data in the L last time steps, i.e.
every new model is always obtained using the last L data observations, as if

12



the training window was slided forward in time. Our timeseriesWF() function
implements this idea for both time series with a numeric target variable and
a nominal target variable. This function has a parameter (type) that if set to
“slide” will use a sliding window approach. As with the standardwF () function,
this timeseriesWF() function also accepts parameters specifying the learner,
predictor, evaluator and their respective parameters. Moreover, this function
also includes an extra parameter, named relearn.step, which allows the user
to establish the frequency of model updating. By default this is every new test
sample, i.e. 1, but the user may set a less frequent model-updating policy by
using higher values of this parameter.

The idea of the growing window approach is very similar. The only difference
is on the data used when updating the models. Whilst sliding window uses the
data occurring in the last L time steps, growing window keeps increasing the
original training window with the newly available data points, i.e. the models
are obtained with increasingly larger training samples. By setting the parameter
type to “grow” you get the timseriesWF() function to use this method.

5 Estimation Methodologies

There are different ways of providing reliable estimates of the predictive perfor-
mance of a workflow. Our infra-structure implements some of the most common
estimation methods. In this section we briefly describe them and provide short
illustrative examples of their use.

5.1 Cross Validation

k-Fold cross validation (CV) is one of the most common methods to estimate
the predictive performance of a model. By including an S4 object of class
CvSettings in the third argument of function performanceEstimation() we
can carry out experiments of this type.

The function CvSettings() can be used as a constructor of objects of class
CvSettings. It accepts the following parameters:

nReps - the number of repetitions of the k-fold CV experiment (default is 1)
nFolds - the number of k folds to use (default is 10)

seed - the random number generator seed to use (default is 1234)

strat - whether to use stratified samples (default is FALSE)

dataSplits - a list containing user-supplied data splits for each of the folds
and repetitions (check the help page of the class for further details). This
parameter defaults to NULL, i.e. no user-supplied splits, they are decided
internally by the infra-structure.

Bellow you can find a small illustration using the Breast Cancer data set
available in package mlbench. On this example we compare some variants of
an SVM using a 3 x 10—fold cross validation process with stratified sampling
because one of the two classes has a considerably lower frequency.

13



data(BreastCancer,package='mlbench')
library(e1071)
library (DMwR)
bc <- knnImputation(BreastCancer[,-1])
bcExp <- performanceEstimation(
PredTask(Class ~ .,bc, 'BreastCancer'),
workflowVariants('standardWF',
learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.01,0.1)),
evaluator.pars=list(stats=c("F","prec","rec"),
posClass="malignant")
) g
CvSettings (nReps=3,nFolds=10,strat=TRUE))

Please note the use of the evaluator.pars parameter of the standardWwF ()
function. We have used it to indicate several settings to be used in the call to the
evaluation function, which by default is classificationMetrics in the case of
classification problems when using our standard workflow. In this case we are
specifying some of the available classification metrics and indicating which of
the two classes of the problem is to be considered the positive classﬂ

5.2 Bootstrapping

Bootstrapping or bootstrap resampling is another well-known experimental method-
ology that is implemented in our infra-structure. Namely, we implement two of
the most common methods of obtaining bootstrap estimates: ¢y and .632 boot-
strap. By including an S4 object of class BootSettings in the third argument
of function performanceEstimation() we can carry out experiments of this
type.

Function BootSettings() can be used as a constructor of objects of class
BootSettings. It accepts the following arguments:

type - a string with the type of bootstrap estimates: either 7e0” for ey boot-
strap, or 7.632” for .632 bootstrap (default is "e0”)

nReps - the number of repetitions of the bootstrap experiment (default is 200)
seed - the random number generator seed to use (default is 1234)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

Bellow you can find a small illustration using the Servo data set available in
package mlbench. On this example we compare some variants of an artificial
neural network using 100 repetitions of a bootstrap experiment.

2The F-measure, Recall and Precision metrics are calculated for two-class problems with
respect to one of the classes, usually named the “positive” class.

14



data(Servo,package="mlbench')
library(nnet)
nnExp <- performanceEstimation(
PredTask(Class ~ .,Servo),
workflowVariants('standardWF',
learner='nnet',
learner.pars=list(trace=F,linout=T,
size=c(3,5) ,decay=c(0.01,0.1))
)¢
BootSettings (nReps=100))

5.3 Holdout and Random Subsampling

The Holdout is another frequently used experimental methodology, particularly
for large data sets. To carry out this type of experiments in our infra-structure
we can include an S4 object of class HldSettings in the third argument of
function performanceEstimation().

Function HldSettings() can be used as a constructor of objects of class
HldSettings. It accepts the following arguments:

nReps - the number of repetitions of the Holdout experiment (default is 1)

hldSz - the percentage of cases (a number between 0 and 1) to leave as holdout
(test set) (default is 0.3)

seed - the random number generator seed to use (default is 1234)
strat - whether to use stratified samples (default is FALSE)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

Please note that for the usual meaning of Holdout the number of repetitions
should be 1 (the default), while larger values of this parameter correspond to
what is usually known as random subsampling.

The following is a small illustrative example of the use of the random sub-
sampling with the LetterRecognition classification task from package mlbench.

data(LetterRecognition,package='mlbench')
1trExp <- performanceEstimation(
PredTask(lettr ~ .,LetterRecognition),
workflowVariants('standardWF',
learner='rpartXse',
learner.pars=list(se=c(0,1)),
predictor.pars=list(type='class')
Ve
HldSettings (nReps=3,h1dSz=0.3))

15



Please note the use of the predictor.pars parameter of our standardWwF ()
function to be able to cope with the fact that the predict method for classifica-
tion trees requires the use of type="class" to get actual predicted class labels
instead of class probabilities.

5.4 Leave One Out Cross Validation

Leave one out cross validation is a type of cross validation method that is
mostly used for small data sets. You can think of leave one out cross vali-
dation as a k-fold cross validation with k equal to the size of the available data
set. To carry out this type of experiments in our infra-structure we can in-
clude an S4 object of class LoocvSettings in the third argument of function
performanceEstimation().

Function LoocvSettings () can be used as a constructor of objects of class
LoocvSettings. It accepts the following arguments:

seed - the random number generator seed to use (default is 1234)

verbose - whether the execution of the experiments should provide a verbose
form of output (default is FALSE)

The following is a small illustrative example of the use of the Holdout with
the LetterRecognition classification task from package mlbench.

data(iris)

library(e1071)

irisExp <- performanceEstimation(
PredTask(Species ~ .,iris),

workflowVariants('standardWF',
learner='svm',
learner.pars=list(cost=c(1,10))
) g

LoocvSettings())

5.5 Monte Carlo Experiments

Monte Carlo experiments are similar to random subsampling (or repeated Hold-
out) in the sense that they consist of repeating a learning + testing cycle sev-
eral times using different data samples. The main different lies on the way the
samples are obtained. In Monte Carlo experiments the original order of the
observations is respected and train and test splits are obtained such that the
testing samples appear “after” the training samples, thus being the method-
ology of choice when you are comparing time series forecasting models. The
idea of Monte Carlo experiments is the following: (i) given a data set spanning
from time ¢; till time ¢, (ii) given a training set time interval size L and a test
set time interval size F', such that T + F < N, (iii) Monte Carlo experiments
generate R random time points from the interval [t1417,tn_F], and then (iv)
for each of these R time points they generate a training set with data in the
interval [tr_741,tr] and a test set with data in the interval [tgr+1,tr+r|. Using
this process R train+test cycles are carried out using the user-supplied workflow

16



function, and the experiment estimates result from the average of the R scores
as usual.

To carry out this type of experiments in our infra-structure we can in-
clude an S4 object of class McSettings in the third argument of function
performanceEstimation().

The function McSettings () can be used as a constructor of objects of class
McSettings. It accepts the following arguments:

nReps - the number of repetitions of the Monte Carlo experiment (default is
10)

szTrain - the percentage (a number between 0 and 1) or the actual number of
cases to use in the training samples (default is 0.25)

szTest - the percentage (a number between 0 and 1) or the actual number of
cases to use in the test samples (default is 0.25)

seed - the random number generator seed to use (default is 1234)

dataSplits - a list containing user-supplied data splits for each of the repeti-
tions (check the help page of the class for further details). This parameter
defaults to NULL, i.e. no user-supplied splits, they are decided internally
by the infra-structure.

The following is a small illustrative example using the quotes of the SP500
index. This example compares two random forests with 500 regression trees,
one applied in a standard way, and the other using a sliding window with a
relearn step of 5 days. The experiment uses 10 repetitions of a train+test cycle
using 50% of the available data for training and 25% for testing.

library(quantmod)
library(randomForest)
getSymbols (' “GSPC',from='2008-01-01"',to="'2012-12-31")
data.model <- specifyModel(
Next (100%Delt (Ad(GSPC))) ~ Delt (Ad(GSPC) ,k=1:10)+Delt (Vo (GSPC) ,k=1:3))
data <- modelData(data.model)
colnames(data) [1] <- 'PercVarClose'
SpExp <- performanceEstimation(
PredTask (PercVarClose ~ .,data,'SP500_2012'),
c(Workflow('standardWF',wfID="standRF",
learner='randomForest',learner.pars=1list(ntree=500)),
Workflow('timeseriesWF',efID,"slideRF",
learner='randomForest',
learner.pars=list(ntree=500,relearn.step=5))
Ve
McSettings(10,0.5,0.25))

Note that in the above example we have not tried any variants of the two
workflows that are applied to the task. This means that we have used directly
the Workflow constructor to create our workflow. Note also the use of the wfID
parameter of this constructor to allow you to give a particular workflow ID to
some approach.

17



6 Statistical Significance of Differences

The estimation methodologies that we have presented in the previous section al-
low the user to obtain estimates of the mean predictive performance of different
workflows or variants of these workflows, on different predictive tasks. We have
seen that by applying the summary method to the objects resulting from the
estimation experiments we can obtain the average performance for each candi-
date workflow on each task. These numbers are estimates of the expected mean
performance of the workflows on the respective tasks. Being estimates, the ob-
vious next question is to check whether the observed differences in performance
between the workflows are statistically significant. More formally, we want to
know that confidence level of rejecting the null hypothesis that the difference
between the estimated averages is zero.

That is the goal of the function pairedComparisons (). This function carries
out a series of pairwise comparisons between a selected baseline workflow and a
set of alternatives. The goal of each of these paired comparisons is to check the
confidence we have in rejecting the null hypothesis that the difference between
the mean performance of the baseline workflow and that of the alternatives is
zero. These paired comparisons are carried out for all predictive tasks included
in the estimation process.

Our experimental infra-structure ensures that all compared workflows are
run on exactly the same train+test partitions on all repetitions and for all pre-
dictive tasks. In this context, we can focus on pairwise statistical significance
tests. Given that we cannot ensure that the different iterations are statisti-
cally independent (for instance there may be some overlap between the training
samples)EL we use the Wilcoxon signed rank test to assess the statistical signif-
icance of the differences between every pair of compared workflows. Let us see
a concrete example:

library (DMwR)
data(LetterRecognition,package='mlbench')
1trExp <- performanceEstimation(
PredTask(lettr ~ .,LetterRecognition),
workflowVariants ('standardWF',
learner='rpartXse',
learner.pars=list(se=c(0,1)),
predictor.pars=list(type='class')
),
HldSettings(3,0.3))

Using the topPerformers () function we can find out the best scoring variant
of this comparison of rpartXse-based workflows,

topPerformers (1trExp)

## $LetterRecognition
it Workflow Estimate
## err rpartXse.vl 0.143

3That independence can only be ensured for a single repetition of Holdout.

18



Now we can proceed to check whether the advantage of this variant over the
others is statistically significant,

pairedComparisons (1trExp, 'rpartXse.vl')

## , , err, LetterRecognition

##
## AvgScore SdScore Diff p.value
## rpartXse.vl  0.1434 0.005453 NA NA

## rpartXse.v2 0.1486 0.011612 -0.005222 0.25

The function pairedComparisons() receives as first argument the object
resulting from the comparative experiments. The second argument is the base-
line workflow against which you want to compare the others to. The output
of this function is array with four dimensions. The first dimension contains
the different workflows involved on each paired comparison, with the baseline
in the first row (and with the columns “Diff” and “p.value” set to NA). The
second dimension includes the information provided for each workflow, namely:
i) the average estimated score for the metric; ii) the respective standard error
of this estimate; iii) the difference between the score of the baseline and the
score of each alternative; and iv) the confidence level (p-value) for rejecting the
null hypothesis that the difference is zero. The third dimension of the array are
the metrics involved in the estimation experiment (in the above example it is a
single one - the error rate), whilst the fourth dimension is the predictive tasks
(again the above example only includes a single task).

In the above example the p-value for the single paired comparison that is
carried out by the function is too high (0.25) and thus we can not reject the
hypothesis that the difference between the error rate of two alternative workflows
is zero in this particular predictive task.

7 Larger Examples

The main advantage of the infra-structure we are proposing is to automate large
scale performance estimation experiments. It is on these very large setups that
the use of the infra-structure spares more time to the user. However, in these
contexts the objects resulting from the estimation process are very large and
some of the tools we have shown before for exploring the results may produce
over-cluttered output. In effect, if you have an experiment involving dozens of
predictive tasks and eventually hundreds of workflow variants being compared
on several evaluation metrics, doing a plot of the resulting object is simply not
possible as the graph will be unreadable. This section illustrates some of these
cases and presents some solutions to overcome the difficulties they bring.
Extremely large experiments may take days or weeks to complete, depend-
ing on the available hardware. In this context, it may not be wise to run the
experiments on a single call to the performanceEstimation() function because
if something goes wrong in the middle you may loose lots of work/time. Using
the random number generation seeds that are available in all experimental set-
tings objects we can split the experiments in several calls and still ensure that
the same data folds are used in all estimation experiments. Moreover, we will

19



see that when all experiments are finished we will be able to merge the objects
of each call into a single object as if we had issued a single call. Let us see an
example.

library (DMwR)
library(e1071)
library(randomForest)

data(algae)
DSs <- sapply(names(algae) [12:18],
function(x,names.attrs) {
f <- as.formula(paste(x,"~ ."))
PredTask(f,algae[,c(names.attrs,x)],x)

}s

names (algae) [1:11])

WFs <- 1list()
WFs$svm <- list(learner.pars=list(cost=c(10,150,300),
gamma=c (0.01,0.001) ,epsilon=c(0.1,0.05)))
WFs$randomForest <- list(learner.pars=list(mtry=c(5,7),
ntree=c(500,750,1500)))

for(d in seq_along(DSs)) {
for(w in names(WFs)) {
resObj <- paste(names(DSs) [d],w,'Res',sep="'")

assign(resObj,
performanceEstimation(
Dss[dl,
c(
do.call('workflowVariants',
c(list('standardWF',
learner=w,
evaluator.pars=list(stats=c('mse', 'mae'))),
WFs[[w]1))
Vs
CvSettings(3,10,1234))
)

save(list=res0Obj,file=paste(names(DSs) [d],w, 'Rdata’',sep='."))
}
}

The above code compares 12 SVM variants with 6 random forest variants, on
7 algae blooms regression tasks, using 3 x 10—fold cross validation. Although
this is not a very large experimental comparison it still includes applying 18
different workflow variants on 7 different prediction tasks, 30 times, i.e. 3780
train+test cycles. Instead of running all these experiments on a single call to the
function performanceEstimation() (which would obviously still be possible),
we have made different calls for each workflow type (SVM, random forest and
MARS) and for each predictive task. This means that each call will run all
variants of a certain workflow on a certain predictive task. The result of each of
these calls will be assigned to an object with a name composed of the task name
and workflow learner (the res0Obj variable). In the end each of these objects

20



is saved on a file with a similar name, for future loading and results analysis.
For instance, in the end there will be a file with name “al.svm.Rdata” which
contains an object of class ComparisonResults named alsvmRes. This object
contains the MSE and MAE estimated scores of the SVM variants on the task
of predicting the target variable “al” (one of the eight algae in this data set).
Later on, after the above experiment has finished you can load the saved
objects back into R and moreover, join them into a single object, as shown
below:
nD <- paste('a',1:7,sep='")
nL <- c('svm','randomForest')
res <- NULL
for(d in mnD) {
resD <- NULL
for(l in nL) {
load(paste(d,l, 'Rdata',sep="'."))
x <- get(paste(d,1,'Res',sep='"))
resD <- if (is.null(resD)) x else mergeEstimationRes(resD,x,by='workflows')

}

res <- if (is.null(res)) resD else mergeEstimationRes(res,resD,by='tasks')

}

save(res,file='allResultsAlgae.Rdata')

The mergeEstimationRes () function when applied to objects of class Com-
parisonResults allows merging of these objects across different dimensions.
Namely, such objects have the individual scores of all experiments spread across
4 dimensions: the iterations, the metrics, the workflows and the tasks. The
argument by of the mergeEstimationRes () function allows you to specify how
to merge the given objects. The most common situations are: (i) merging
the results of different workflows over the same data sets - you should use
“by=’workflows’”, or (ii) merging the results of the same workflows across
different tasks - you should use “by=’tasks’”.

The following code can be used to check that the merging was OK, and also
to illustrate a few other utility functions whose purpose should be obvious:

res

##

## == Cross Validation Performance Estimation Experiment ==
##

## 3 x 10 - Fold Cross Validation run with seed = 1234

## 18 workflows

## tested on 7 predictive tasks

taskNames (res)
## [1] llalll ||a2ll ||a3l| lla4|| lla5|| 'la6|l |la7|l

workflowNames (res)

## [1] "svm.v1" "svm.v2" "svm.v3" "svm.v4"
## [5] "svm.v5" "svm.v6" "svm.v7" "svm.v8"
## [9] "svm.v9" "svm.v10" "svm.v11" "svm.v12"

## [13] "randomForest.v1" "randomForest.v2" "randomForest.v3" "randomForest.v4"
## [17] "randomForest.v5" "randomForest.v6"

metricNames (res)

## [1] "mse" "mae"

21



With such large objects the most we can do is obtaining the best scores or
rankings of the workflows:

topPerformers(res)

## $al

## Workflow Estimate
## mse randomForest.vb 233.379
## mae randomForest.vl 10.29
##

## $a2

## Workflow Estimate
## mse randomForest.v5 102.505
## mae svm.vl 6.088
##

## $a3

## Workflow Estimate
## mse randomForest.vb 48.309
## mae svm.v4 4.135
##

## $ad

## Workflow Estimate
## mse randomForest.vl 13.701
## mae svm.v10 1.724
##

## $ab

## Workflow Estimate
## mse randomForest.vb 46.665
## mae svm.v10 4.223
##

## $ab6

## Workflow Estimate

## mse svm.v12 114.123
## mae svm.v12 5.859
##

## $a7

## Workflow Estimate
## mse svm.v2 27.723
## mae svm.v4 2.501

rankWorkflows (res)

## $al

## $alfmse

## Workflow Estimate
## 1 randomForest.vb 233.4
## 2 randomForest.vil 233.7
## 3 randomForest.v3 235.0
## 4 randomForest.v2 236.4
## 5 randomForest.v4 238.1
##

## $al$mae

## Workflow Estimate

22



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

randomForest.
randomForest.
randomForest.
randomForest.
randomForest.

g W N

$a2
$a2¢mse

vl
vb
v2
v3
v6

10.29
10.31
10.34
10.34
10.37

Workflow Estimate

randomForest.
randomForest.
randomForest.
randomForest.
randomForest.

a s W N

$a2$mae

Workflow Estimate
svm.v1l 6.088
svm.v7 6.155

svm.v10 6.204
svm.v4 6.226
svm.vb 6.248

ad W N

$a3
$a3$mse

vb
vl
v3
v6
v2

102.5
103.5
103.8
104.2
104.8

Workflow Estimate

1 randomForest.
2 randomForest.
3 randomForest.
4 randomForest.
5 randomForest.

$a3$mae

Workflow Estimate
svm.v4 4.135
svm.v10 4.155
svm.v7 4.224
svm. vl 4.248
svm.vb 4.269

ad W N

$ad
$ad$mse

vb
v3
vl
v2
v6

48.31
48.37
48.40
49.06
49.17

Workflow Estimate

randomForest.
randomForest.
randomForest.
randomForest.
randomForest.

a s W N -

$ad$mae

vl
v3
vb
v4
v6

13.70
13.85
13.87
13.99
14.05

23



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Workflow Estimate

1 svm.v10
2 svm.véd
3 svm.v7

4 randomForest.v3
5 randomForest.vl

$ab
$ab$mse

1.724
1.726
1.769
1.783
1.788

Workflow Estimate

1 randomForest.vb
2 randomForest.v3
3 randomForest.vl
4 randomForest.v6
5 randomForest.v4

$ab$mae

Workflow Estimate
1 svm.v10 4.223
2 svm.v4 4.252
3 svm.vl 4.292
4 svm.v7 4.305
5 svm.v1l 4.335

46.66
46.72
46.89
47.79
47.89

Workflow Estimate

$a6

$a6$mse

1 svm.v12
2 svm.v6
S svm.vb
4 svm.v1l
5 randomForest.v3

$a6$mae

Workflow Estimate
1 svm.v12 5.859
2 svm.v6 5.913
3 svm. vl 5.950
4 svm.v7 5.959
5 svm.vil 5.978

114.1
115.9
122.5
122.9
131.7

Workflow Estimate

$a7

$a7$mse

1 svm.v2
2 svm.v8

3 randomForest.v3
4 randomForest.vb
5 svm.vl

27.72
27.86
28.26
28.36
28.50

24



## $a7$mae

## Workflow Estimate
## 1 svm.v4 2.501
## 2 svm.v10 2.506
## 3 svm.vl 2.513
##t 4 svm.v7 2.515
## 5 svm.vil 2.530

Notice that both topPerformers() and rankWorkflows() assume that the
evaluation metrics are to be minimized, i.e. they assume the lower the better the
scores. Still, both functions have a parameter named maxs that accepts a vector
with as many Boolean values as there are evaluation metrics being estimated,
which you may use to indicate that some particular metric is to be maximized
and not minimized (the default). So for instance, if you had an experiment where
the 1st and 3rd metrics are to be minimized, whilst the second is to be maxi-
mized, you could call these functions as rankWorkflows (resObj ,maxs=c(F,T,F)).

In order to obtain further results from these large objects one usually pro-
ceeds by analyzing parts of the object, for instance focusing on a particular task
or metric, or even a subset of the workflows. To facilitate this we can use the
generic function subset () that can also be applied to objects of class Compar-
isonResults. An example of its use is given below, which results in a graph of
the performance of the different workflows in the predictive task “al”, in terms
of “MSE”, which is show in Figure [2]

plot(subset(res,tasks='al',statistics='mae'))

As before we are using the generic function plot () but this time applied to
a subset of the original object with all results. This subset is obtained using
the generic function subset() that accepts several parameters to specify the
subset we are interested on. In this case we are using the parameters tasks
and statistics to indicate that we want to analyze only the results concern-
ing the task “al” and the metric “mae”. Other possibility is the parameter
workflows for indicating a subset of the workflows. Both workflows, tasks
and statistics accept as values a character string containing a regular expres-
sion that will be used internally with the R function grep() over the vector of
names of the respective objects (names of the workflows, names of the tasks and
names of the metrics, respectively). For instance, if you want to constrain the
previous graph even further to the workflows whose name ends in “4” (absurd
example of course!), you could use the following:

plot(subset(res,tasks='al',workflows='43$"'))

If you are more familiar with the syntax of ”wildcards” you may use the R
function glob2rx() to convert to regular expressions, as show in the following
example:

summary (subset (res,tasks='al',workflows=glob2rx('*svm*'),statistics='mse'))

#i#
## == Summary of a Cross Validation Performance Estimation Experiment ==

25



Cross Validation Performance Estimation Results

a1
20-
(%}
o d
S15-
1]
(]
o
2
2
& 3
— @
o
c
S
2
a
£10-
=
@ q
[a]
5-
R R R
3 8 3 B B3 8
£ 8 3 8 3 3
v 9 9o 9 v v 9 ¢ w 2 2 2 & & & & & &
5 3555553355233 333333
2 X = % = % = 5 T =& 5= 5292 9 2 9 2 9
PN ® B o N o © 5 B ORQ g g & & g 2
< < < < < <
=Y N @ B o )
Alternative Workflows
. . « ”
Figure 2: The MAE results for the task “al”.
Cross Validation Performance Estimation Results
a1
500 - +
400 -
e
¢ 300- 2
o
3
& 200-
(%]
o
B 100- |
&
g
w0175~
-
o
c
L150-
3
2
B
=< 12.5-
2 | :
[ ] &
10.0 - | |
75-
i
8
&
2 El
3 m
b =
S @
3
<
£

Alternative Workflows

Figure 3: Illustration of the use of regular expressions in sub-setting the results
objects.

26



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

3 x 10 - Fold Cross Validation run with seed =

* Predictive Tasks :: al
* Workflows :: svm.vl, svm.v2,
* Summary of Experiment Results:
-> Datataset: al
*Workflow: svm.vl
mse
avg 278.6
std 106.5
min 121.2
max 503.3
invalid 0.0
*Workflow: svm.v2
mse
avg 278.7
std 107.3
min 126.0
max 603.8
invalid 0.0
*Workflow: svm.v3
mse
avg 309.6
std 114.8
min 145.1
max 659.3
invalid 0.0
*Workflow: svm.v4
mse
avg 340.0
std 138.7
min 104.7
max 558.5
invalid 0.0
*Workflow: svm.vb
mse
avg 348.08
std 213.27
min 97.36
max 1001.13
invalid 0.00
*Workflow: svm.v6
mse
avg 362.3
std 256.9

svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v10,

27



## min 106.5

## max 1268.0

## invalid 0.0

#it

## *Workflow: svm.v7

## mse

## avg 277.5

## std 104.7

## min 124.2

## max 496.0

## invalid 0.0

##

## *Workflow: svm.v8

## mse

## avg 279.2

## std 106.9

## min 129.5

## max 609.4

## invalid 0.0

#i#

## *Workflow: svm.v9

## mse

## avg 305.7

## std 114.0

## min 145.9

## max 651.8

## invalid 0.0

#it

## *Workflow: svm.v10

## mse

## avg 340.31

## std 139.09

## min 97.38

## max 562.07

## invalid 0.00

#it

## *Workflow: svm.vil

## mse

## avg 351.0

## std 211.0

## min 105.8

## max 1082.0

## invalid 0.0

##

## *Workflow: svm.v12

## mse

## avg 350.5

## std 223.2

## min 115.5

## max 1129.8

## invalid 0.0
The following are some illustrations of the use of other available utility func-

tions.

28



Obtaining the scores on all iterations and metrics of a workflow on a partic-
ular task:

getIterationsResults(res, 'svm.v6','a3"')

## mse mae
## [1,] 35.167 3.738
## [2,] 85.866 5.720
## [3,] 24.207 3.062
## [4,] 58.519 4.421
## [5,] 161.427 6.916
## [6,] 43.422 3.818
## [7,] 77.363 5.972
## [8,] 13.756 2.989
## [9,] 31.301 3.522
## [10,] 31.060 4.421
## [11,] 98.894 7.058
## [12,] 34.912 3.984
## [13,] 28.457 3.358
## [14,] 51.942 4.479
## [15,] 120.784 5.356
## [16,] 18.346 3.115
## [17,] 67.551 5.057
## [18,] 78.109 4.645
## [19,] 37.893 3.866
## [20,] 23.811 3.021
## [21,] 12.475 2.573
## [22,] 32.153 3.327
## [23,] 8.395 2.284
## [24,] 72.897 5.643
## [25,] 35.598 3.699
## [26,] 73.571 5.157
## [27,] 116.683 5.329
## [28,] 68.635 4.154
## [29,] 49.770 4.765
## [30,] 57.290 4.611

Getting the summary of the results of a particular workflow on a predictive
task :

estimationSummary(res,'svm.v3','a7')

## mse mae
# avg 28.632 3.060
## std 25.950 1.062
## min 4.234 1.462
## max 110.198 6.196
## invalid 0.000 0.000

Finally, the metricsSummary () function allows you to apply any summary

29



function (defaulting to mean()) to the iterations estimates. The following cal-
culates the median of the results of the SVMs on the task “al”,

metricsSummary (subset (res,workflows=glob2rx('*svm*'),tasks='al'),

##
##
##
##
##
##
##

$al

mse
mae

mse
mae

summary='median')

svm.vl svm.v2 svm.v3 svm.v4 svm.vb svm.v6 svm.v7 svm.v8 svm.v9 svm.v10 svm.v1il
261.78 253.78 293.82 339.9 285.49 286.73 267.68 255.11 282.80 342.4 287.8
11.34 11.97 12.99 12.3 11.66 11.76 11.34 11.92 12.89 12.3 11.9
svm.v12
285.40
11.82

References

[MDH'12] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weinges-

[Tor10]

sel, and Friedrich Leisch. e1071: Misc Functions of the Department
of Statistics (e1071), TU Wien, 2012. R package version 1.6-1.

Luis Torgo. Data Mining with R: learning with case studies. Chap-
man & Hall/CRC Press, 2010.

30



	1 Introduction
	2 A Simple Illustrative Example
	3 Predictive Tasks
	4 Workflows
	4.1 User-defined Workflows
	4.2 Generic Workflows
	4.2.1 Classification and Regression Tasks
	4.2.2 Time Series Tasks


	5 Estimation Methodologies
	5.1 Cross Validation
	5.2 Bootstrapping
	5.3 Holdout and Random Subsampling
	5.4 Leave One Out Cross Validation
	5.5 Monte Carlo Experiments

	6 Statistical Significance of Differences
	7 Larger Examples

