

phaseR

Version 1.0

01/10/2013

Michael J. Grayling

MRC Biostatistics Unit

Cambridge

mjg211@cam.ac.uk

michael.grayling@mrc-bsu.cam.ac.uk

phaseR is an R package for the qualitative analysis of one and two

dimensional autonomous ODE systems, using phase plane methods.

Programs are available to identify and classify equilibrium points, plot

the direction field, and plot trajectories for multiple initial conditions. In

the one dimensional case, a program is also available to plot the phase

portrait. Whilst in the two dimensional case, additionally a program is

available to plot nullclines. Many example systems are provided for the

user.

http://www.damtp.cam.ac.uk/people/mjg211/
http://www.mrc-bsu.cam.ac.uk/
mailto:mjg211@cam.ac.uk
mailto:michael.grayling@mrc-bsu.cam.ac.uk

Contents

Chapter 1: Introduction 1

Chapter 2: First Order Dynamical Systems in One Dimension 3
2.1 Autonomous Ordinary Differential Equations in One Dimension 3

2.2 The Flow Field 4

2.3 Equilibrium Points and Stability 5

Chapter 3: First Order Dynamical Systems in Two Dimensions 9
3.1 Autonomous Ordinary Differential Equations in Two Dimensions 9

3.2 The Velocity Field 10

3.3 Nullclines 12

3.4 Equilibrium Points and Stability 13

3.5 Limit Cycles 18

Chapter 4: PhaseR Usage 19

4.1 flowField 19

4.2 nullclines 20

4.3 numericalSolution 22

4.4 phasePortrait 23

4.5 stability 24

4.6 trajectory 25

4.7 Derivative Specification 26

Chapter 5: Worked Examples 29

Chapter 6: Additional Available Systems 47

Chapter 7: Exercises 51

CHAPTER 1

1

Chapter 1: Introduction

Contrary to what may seem the case when you first encounter ordinary differential

equations (ODEs), the majority of ODE systems cannot be solved analytically. In this

case, there is usually no option but to resort to numerical solution, often enlisting the

help of a computer to do so. However, for certain classes of ODE systems it is possible

to undertake a qualitative examination using phase plane methods, as introduced by

Henry Poincare in the 19th Century amongst others. These methods allow the analyser

to circumvent the need for explicit solutions, via a highly graphical approach. Indeed,

this qualitative analysis can in fact be useful even when the system can be solved

analytically. Specifically, it is usually possible to plot trajectories for various initial

conditions, before obtaining information regarding stability and other motion

patterns of the system.

This package, phaseR, allows the user to perform such analyses for one and two

dimensional autonomous ODE systems. Programs are available to determine and

classify equilibrium points, plot the flow or vector field, and plot trajectories for

multiple initial conditions. In the one variable case, a program is also available to plot

the phase portrait. Whilst in the two variable case, additionally a program is available

to plot nullclines. This accompanying guide has been written not only to provide

further information on how to use phaseR, but as a teaching utility for phase plane

methods. In this way, phaseR can hopefully serve as a package for both independent

learning, and for group based teaching; assisting lecturers in explaining the herein

techniques. The level of mathematics is most akin to a first year undergraduate

course; specifically the examples are aimed at those from biology and physics

backgrounds. To physicists the idea of modelling is well established, to biologists it is

perhaps less so. However, with the rise of disciplines such as systems biology, the use

of mathematical modelling in biology has become far more common. Therefore it has

become increasingly important for budding biologists to have a solid understanding

of differential equations.

Thus, since it is an important skill to be able to perform phase plane analysis by hand,

and as a background to the package, this guide will proceed by introducing

mathematically the systems that the package can examine and the techniques for

analysis. An explanation of the usage of the programs in phaseR is then given; for this

good knowledge of R is useful, but the programs are not difficult to use. Examples will

then be provided for both one and two dimensional systems. Further example

systems available in the package will be described, before finally, exercises are

provided for the user to undertake should they wish. Solutions to these exercises are

provided in a separate pdf. Throughout to make things simpler, we will stick to using

the letters ݕ ,ݔ and � only as variables, as these are the variable names used by the

CHAPTER 1

2

programs. In practice however, it is not difficult to deal with cases where alternative

notation is used.

Acknowledgment goes to Professors Kaplan and Flath at Macalester College who

completed some work on phase plane methods for two dimensional systems

(http://www.macalester.edu/~kaplan/math135/pplane.pdf), however the full

possibility of such code was not explored, and at the time of writing this guide there

was still no package commonly available for executing such techniques in R.

Therefore, I decided to create one, and I hope that it will prove a valuable resource to

the R community. I welcome any corrections or comments on both the programs and

these notes.

http://www.macalester.edu/~kaplan/math135/pplane.pdf

CHAPTER 2

3

Chapter 2: First Order Dynamical Systems in

One Dimension

2.1 Autonomous Ordinary Differential Equations in One Dimension

A first order dynamical system of one variable, ݕሺ�ሻ say, can be written in the

following form:

�݀ݕ݀ = ݂ሺݕ, �ሻ. ሺͳሻ

In many cases (usually the ones found in introductory calculus texts) this ODE can be

solved analytically; with several techniques, such as integrating factors and

separation of variables, at hand to help. However, more often than not, when a

differential equation is written down to describe a real life system, it cannot be solved

analytically. This is particularly true of non-linear ODEs, for which numerical solution

would frequently have to be utilised. As a result, many computer packages are today

available for numerical integration.

However, an alternative approach to numerical integration is sometimes possible.

This approach is usually termed the phase plane method, or phase plane analysis. This

methodology is concerned with determining qualitative features of the solutions to

ODEs, without the need for explicit solution. Whilst such analysis may be more

germane to systems we cannot solve analytically, the methods are just as valid to

systems we can.

Although this qualitative analysis is indeed possible for ODEs of type ሺͳሻ, in this package we restrict ourselves slightly to the case of Ǯautonomous ODEsǯ, for reasons

that should hopefully become clear later. This class of first order ODEs can be written

in the following form:

�݀ݕ݀ = ݂ሺݕሻ, ሺʹሻ

i.e. it is the case of no dependence upon the independent variable ሺ�ሻ in the functional

form of ݂. Moreover, technically, we also assume that ݂ is a continuous, differentiable

function. However, this is rarely an important point in what follows. Whilst these may

seem strong restrictions, many real life models can be written in this form.

CHAPTER 2

4

Now, within this framework of qualitative analysis there are several important

concepts that we will proceed to discuss. Namely; the flow field, equilibrium points,

and the phase portrait.

2.2 The Flow Field

We begin with a discussion of the flow, or direction, field. Consider again the ODE of

type ሺʹሻ, and imagine making a sketch in the �-ݕ plane by drawing at every point ሺ�, ሻݕ
a small line of slope ݂ ሺݕሻ. This resulting picture of many line segments is the flow field.

The use of such a picture lies in that solution curves to the ODE must be tangent to the

directions of the line segments. Thus we can construct approximate graphical

solutions to ሺʹሻ by beginning at any point ሺͲ, ሺͲሻݕ .଴ሻ (i.eݕ = ଴) and sketching a curveݕ

that proceeds through the plane in the direction of the flow field. In this way, if we

start at many different initial points, we can generate a family of solution curves that

qualitatively describe the behaviour specified by the ODE ሺʹሻ.

It is important to note however, that whilst the flow field method is incredibly useful

for plotting trajectories by hand, it is an approximate method. Since we can only plot

a finite number of line segments some approximation will always be introduced.

Usually however, solutions accurate enough to gain a reasonable understanding of the

ODE can be achieved, and in general, the more line segments we plot the more

accurate our sketches will be. By hand this can be time consuming, utilising a

computer however, it is not so difficult.

Some texts on phase plane methods would here discuss the concept of isoclines,

defined as lines across which ݀ݔ݀/ݕ is constant, i.e.:

 ݂ሺݕሻ = ,ߙ

for different values of ߙ. These lines are used in the same manner as the small line

segments of the flow field, since we know the angle at which solution curves should

cut them. They however are more useful in the setting of non-autonomous ODEs, and

thus we will make little further mention of them.

Additionally, some texts advise to plot the line segments at lengths reflecting the rate

of change of ݕ. However, by hand this will almost always be a very laborious task,

whilst even with a computer if ݂ ሺݕሻ takes a large range of values the resulting plot can

become somewhat uninformative with obscuring arrows of great length, and other

arrows of length too short to be useful. Thus, it is usually best to plot all line segments

at some small arbitrary length.

CHAPTER 2

5

As is often the case in mathematics, concepts can be more easily understood through

an example. As such, consider the ODE:

�݀ݕ݀ = Ͷ − ଶ, ሺ͵ሻݕ

provided in the package as example1. More information will be provided later on

how to utilise the programs in phaseR, as well as how to specify your own systems.

For now though simply note the flow field produced below, and the multiple

trajectories that follow it:

2.3 Equilibrium Points and Stability

We now turn our attention to the so-called equilibrium points of our ODE ሺʹሻ. These

points are defined as the locations where:

 ݂ሺݕሻ = Ͳ.

t

CHAPTER 2

6

It is easy to understand why they are termed equilibrium points. Beginning at a point ݕ∗ where ݂ሺݕ∗ሻ = Ͳ, the system if unperturbed will remain at ݕ∗ throughout its

evolution. Their great importance lies in determining the long term behaviour of the

ODE.

Considering our example ODE ሺ͵ሻ again, it is a simple matter to find its equilibrium

points:

 ݂ሺݕ∗ሻ = Ͳ ⟹ Ͷ − ଶ∗ݕ = Ͳ ⟹ ሺʹ − ʹሻሺ∗ݕ + ሻ∗ݕ = Ͳ ⟹ ∗ݕ = −ʹ, ʹ.

For the equilibrium points however, just as much as we are interested in their

location, we are interested in whether they are stable or unstable. Here, informally,

being stable means that if the system is placed a small distance away from the

equilibrium point, it will remain close to this equilibrium point. Whilst being unstable

means a small perturbation away from the equilibrium point causes the solution to

diverge large distances away. More precisely, the definition of stability can be stated

as:

if for every ߳ > Ͳ, there exists � > Ͳ such that whenever |ݕሺͲሻ − |∗ݕ < � then |ݕሺ�ሻ − |∗ݕ < ߳ for all �

Classically, to determine the stability of any located equilibrium points, we have two

options. The first method is the phase portrait. Indeed, our earlier decision to restrict

our attention to autonomous systems was motivated by the condition required for

phase portrait analysis: when we remove time dependence from our systems

evolution, it allows us to collapse our qualitative analysis from the �-ݕ plane to simply

considering how ݂ሺݕሻ varies with ݕ.

So, in phase portrait analysis, we first plot ݂ሺݕሻ against ݕ. From ሺʹሻ it should be easy

to see that whenever ݂ሺݕሻ > Ͳ, ݕ will increase. Whilst whenever ݂ሺݕሻ < Ͳ, ݕ will

decrease. Moreover, the locations where ݂ሺݕሻ cross the ݕ-axis are exactly the

equilibrium points (thus this plot can be useful for locating equilibrium points).

Therefore, we can represent the evolution of ݕ in this plot by simply placing arrows

along the ݕ-axis indicating whether ݕ would be increasing or decreasing. Then, the

cases where arrows either side of an equilibrium point towards each other denote

stability, whilst when they point away they denote instability.

Again, as an example we consider the system ሺ͵ሻ. Plotting ݂ ሺݕሻ = Ͷ − and ݕ ଶ againstݕ

adding arrows as described we acquire the graph on the following page:

CHAPTER 2

7

Thus, we can see that the equilibrium point ݕ∗ = ʹ is stable, whilst ݕ∗ = −ʹ is unstable.

Indeed, looking back at the trajectories we plotted in Section 2.2, we can observe that

solutions do converge towards ݕ = ʹ, but away from ݕ = −ʹ.

Moreover, we now note an important consequence of requiring ݂ to be continuous

and differentiable; that the solution curves cannot touch each other, except to

converge at equilibrium points. This is because these conditions on ݂ guarentee

solutions to ሺʹሻ are unique. We observe in our earlier plot of several trajectories of

the system ሺ͵ሻ that this is indeed the case.

Our second option to perform such stability analysis, comes from utilising the Taylor

Series expansion of ݂. We begin by supposing we are a small distance � away from

our fixed point ݕ∗, i.e. ݕ = ∗ݕ + �. Then we can write the Taylor Series of ݂ as:

 ݂ሺݕ∗ + �ሻ = ݂ሺݕ∗ሻ + � ݕ݂݀݀ ሺݕ∗ሻ,

ignoring higher order terms.

CHAPTER 2

8

Recalling ݂ሺݕ∗ሻ = Ͳ, our ODE ሺʹሻ becomes:

 ݀݀� ሺݕ∗ + �ሻ = � ݕ݂݀݀ ሺݕ∗ሻ, ⟹ ݀�݀� = � ݕ݂݀݀ ሺݕ∗ሻ = ݇�.

This ODE for � can be solved easily to give � = �଴݁��. Then stability can be found

based upon whether � grows or decays as � increases, i.e. we have:

 ݇ = ݕ݂݀݀ ሺݕ∗ሻ { > Ͳ ∶ Stable, < Ͳ ∶ Unstable.
 ݇ here is sometimes referred to as the discriminant, whilst this approach is also often

referred to as Perturbation Analysis.

Returning to our example ODE ሺ͵ሻ, we can perform such analysis easily:

ݕ݂݀݀ ሺݕ∗ሻ = ∗ݕʹ− = { −Ͷ ∶ ∗ݕ = ʹ, ,, Ͷ ∶ ∗ݕ = −ʹ. ,

Thus we draw the same conclusion as before; ݕ∗ = ʹ is stable, and ݕ∗ = −ʹ is unstable.

We will see later how one of the programs in phaseR can perform this stability

analysis for us.

It should now be clear that we can clearly state if ݕሺͲሻ > ʹ or Ͳ < ሺͲሻݕ < ʹ; the

solution will eventually approach ݕ = ʹ. However, if ݕሺͲሻ < Ͳ, ݕ ⟶ −∞ as � ⟶ ∞.

Such general statements can often be made as a result of the above analysis.

It is worthwhile noting here that if we find:

ݕ݂݀݀ ሺݕ∗ሻ = Ͳ,

then to this order of the Taylor Series no conclusion can be drawn about stability.

So, now we have observed all of the key components required to perform a qualitative

analysis upon a one dimensional autonomous ODE. We begin by plotting the flow

field, and from this several trajectories. We then identify the equilibrium points and

choose a method to determine their stability. All such techniques are available in this

package, and we will later discuss how to implement them. First however, we will

discuss how they can be generalised to coupled ODEs.

CHAPTER 3

9

Chapter 3: First Order Dynamical Systems in

Two Dimensions

3.1 Autonomous Ordinary Differential Equations in Two Dimensions

As may well be expected, things get substantially more complex in the world of

coupled ODEs; very rarely can such systems be solved analytically. Unfortunately, the

analysis of many real life systems does involve interacting variables, and so these

systems are not uncommon. Here, the first restriction we make is to the case of two

dimensional (or two variable) systems; a necessity for the following techniques to be

possible (this is often considered a disadvantage of phase plane methods; that they

cannot be generalised to more than two dimensions. Fortunately however, many

systems can be approximated to two dimensions). These systems can be written in

their most general form as:

�݀ݔ݀ = ݂ሺݔ, ,ݕ �ሻ �݀ݕ݀ , = ݃ሺݔ, ,ݕ �ሻ. ሺͶሻ

In this most general case numerical solution would almost certainly be the only way

forward. However, if we again make the restriction to autonomous systems, the phase

plane methods from one dimension can be generalised to avoid the need for

numerical integration. Following the same route as in the one dimensional case, an

autonomous system can be written for two coupled ODEs as:

�݀ݔ݀ = ݂ሺݔ, �݀ݕ݀ ,ሻݕ = ݃ሺݔ, ሻ. ሺͷሻݕ

As before, the definition of the flow field (more commonly, and from here on out,

referred to as the velocity field) and equilibrium points, as well as their stability will

be important. Here however, we also meet the concept of a nullcline. Again, technically

we require that ݂ and ݃ be continuous, (and now) partially differentiable functions.

Before we proceed to discuss the generalisation of our earlier techniques to this two

dimensional system, it is useful to note that certain second order ODEs can indeed be

re-cast by variable substitution into a system of type ሺͷሻ. Indeed, consider the second

order ODE given by:

 ܽሺݕሻ ݀ଶ݀ݕ� + ܾሺݕሻ݀݀ݕ� + ܿሺݕሻ = Ͳ.

CHAPTER 3

10

We make the substitution ݔ = :and re-write the system as �݀/ݕ݀

�݀ݕ݀ = �݀ݔ݀ ,ݔ = ͳܽሺݕሻ [−ܾሺݕሻݔ − ܿሺݕሻ].

In this way, it is actually possible to analyse the behaviour of certain second order

ODEs using the methods for coupled first order ODEs.

3.2 The Velocity Field

We witnessed earlier how the restriction to autonomous ODEs in the one dimensional

case allowed us to restrict attention to the phase portrait; the plot of ݂ሺݕሻ against ݕ.

In the two dimensional case, this restriction allows us to restrict attention to the plane

produced by the two dependent variables. Using our notation in ሺͷሻ, this is the ݕ-ݔ

plane, and is often referred to in this context as the phase plane. Representation in

this manner proves to be the most convenient way to visualise the system.

In this plane, we can produce a plot analogous to the flow field of Section 2.2, by at

many points ሺݔ, ሻ plotting a small line segment (a vector) in the direction given byݕ

the rates of change of ݔ and ݕ; provided by ݂ሺݔ, ,ݔሻ and ݃ሺݕ ሻ. This plot is usuallyݕ

referred to as the velocity field, or sometimes the direction field, and perhaps

confusingly, the phase portrait. We can then again for any point trace out the

trajectory of a solution by using the fact that it must pass through our line segments

in a parallel manner. Repeating this procedure for several points, we can again build

up a family of solutions and a good picture of the behaviour of solutions to our system ሺͷሻ. As before however, it is important to understand that using this method is only

an approximation to performing numerical integration, and things can here become

very ambiguous around certain points (the equilibria).

To illustrate the concept of the velocity field, we again turn to an example. This time

consider the system given by:

�݀ݔ݀ = ݔ − �݀ݕ݀ ,ݕݔ = ݕݔ − ሺ͸ሻ .ݕ

Using phaseR we can produce the following plot of the velocity field along with

several trajectories, seen on the following page:

CHAPTER 3

11

Analogous to the one dimensional analysis performed in Chapter 2, we observe how

our restriction to continuous partially differentiable ݂ and ݃ ensures that trajectories

cannot cross (though they can again converge at equilibria).

What is more, as before, some texts advise to plot the vectors at lengths reflecting the

magnitudes of the rates of change of ݔ and ݕ. However, some small arbitrary length

usually still remains the best option.

Finally, as was the case in the one dimensional analysis, some texts here again refer

to the method of isoclines for tracing out trajectories. Isoclines here are defined as

curves in the ݕ-ݔ plane of constant gradient, i.e.:

ݔ݀ݕ݀ = ݃ሺݔ, ,ݔሻ݂ሺݕ ሻݕ = ,ߙ

for different values of ߙ. Once more, trajectories would be produced by using the fact

that we know the angle they should cut each isocline. We will make no further

reference to isoclines in these notes; hopefully for reasons discussed below it should

become clear why certain tricks make the need for plotting isoclines very rare.

CHAPTER 3

12

3.3 Nullclines

An important concept in the case of two dimensional systems, is that of nullclines.

Here, ݔ-nullclines are defined by the locations where ݂ሺݔ, ሻݕ = Ͳ, whilst the ݕ-

nullclines are defined by the locations where ݃ሺݔ, ሻݕ = Ͳ. Thus, the ݔ- and ݕ-nullclines

define the locations where ݔ and ݕ respectively, do not change with �. As a

consequence, when plotting a vector field by hand it is usually wise to plot the

nullclines first, as the line segments (or vectors) along them move parallel to the ݔ-

and ݕ-axes.

Returning to our example given by system ሺ͸ሻ, we can find its nullclines as follows:

∶ ݔ ݔ − ݕݔ = Ͳ ⟹ ሺͳݔ − ሻݕ = Ͳ ⟹ ݔ = Ͳ or ݕ = ͳ, ݕ ∶ ݕݔ − ݕ = Ͳ ⟹ ݔሺݕ − ͳሻ = Ͳ ⟹ ݔ = ͳ or ݕ = Ͳ.

We can then plot these nullclines along with the velocity field:

CHAPTER 3

13

3.4 Equilibrium Points and Stability

Equilibrium points maintain their importance in two dimensions. Here,

generalisation defines them to be the locations ሺݔ∗, :ሻ where∗ݕ

 ݂ሺݔ∗, ሻ∗ݕ = ݃ሺݔ∗, ሻ∗ݕ = Ͳ.

Thus, another utility of nullclines immediately becomes apparent; the locations where ݔ- and ݕ-nullclines cross are the equilibria. However, it is important to note that

locations where ݔ-nullclines or ݕ- nullclines cross each other, are not equilbria. For

this reason it is usually useful to plot ݔ- and ݕ-nullclines in different colours.

Revisiting the example system ሺ͸ሻ, it is easy to find either analytically, or from the

nullcline plot, that two equilibria are present; the points ሺͲ,Ͳሻ and ሺͳ,ͳሻ.

We now note a useful fact about equilibria and nullclines from the plot in Section 3.3.

On opposite sides of an equilibria, along a nullcline, the orientation of the velocity

arrows is reversed. This is a property shared by the majority of systems (with the

exception being certain singular cases where the Jacobian that we meet later is zero).

Because trajectories must be continuous, the direction vectors must vary

continuously from one point to another on the nullclines everywhere else. So in most

cases when seeking to plot the velocity field and trajectories, it suffices to determine

direction vectors at a few select locations and deduce the rest by preserving

continuity and switching orientation when an equilibrium is crossed. It is this trick

that makes plotting many isoclines often unnecessary.

Again, we must now turn our attention to the stability of the equilibrium points. In

two dimensions the definition of stability remains the same, but as well as

determining whether a point is stable or unstable, we can additionally classify the

nature in which trajectories move away or towards it. Ultimately, as in the one

dimensional case, we aim to identify the long term behaviour of solutions in different

regions of the plane.

In this case, we must make use of a mathematical argument; to gain a full

understanding use of a graph is not enough (though it can be useful in certain singular

cases). Here, many texts distinguish between the case of linear and non-linear

systems, and so we will also make such a distinction, though ultimately we will treat

these two types of system the same.

The linear version of system (5) is given by:

�݀ݔ݀ = ݔܽ + �݀ݕ݀ ,ݕܾ = ݔܿ + ,ݕ݀

CHAPTER 3

14

or in matrix form:

 ݀݀� ቀݕݔቁ = ݀݀� � = ቀܽ ܾܿ ݀ቁ ቀݕݔቁ = ሺ͹ሻ .�ۯ

Now, provided det ۯ ≠ Ͳ, a unique solution exists to this system ሺweǯll return to
discussing the case det ۯ = Ͳ later), and can be written in the form:

 � = �ଵ݁�భ��ଵ + �ଶ݁�మ��ଶ,

where ߣଵ and ߣଶ are the eigenvalues of ۯ, �ଵ and �ଶ are their corresponding

eigenvectors, and �ଵ and �ଶ are arbitrary constants. From here we can determine

stability based on the values of the eigenvalues. However, the procedure here on out

is the same as that for non-linear systems and so we will move to the analysis required

for the more complex case of non-linearity.

So, from the above it should be obvious that provided det ۯ ≠ Ͳ, linear systems have

only one equilibrium point; ሺͲ,Ͳሻ. Non-linear systems however, are much more

complicated; they can have multiple equilibria and even display limit cycle behaviour

(as defined later). However, close to an equilibrium point, behaviour can be usually

understood by linearising the model about the equilibria.

To do this we proceed in a similar fashion to the Taylor Series method of Section 2.3.

We suppose we have an equilibrium point given by ሺݔ∗, ሻ and that our system lies∗ݕ

slightly away from this point at ሺݔ∗ + �, ∗ݕ + ߳ሻ. Then using the Taylor expansion for ݂, our differential equation for ݔ becomes:

 ݀�݀� = ݂ሺݔ∗ + �, ∗ݕ + ߳ሻ, = ݂ሺݔ∗, ሻ∗ݕ + � ݔ߲݂߲ ሺݔ∗, ሻ∗ݕ + ߳ ݕ߲݂߲ ሺݔ∗, = ,ሻ∗ݕ � ݔ߲݂߲ ሺݔ∗, ሻ∗ݕ + ߳ ݕ߲݂߲ ሺݔ∗, .ሻ∗ݕ

Similarly, our differential equation for ݕ becomes:

 ݀߳݀� = � ݔ߲߲݃ ሺݔ∗, ሻ∗ݕ + ߳ ݕ߲߲݃ ሺݔ∗, .ሻ∗ݕ

Here we have ignored terms of second order and higher.

CHAPTER 3

15

If we write this system in matrix form we acquire:

 ݀݀� � = (
ݔ߲݂߲ ݔ߲߲݃ݕ߲݂߲ (ݕ߲߲݃

 ||
ሺ௫∗,௬∗ሻ

� = (௫݂ ௬݂݃௫ ݃௬)|ሺ௫∗,௬∗ሻ � = ��, ሺͺሻ

Where � is called the Jacobian of the system, and:

 � = ቀ�߳ቁ.

If we let the eigenvalues of � be denoted ߣଵ and ߣଶ, with corresponding eigenvectors �ଵ and �ଶ, then the general solution to ሺͺሻ is:

 � = �ଵ݁�భ��ଵ + �ଶ݁�మ��ଶ,

where �ଵ and �ଶ are arbitrary constants.

Considering the linear system (7) we find that � = Thus stability of ሺͲ,Ͳሻ in the .ۯ

linear case can be determined by the same classification rules as below for the non-

linear case. Specifically we have:

 If ߣଵ and ߣଶ are both real and positive ሺߣଵ > ଶߣ > Ͳ sayሻ, the solution for � moves

outwards in both the �ଵ and �ଶ directions (to be precise, it moves more quickly in

the �ଵ direction). Thus |�| will increase exponentially with � and so trajectories

move away from the equilibrium point. This is the definition of an unstable node.

 If ߣଵ and ߣଶ are both real and negative ሺߣଵ < ଶߣ < Ͳ sayሻ, |�| will decrease

exponentially and trajectories move towards the equilibrium point. This is the

definition of a stable node.

 If ߣଵ and ߣଶ are both real but have opposite sign (ߣଵ < Ͳ, ߣଶ > Ͳ say), trajectories

move outwards along �ଶ, but inwards along �ଵ. Unless � initially lies exactly

parallel to �ଵ, the solution will eventually move away from the equilibrium point;

and thus it is unstable. This is the definition of a saddle point.

 If ߣଵ and ߣଶ are complex (ܽ ± �ܾ say), then the solution for � can be rewritten as:

 � = ݁��[�ଵሺcos ܾ� + � sin ܾ�ሻ�ଵ + �ଶሺcos ܾ� − � sin ܾ�ሻ�ଶ], = ݁��ሺۯ cos ܾ� + ۰ sin ܾ�ሻ,

where ۯ = �ଵ�ଵ + �ଶ�ଶ and ۰ = �ሺ�ଵ�ଵ − �ଶ�ଶሻ. Thus, from this form we can see

that the solution will spiral around the equilibrium point. If ܽ > Ͳ then with each

loop |�| increases; this is the definition of an unstable focus. If ܽ < Ͳ then we have

CHAPTER 3

16

the opposite situation; with each loop |�| decreases; this is the definition of a

stable focus. If ܽ = Ͳ then the solution continues in a closed loop; this is the

definition of a centre.

Fortunately for us, it is not actually necessary to find the exact values of the

eigenvalues (though computationally this is not a difficult task, by hand it can be time

consuming). We only require the signs of the eigenvalues, or of their real parts, to

perform the classification. To this end, consider the characteristic equation of �:
 ሺ ௫݂ − ሻ(݃௬ߣ − (ߣ − ௬݂݃௫ = Ͳ.

However, observing that trሺ�ሻ = ௫݂ + ݃௬ and detሺ�ሻ = Δ = ௫݂݃௬ − ௬݂݃௫, we can write

the characteristic equation of J as:

ଶߣ − ߣ� + Δ = Ͳ, ⟹ ߣ = � ± √�ଶ − ͶΔʹ .

From this we can draw up the following table that allows us to classify the equilibria

using the signs of �, Δ and �ଶ − ͶΔ:

 � �� − �� Eigenvalues of J � Classification < Ͳ > Ͳ Real, opposite signs N/A Saddle > Ͳ > Ͳ Real, same signs
< Ͳ Stable node > Ͳ Unstable node > Ͳ < Ͳ Complex conjugate pair

< Ͳ Stable focus = Ͳ Centre > Ͳ Unstable focus = Ͳ N/A N/A Indeterminate

N/A = Ͳ Real, equal
< Ͳ Stable node > Ͳ Unstable node

 Note: Focusǯ are often referred to as spirals.

From here, we will always refer to �ଶ − ͶΔ as the discriminant.

To be more precise, for the case of Δ = Ͳ; we would have to consider second-order

terms in the Taylor Series approximation made earlier in order to determine stability.

Alternatively, in this case, use of the velocity field and traced trajectories can allow us

to identify if the point is stable or not.

CHAPTER 3

17

Returning to our example system ሺ͸ሻ, taking partial derivatives we can compute the

Jacobian at any equilibrium point ሺݔ∗, :ሻ from the general version∗ݕ

 � = (ͳ − ∗ݕ ∗ݕ∗ݔ− ∗ݔ − ͳ).

Thus, at ሺͲ,Ͳሻ, we have:

 � = ቀͳ ͲͲ −ͳቁ|ሺ଴,଴ሻ.

So trሺ�ሻ = � = Ͳ and detሺ�ሻ = Δ = −ͳ; which from our table above makes ሺͲ,Ͳሻ a

saddle point. For ሺͳ,ͳሻ however, we have:

 � = ቀͲ −ͳͳ Ͳ ቁ|ሺଵ,ଵሻ.

Therefore, trሺ�ሻ = � = Ͳ and detሺ�ሻ = Δ = ͳ; which from our table above makes ሺͳ,ͳሻ
a centre. Indeed, if we look back at our earlier plot, we can observe trajectories

diverging away from ሺͲ,Ͳሻ, but traversing around ሺͳ,ͳሻ. Again, we will see later how

this analysis can be performed for us in phaseR.

As a last point of interest, note that it is sometimes interesting to plot ݔ and ݕ

trajectories against �. For the case of ሺݔ଴, ଴ሻݕ = ሺ͵,Ͷሻ in our example system ሺ͸ሻ this

results in the following plot where we can witness the oscillating nature of ݔ and ݕ:

CHAPTER 3

18

The utility of such plots becomes more apparent in cases where trajectories can be

seen to converge upon an equilibrium point; indicating its stability and often whether

it is a node or focus.

So, we have now discussed all of the techniques required to perform a phase plane

analysis of a two dimensional autonomous ODE system. We begin by locating and

plotting nullclines, using these to create the velocity field. From this we can plot

numerous trajectories. We then identify any equilibria and classify them according to

the earlier table.

3.5 Limit Cycles

Non-linear systems can also exhibit a type of behaviour known as a limit cycle. In the

phase plane, a limit cycle is defined as an isolated closed orbit. Closed here denotes

the periodic nature of the motion and isolated denotes the limiting nature of the cycle;

with nearby trajectories converging to, or diverging away from, it. Limit cycles have a

complex mathematical theory behind them, which we will not go into here. We will

however observe an example of limit cycle behaviour later on.

CHAPTER 4

19

Chapter 4: phaseR Usage

To perform all of the above techniques, the package contains six key functions. Below

is a description of each ones utility, as well as the user specifiable input variables. The

description of inputs is repetitive on purpose to reflect how many are common across

programs, and for the most part equal to the description seen in R. In addition, we will

continue to use ݕ ,ݔ and � as our variables.

4.1 flowField

This function allows the user to plot the flow or velocity field for a one or two

dimensional autonomous ODE system. The following inputs can be set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 x.lim: In the case of a two dimensional system, this sets the limits of the first

dependent variable in which gradient reflecting line segments should be plotted.

In the case of a one dimensional system, this sets the limits of the independent

variable in which these line segments should be plotted. Should be a vector of

length two.

 y.lim: In the case of a two dimensional system this sets the limits of the second

dependent variable in which gradient reflecting line segments should be plotted.

In the case of a one variable system, this sets the limits of the dependent variable

in which these line segments should be plotted. Should be a vector of length two.

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 points: Sets the density of the line segments to be plotted. points segments

will be plotted in the ݔ and ݕ directions. Fine tuning here, by shifting points up and

down, allows for the creation of more aesthetically pleasing plots. Defaults to 11.

 system: Set to either "one.dim" or "two.dim" to indicate the type of system

being analysed. Defaults to "two.dim".

 colour: Sets the colour of the plotted line segments. Should be a vector of length

one. Will be reset accordingly if it is a vector of the wrong length. Defaults to

"gray".

 arrow.type: Sets the type of line segments plotted. If set to "proportional"

the length of the line segments reflects the magnitude of the derivative. If set to

"equal" the line segments take equal lengths, simply reflecting the gradient of

the derivative(s). Defaults to "equal".

CHAPTER 4

20

 arrow.head: Sets the length of the arrow heads. Passed to arrows. Defaults to

0.05.

 frac: Sets the fraction of the theoretical maximum length line segments can take

without overlapping, that they can actually attain. In practice, frac can be set to

greater than 1 without line segments overlapping. Fine tuning here assists the

creation of aesthetically pleasing plots. Defaults to 1.

 add: Logical. If TRUE, the flow field is added to an existing plot. If FALSE, a new

plot is created. Defaults to TRUE.

 …: Additional arguments to be passed to either plot or arrows.

Returned by flowField is a list object containing all of the input variables as well as

the following components (the exact the exact make up is dependent upon the value

of system):

 dx: A matrix. In the case of a two dimensional system, the values of the derivative

of the first dependent derivative at all evaluated points.

 dy: A matrix. In the case of a two dimensional system, the values of the derivative

of the second dependent variable at all evaluated points. In the case of a one

dimensional system, the values of the derivative of the dependent variable at all

evaluated points.

 x: A vector. In the case of a two dimensional system, the values of the first

dependent variable at which the derivatives were computed. In the case of a one

dimensional system, the values of the independent variable at which the

derivatives were computed.

 y: A vector. In the case of a two dimensional system, the values of the second

dependent variable at which the derivatives were computed. In the case of a one

dimensional system, the values of the dependent variable at which the derivatives

were computed.

4.2 nullclines

This function allows the user to plot nullclines for two dimensional autonomous ODE

systems. Or it can be used to plot horizontal lines at equilibrium points for one

dimensional autonomous ODE systems. The following inputs can be set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 x.lim: In the case of a two dimensional system, this sets the limits of the first

dependent variable in which gradient reflecting line segments should be plotted.

In the case of a one dimensional system, this sets the limits of the independent

CHAPTER 4

21

variable in which these line segments should be plotted. Should be a vector of

length two.

 y.lim: In the case of a two dimensional system this sets the limits of the second

dependent variable in which gradient reflecting line segments should be plotted.

In the case of a dimensional system, this sets the limits of the dependent variable

in which these line segments should be plotted. Should be a vector of length two.

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 points: Sets the density at which derivatives are computed. points × points

derivatives will be computed. Levels of zero gradient are identified using these

computations and the function contour. Increasing the value of points improves

identification of nullclines, but increases computation time. Defaults to 101.

 system: Set to either "one.dim" or "two.dim" to indicate the type of system

being analysed. Defaults to "two.dim".

 colour: In the case of a two dimensional system, sets the colours used for the ݔ-

and ݕ-nullclines. In the case of a one dimensional system, sets the colour of the

lines plotted horizontally along the equilibria. Will be reset accordingly if it is a

vector of the wrong length. Defaults to c("red", "blue").

 add: Logical. If TRUE, the nullclines are added to an existing plot. If FALSE, a new

plot is created. Defaults to TRUE.

 …: Additional arguments to be passed to either plot or contour.

Returned by nullclines is a list object containing all of the input variables as well

as the following components (the exact the exact make up is dependent upon the

value of system):

 dx: A matrix. In the case of a two dimensional system, the values of the derivative

of the first dependent derivative at all evaluated points.

 dy: A matrix. In the case of a two dimensional system, the values of the derivative

of the second dependent variable at all evaluated points. In the case of a one

dimensional system, the values of the derivative of the dependent variable at all

evaluated points.

 x: A vector. In the case of a two dimensional system, the values of the first

dependent variable at which the derivatives were computed. In the case of a one

dimensional system, the values of the independent variable at which the

derivatives were computed.

 y: A vector. In the case of a two dimensional system, the values of the second

dependent variable at which the derivatives were computed. In the case of a one

dimensional system, the values of the dependent variable at which the derivatives

were computed.

CHAPTER 4

22

4.3 numericalSolution

Used for two dimensional systems, this function numerically solves the autonomous

ODE system for a given initial condition. It then plots the dependent variables against

the independent variable. The following inputs can be set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 y0: The initial condition. Should be a vector of length two reflecting the location

of the two dependent variables initially.

 t.start: The value of the independent variable to begin the numerical

integration at. Defaults to 0.

 t.end: The value of the independent variable to end numerical integration at.

 t.step: The step length of the independent variable, used in numerical

integration. Decreasing t.step theoretically makes the numerical integration

more accurate, but increases computation time. Defaults to 0.01.

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 type: If set to "one" the trajectories are plotted on the same graph. If set to

"two" they are plotted on separate graphs. Defaults to "two".

 colour: Sets the colours of the trajectories of the two dependent variables. Will

be reset accordingly if it is not a vector of length two. Defaults to rep("black",

2).

 grid: If set to "yes" grids are added to the plots. If set to "no", grids are not

added. Defaults to "yes".

 …: Additional arguments to be passed to plot.

Here, the numerical integration is performed by the function ode of the package

deSolve.

Returned by numericalSolution is a list object containing all of the input

variables as well as the following components:

 t: A vector containing the values of the independent variable at each integration

step.

 x: A vector containing the numerically computed values of the first dependent

variable at each integration step.

 y: A vector containing the numerically computed values of the second dependent

variable at each integration step.

CHAPTER 4

23

4.4 phasePortrait

For a one dimensional autonomous ODE, it plots the phase portrait i.e. the derivative

against the dependent variable. In addition, along the dependent variable axis it plots

arrows pointing in the direction of dependent variable change with increasing value

of the independent variable. From this stability of equilibrium points (i.e. locations

where the horizontal axis is crossed) can be determined. The following inputs can be

set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 y.lim: Sets the limits of the dependent variable for which the derivative should

be computed and plotted. Should be a vector of length two.

 y.step: Sets the step length of the dependent variable vector for which

derivatives are computed and plotted. Decreasing y.step makes the resulting

plot more accurate, but comes at a small cost to computation time. Defaults to 0.01.  parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 points: Sets the density at which arrows are plotted along the horizontal axis.

points arrows will be plotted. Fine tuning here, by shifting points up and

down, allows for the creation of more aesthetically pleasing plots. Defaults to 10.

 frac: Sets the fraction of the theoretical maximum length line segments can take

without overlapping, that they actually attain. Fine tuning here assists the creation

of aesthetically pleasing plots. Defaults to 0.5.  arrow.head: Sets the length of the arrow heads. Passed to arrows. Defaults to

0.075.

 colour: Sets the colour of the line in the plot, as well as the arrows. Will be reset

accordingly if it is not a vector of length one. Defaults to "black".

 …: Additional arguments to be passed to either plot or arrows.

Returned by phasePortrait is a list object containing all of the input variables as

well as following components:

 dy: A vector containing the value of the derivative at each evaluated point.

 y: A vector containing the values of the dependent variable for which the

derivative was evaluated.

CHAPTER 4

24

4.5 stability

Uses stability analysis to classify equilibrium points. Uses the Taylor Series approach

(also known as Perturbation Analysis) to classify equilibrium points of a one

dimensional autonomous ODE system, or the Jacobian approach to classify

equilibrium points of a two dimensional autonomous ODE system. In addition, it can

be used to find the Jacobian at any point of a two dimensional system. The following

inputs can be set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 y.star: The point at which to perform stability analysis. For a one variable

system this should be a single number, for a two variable system this should be a

vector of length two (i.e. presently only one equilibrium points stability can be

evaluated at a time). Alternatively this can be left blank and the user can use

locator to choose a point to perform the analysis. However, given you are unlikely

to locate exactly the equilibrium point, if possible enter y.star yourself. Defaults

to NULL.

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 system: et to either "one.dim" or "two.dim" to indicate the type of system

being analysed. Defaults to "two.dim".

 h: Step length used to approximate the derivative(s). Defaults to 1e-7.

 summary: Set to either "yes" or "no" to determine whether a summary of the

stability analysis is returned. Defaults to "yes".

Returned by stability is a list object containing all of the input variables as well as

the following components (the exact the exact make up is dependent upon the value

of system):

 Delta: In the two dimensional system case, Value of the Jacobians determinant

at y0.

 discriminant: In the one dimensional system case, the value of the

discriminant used in Perturbation Analysis to assess stability. In the two

dimensional system case, the value of �ଶ − ͶΔ.

 eigenvalues: In the two dimensional system case, the value of the Jacobians

eigenvalues at y0.

 eigenvectors: In the two dimensional system case, the value of the Jacobians

eigenvectors at y0.

CHAPTER 4

25

 Jacobian: In the two dimensional system case, the Jacobian at y0.

 h: As per input.

 parameters: As per input.

 system: As per input.

 tr: In the two dimensional system case, the value of the Jacobians trace at y0.

4.6 trajectory

This function allows the user to plot trajectories by performing numerical integration

of the chosen ODE system, for a user specifiable range of initial conditions. The

following inputs can be set:

 deriv: A function computing the derivative at a point for the ODE system to be

analysed. More discussion of the required structure of these functions is supplied

at the end of this Chapter.

 y0: The initial condition(s). In the case of a one dimensional system, this can either

be a single number indicating the location of the dependent variable initially, or a

vector indicating multiple initial locations of the independent variable. In the case

of a two dimensional system, this can either be a vector of length two reflecting

the location of the two dependent variables initially. Or it can be matrix where

each row reflects a different initial condition. Alternatively this can be left blank

and the user can use locator to specify initial condition(s) on a plot. In this case,

for one dimensional systems, all initial conditions are taken at t.start, even if

not selected so on the graph. Defaults to NULL.

 n: If y0 is left NULL so initial conditions can be specified using locator, n sets

the number of initial conditions to be chosen. Defaults to NULL.

 t.start: The value of the independent variable to begin the numerical

integration at. Defaults to 0.

 t.end: The value of the independent variable to end numerical integration at.

 t.step: The value of the independent variable to end numerical integration at.

Decreasing t.step theoretically makes the numerical integration more accurate,

but increases computation time. Defaults to 0.01.

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as

a vector; the order of the parameters can be found from the deriv file. Defaults

to NULL.

 system: Set to either "one.dim" or "two.dim" to indicate the type of system

being analysed. Defaults to "two.dim".

 colour: The colour(s) to plot the trajectories in. Will be reset accordingly if it is

a vector not of the length of the number of initial conditions. Defaults to "black".

 add: Logical. If TRUE, the trajectories added to an existing plot. If FALSE, a new

plot is created. Defaults to TRUE.

 …: Additional arguments to be passed to plot.

CHAPTER 4

26

Here, the numerical integration is performed by the function ode of the package

deSolve.

Returned by trajectory is a list object containing all of the input variables as well as

the following components (the exact the exact make up is dependent upon the value

of system):

 t: A vector containing the values of the independent variable at each integration

step.

 x: A vector containing the numerically computed values of the first dependent

variable at each integration step.

 y: A vector containing the numerically computed values of the second dependent

variable at each integration step.

4.7 Derivative Specification

In addition to the above functions, phaseR contains multiple example one and two

dimensional autonomous ODE systems; these are the focus of Chapters 5 to 7. Here

however, we discuss how the user can create their own system.

In order to be compatible with phaseR, systems need to be coded as a list returning

function, taking three inputs; t, y, and parameters. Thus the basic skeleton for a

one or two dimensional system (with the function named derivative) is as follows:

derivative <- function(t, y, parameters){

 # Enter derivative computation here

 list(dy)

}

All that needs to be done is to set the named parameters, and the value of dy, with

initialisation made where required. However, the approach must change slightly

depending upon whether you are setting up a one or two dimensional system. The

packages key programs require for points of a two variable system to be presentable

as a vector of length 2 (because there are two dependent variables).

Thus, for a system such as:

�݀ݔ݀ = �݀ݕ݀ ,ݕ͵ = ,ݔʹ

we could use the following code:

CHAPTER 4

27

derivative <- function(t, y, parameters){

 x <- y[1]

 y <- y[2]

 dy <- rep(0, 2)

 dy[1] <- 3*y

 dy[2] <- 2*x

 list(dy)

}

As a more complex example, consider instead changing the system above to:

�݀ݔ݀ = �݀ݕ݀ ,ݕߙ = ,ݔߚ

with ߙ and ߚ parameters. The code could then proceed as follows:

derivative <- function(t, y, parameters){

 alpha <- parameters[1]

 beta <- parameters[2]

 x <- y[1]

 y <- y[2]

 dy <- rep(0, 2)

 dy[1] <- alpha*y

 dy[2] <- beta*x

 list(dy)

}

Things are slightly simpler for one dimensional systems, where no such vector

considerations need to be made. We could for example create a derivative function

for the system:

ݔ݀ݕ݀ = ܽሺܾ − ͵ − ,ሻଶݕ

using the following code:

derivative <- function(t, y, parameters){

 a <- parameters[1]

 b <- parameters[2]

 dy <- a*((b – 3 - y)^2)
 list(dy)

}

CHAPTER 4

28

CHAPTER 5

29

Chapter 5: Examples

Within phaseR numerous example systems are available. Here we will analyse some

of them, as an indication of how to perform phase plane analysis by hand, and with

the help of phaseR. The language is again at times deliberatively repetitive; here to

indicate how a general procedure can be used when performing analysis. It is not a

useful exercise for me to provide inferior hand drawn plots, so only ones produced by

phaseR are shown. It is in addition useful to note that the small circles on the

trajectory plots indicate initial conditions specified by the user.

Example 1: We begin with the one dimensional autonomous ODE:

�݀ݕ݀ = ሺͳݕ − ʹሻሺݕ − ,ሻݕ

provided in the package as example2. We begin by plotting the flow field and several

trajectories using the following code, adding horizontal lines at any equilibrium

points to indicate their presence as well:

> example2.flowField <- flowField(example2, x.lim = c(0, 4),

+ y.lim = c(-1, 3), points = 21, system = "one.dim", add =

+ FALSE, xlab = "t", ylab = "y")

> grid()

> example2.nullclines <- nullclines(example2, x.lim = c(0,

+ 4), y.lim = c(-1, 3), system = "one.dim")

> example2.trajectory <- trajectory(example2, y0 = c(-0.5,

+ 0.5, 1.5, 2.5), t.end = 4, system = "one.dim")

The plot produced is as appears on the following page:

CHAPTER 5

30

Thus three equilibrium points have been identified; appearing to be ݕ∗ = Ͳ, 1 and 2.

Indeed if we set the RHS of our ODE to zero we can identify these three points as the

equilibrium points analytically:

ሺͳ∗ݕ − ʹሻሺ∗ݕ − ሻ∗ݕ = Ͳ, ,⟹ ∗ݕ = Ͳ, ͳ, ʹ.

Plotting the phase portrait we find that ݕ∗ = Ͳ and ݕ∗ = ʹ are unstable, whilst ݕ∗ = ͳ

is stable; as is also apparent from the flow field and trajectories above:

> example2.phasePortrait <- phasePortrait(example2, y.lim =

+ c(-0.5, 2.5), points = 10, xlab = "y", ylab = "f(y)")

> grid()

CHAPTER 5

31

Alternatively, using the Taylor Series approach to determine stability we have:

ݕ݀݀ ∗௬=௬|(�݀ݕ݀) = ଶ∗ݕ͵ − ͸ݕ∗ + ʹ = { ʹ ∶ ∗ݕ = Ͳ,−ͳ ∶ ∗ݕ = ͳ, , ,ʹ ∶ ∗ݕ = ʹ.

Thus we draw the same conclusion as from the phase portrait.

Finally, we can confirm our Taylor analysis using stability and the following code:

> example2.stability.1 <- stability(example2, y.star = 0,

+ system = "one.dim")

Discriminant: 2 Classification: Unstable

> example2.stability.2 <- stability(example2, y.star = 1,

+ system = "one.dim")

Discriminant: -1 Classification: Stable

> example2.stability.3 <- stability(example2, y.star = 2,

+ system = "one.dim")

Discriminant: 2 Classification: Unstable

CHAPTER 5

32

Example 2: The logistic growth model is frequently used in Biology to model the

growth of a population under density dependence. It is given by:

�݀ݕ݀ = ݕߚ ቀͳ − .ቁ�ݕ

With the following code, we can plot the flow field and several trajectories (for the

case ߚ = ͳ and � = ʹ), as well as adding horizontal lines at any equilibrium points to

indicate their presence:

> logistic.flowField <- flowField(logistic, x.lim = c(0, 5),

+ y.lim = c(-1, 3), parameters = c(1, 2), points = 21,

+ system = "one.dim", add = FALSE, xlab = "t", ylab = "y")

> grid()

> logistic.nullclines <- nullclines(logistic, x.lim = c(0,

+ 5), y.lim = c(-1, 3), parameters = c(1, 2), system =

+ "one.dim")

> logistic.trajectory <- trajectory(logistic, y0 = c(-0.5,

+ 0.5, 1.5, 2.5), t.end = 5, parameters = c(1, 2), system =

+ "one.dim")

CHAPTER 5

33

Thus, two equilibrium points have been identified. We can confirm their location in

the general case analytically by setting the RHS of the ODE to zero:

∗ݕߚ ቀͳ − ቁ�∗ݕ = Ͳ ⟹ ∗ݕ = Ͳ,�.

Plotting the phase portrait we can observe that ݕ∗ = Ͳ is unstable and ݕ∗ = � stable,

for the case ߚ = ͳ and � = ʹ:

> logistic.phasePortrait <- phasePortrait(logistic, y.lim =

+ c(-0.5, 2.5), parameters = c(1, 2), points = 10, xlab =

+ "y", ylab = "f(y)")

> grid()

Finally, if we use our Taylor Series method we can draw this same conclusion:

ݕ݀݀ ∗௬=௬|(�݀ݕ݀) = ߚ − �∗ݕߚʹ = { ߚ ∶ ∗ݕ = Ͳ, −ߚ ∶ ∗ݕ = �.

So for ߚ = ͳ and � = ʹ, we have a stable point at ݕ = ʹ. Moreover, from this we can

see that the point ݕ = � will in general be stable provided ߚ > Ͳ.

CHAPTER 5

34

The following code verifies our findings for the specific case studied above:

> logistic.stability.1 <- stability(logistic, y.star = 0,

+ parameters = c(1, 2), system = "one.dim")

Discriminant: 1 Classification: Unstable

> logistic.stability.2 <- stability(logistic, y.star = 2,

+ parameters = c(1, 2), system = "one.dim")

Discriminant: -1 Classification: Stable

Example 3: We now turn our attention to linear two dimensional autonomous ODE

systems. Here we consider the coupled system given by:

�݀ݔ݀ = �݀ݕ݀ ,ݔ− = Ͷݔ.

This is provided in the package as example4. We can find the ݔ- and ݕ- nullclines by

setting the derivatives to zero as follows:

ݔ ∶ ݔ− = Ͳ ⟹ ݔ = Ͳ, ݕ ∶ Ͷݔ = Ͳ ⟹ ݔ = Ͳ.

Thus the nullclines are the same. This means we have a line of equilibrium points

given by ݔ = Ͳ. To see why this is the case, and there is no unique solution, we

examine the Jacobian of our system:

 � = ቀ−ͳ ͲͶ Ͳቁ.

Thus the determinant of � is zero, and we have a singular case of the general linear

two dimensional system; the Taylor approach cannot be used to classify ሺͲ,Ͳሻ.

Thus here, in order to determine whether the points along the line ݔ = Ͳ are stable or

not, we plot the nullclines, the velocity field, and add several trajectories:

> example4.flowField <- flowField(example4, x.lim = c(-3,

+ 3), y.lim = c(-5, 5), points = 19, add = FALSE, xlab =

+ "x", ylab = "y")

> grid()

> example4.nullclines <- nullclines(example4, x.lim = c(-3,

+ 3), y.lim = c(-5, 5))

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 3, -4, -3, -4),

+ ncol = 2, nrow = 6, byrow = TRUE)

> example4.trajectory <- trajectory(example4, y0 = y0,

+ t.end = 10, xlab = "x", ylab = "y")

CHAPTER 5

35

Thus we observe the trajectories moving towards the line ݔ = Ͳ; indicative of

stability. This example illustrates that plotting trajectories can be useful when the

Taylor approach fails.

Example 4: We will now examine a further example of a linear two dimensional

system, given by:

�݀ݔ݀ = ݔʹ + �݀ݕ݀ ,ݕ = ݔʹ − .ݕ

It is provided in the package as example5. Again we begin by setting the derivatives

to zero to identify the nullclines:

ݔ ∶ ݔʹ + ݕ = Ͳ ⟹ ݕ = ݕ ,ݔʹ− ∶ ݔʹ − ݕ = Ͳ ⟹ ݕ = .ݔʹ

From these two equations it is easy to see that the only equilibrium point is at ሺͲ,Ͳሻ.
We begin by plotting the nullclines, velocity field and several trajectories:

> example5.flowField <- flowField(example5, x.lim = c(-3,

CHAPTER 5

36

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE, xlab =

"x", ylab = "y")

> grid()

> example5.nullclines <- nullclines(example5, x.lim = c(-3,

+ 3), y.lim = c(-3, 3))

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 0, 3, 0, -3),

+ ncol = 2, nrow = 6, byrow = TRUE)

> example5.trajectory <- trajectory(example5, y0 = y0,

+ t.end = 10, xlab = "x", ylab = "y")

From the trajectories it appears that ሺͲ,Ͳሻ is a saddle point. To verify this we compute

the Jacobian of the system:

 � = ቀʹ ͳʹ −ͳቁ.

Thus we have � = ͳ, Δ = −Ͷ and �ଶ − ͶΔ = ͳ͹. From our classification rules this

confirms that ሺͲ,Ͳሻ is indeed a saddle. Finally, we verify this analysis using

stability and the following code:

> example5.stability <- stability(example5, y.star = c(0,

+ 0))

CHAPTER 5

37

T: 1 Delta: 1 Discriminant: 17 Classification: Saddle

Example 5: As a final example of a linear two dimensional system, we will examine:

�݀ݔ݀ = �݀ݕ݀ ,ݕ = ݔ− − ,ݕ

available in the package as example8. Setting the derivatives to zero, we first locate

the nullclines:

ݔ ∶ ݕ = Ͳ, , ݕ ,, ∶ ݔ− − ݕ = Ͳ ⟹ ݕ = .ݔ−

From this, again we can identify the one equilibrium is at ሺͲ,Ͳሻ. We now plot the

nullclines and velocity field, along with several trajectories:

> example8.flowField <- flowField(example8, x.lim = c(-3,

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE, xlab =

+ "x", ylab = "y")

> grid()

> example8.nullclines <- nullclines(example8, x.lim = c(-3,

+ 3), y.lim = c(-3, 3))

> y0 <- matrix(c(1, 0, 0, 0.5, 2, -2, -2, -2), ncol = 2,

+ nrow = 4, byrow = TRUE)

> example8.trajectory <- trajectory(example8, y0 = y0,

+ t.end = 10, xlab = "x", ylab = "y")

CHAPTER 5

38

It appears from the plot that ሺͲ,Ͳሻ is a stable focus, but we can verify that this is the

case using the Jacobian:

 � = ቀ Ͳ ͳ−ͳ −ͳቁ.

Thus we have � = −ͳ, Δ = ͳ and �ଶ − ͶΔ = −͵; indeed ሺͲ,Ͳሻ is a stable focus. Finally,

we confirm our stability analysis using phaseR:

> example8.stability <- stability(example8, y.star = c(0,

+ 0))

T: -1 Delta: 1 Discriminant: -3 Classification: Stable

focus

Example 6: We now advance to a non-linear example of a two dimensional system,

given by:

�݀ݔ݀ = ͵ሺݔ − ݔ − �݀ݕ݀ ,ሻݕʹ = ʹሺݕ − ݔ − ,ሻݕ

and provided in the package as example11. As always, we begin by setting the

derivatives to zero to locate the nullclines. First, for ݔ:

CHAPTER 5

39

͵ሺݔ − ݔ − ሻݕʹ = Ͳ ⟹ ݔ = Ͳ or ݕ = ͳʹ ሺ͵ − .ሻݔ

Then for ݕ:

ʹሺݕ − ݔ − ሻݕ = Ͳ ⟹ ݕ = Ͳ or ݕ = ʹ − .ݔ

Here, is often the case for non-linear systems, there are here multiple equilibria, which

we find via the intersections of the above nullclines. Easily, we can identify ሺͲ,Ͳሻ and ሺͲ,ʹሻ and ሺ͵,Ͳሻ. The final equilibrium point comes from the intersection of the two

more complex nullclines:

 ͳʹ ሺ͵ − ሻ∗ݔ = ʹ − ∗ݔ ⟹ ∗ݔ = ͳ ⟹ ∗ݕ = ͳ,

i.e. the point ሺͳ,ͳሻ. We will determine the stability of these four equilibria from the

general case Jacobian of the system:

 � = (͵ − ∗ݔʹ − ∗ݕʹ ∗ݕ−∗ݔʹ− ʹ − ∗ݔ − .(∗ݕʹ

In the case of multiple equilibria, it is then often a good idea to present the

classification in a table:

Equilibrium Point � �� − �� � Classification ሺͲ,Ͳሻ 6 1 5 Unstable node ሺͲ,ʹሻ 8 4 −͸ Stable node ሺͳ,ͳሻ −ͳ 8 −ʹ Saddle ሺ͵,Ͳሻ 3 4 −Ͷ Stable node

To summarise all of the above analysis we produce a plot of the nullclines, velocity

field and trajectories using phaseR:

> example11.flowField <- flowField(example11, x.lim = c(-5,

+ 5), y.lim = c(-5, 5), points = 21, add = FALSE, xlab =

+ "x", ylab = "y")

> grid()

> example11.nullclines <- nullclines(example11, x.lim =

+ c(-5, 5), y.lim = c(-5, 5), points = 200)

> y0 <- matrix(c(4, 4, -1, -1, -2, 1, 1, -1), ncol = 2,

+ nrow = 4, byrow = TRUE)

> example11.trajectory <- trajectory(example11, y0 = y0,

+ t.end = 10, xlab = "x", ylab = "y")

CHAPTER 5

40

In addition, we verify the stability results using stability:

> example11.stability.1 <- stability(example11, y.star =

+ c(0, 0))

T: 5 Delta: 6 Discriminant: 1 Classification: Unstable

node

> example11.stability.2 <- stability(example11, y.star =

+ c(0, 2))

T: -3 Delta: 2 Discriminant: 1 Classification: Stable

node

> example11.stability.3 <- stability(example11, y.star =

+ c(1, 1), h = 1e-8)

T: -2 Delta: -1 Discriminant: 8 Classification: Saddle

> example11.stability.4 <- stability(example11, y.star =

+ c(3, 0))

T: -4 Delta: 3 Discriminant: 4 Classification: Stable

node

CHAPTER 5

41

Example 7: Moving on, we now consider a further non-linear example of a two

dimensional system:

�݀ݔ݀ = ݔ − �݀ݕ݀ ,ݕ = ଶݔ + ଶݕ − ʹ.

Provided in phaseR as example12. As usual, we first locate the nullclines:

ݔ ∶ ݔ − ݕ = Ͳ ⟹ ݕ = ݕ ,ݔ ∶ ଶݔ + ଶݕ − ʹ = Ͳ ⟹ ଶݔ + ଶݕ = ʹ.

From this, we substitute one condition into another to locate the equilibria:

ଶ∗ݔ + ଶ∗ݔ = ʹ ⟹ ଶ∗ݔ = ͳ ⟹ ∗ݔ = ±ͳ = ,∗ݕ

therefore we have two equilibria at ሺͳ,ͳሻ and ሺ−ͳ,−ͳሻ.

Continue by plotting the nullclines, velocity field and several trajectories:

> example12.flowField <- flowField(example12, x.lim = c(-4,

+ 4), y.lim = c(-4, 4), points = 17, add = FALSE, xlab =

+ "x", ylab = "y")

> grid()

> example12.nullclines <- nullclines(example12, x.lim =

+ c(-4, 4), y.lim = c(-4, 4), points = 200)

> y0 <- matrix(c(2, 2, -3, 0, 0, 2, 0, -3), ncol = 2, nrow =

+ 4, byrow = TRUE)

> example12.trajectory <- trajectory(example12, y0 = y0,

+ t.end = 10, xlab = "x", ylab = "y")

CHAPTER 5

42

It appears that both of the equilibria are unstable, but to classify them accurately we

will use the Jacobian:

 � = (ͳ −ͳʹݔ∗ .(∗ݕʹ

Therefore, we have:

Equilibrium Point � �� − �� � Classification ሺͳ,ͳሻ 4 −͹ 3 Unstable Focus ሺ−ͳ,−ͳሻ −͵ 13 −ͳ Saddle

Indeed it was the case that both points were unstable. Finally, we verify this analysis

using stability:

> example12.stability.1 <- stability(example12, y.star =

+ c(1, 1))

T: 3 Delta: 4 Discriminant: -7 Classification:

Unstable focus

> example12.stability.2 <- stability(example12, y.star =

+ c(-1, -1), h = 1e-8)

CHAPTER 5

43

T: -1 Delta: -4 Discriminant: 17 Classification:

Saddle

Example 8: This next example comes from a real life modelling scenario; the equation

for a simple pendulum (i.e. no damping force) acting under gravity can be written in

the form:

�݀ݔ݀ = �݀ݕ݀ ,ݕ = − ݈݃ sin .ݔ

It is provided in the model as simplePendulum. We first set the gradients to zero to

locate the nullclines:

ݔ ∶ ݕ = Ͳ, ݕ ∶ − ݈݃ sin ݔ = Ͳ ⟹ ݔ = �� ∀� ∈ ℕ.

From this we can identify that equilibria will be present at all points ሺͲ, ��ሻ, where �

is an integer. Using this we produce our familiar plot, choosing the case ݈ = ͷ:

> simplePendulum.flowField <- flowField(simplePendulum,

+ x.lim = c(-7, 7), y.lim = c(-7, 7), parameters = 5,

+ points = 19, add = FALSE, xlab = "x", ylab = "y")

> grid()

> simplePendulum.nullclines <- nullclines(simplePendulum,

+ x.lim = c(-7, 7), y.lim = c(-7, 7), parameters = 5,

+ points = 500)

> y0 <- matrix(c(0, 1, 0, 4, -6, 1, 5, 0.5, 0, -3), ncol =

+ 2, nrow = 5, byrow = TRUE)

> simplePendulum.trajectory <- trajectory(simplePendulum,

+ y0 = y0, t.end = 10, parameters = 5, xlab = "x", ylab =

+ "y")

CHAPTER 5

44

We then turn to the Jacobian in order to determine the stability of the equilibria:

 � = ቆ Ͳ ͳ− ݈݃ cos ∗ݔ Ͳቇ. , , ⟹ � = Ͳ, , Δ = ݈݃ cos ∗ݔ , , �ଶ − ͶΔ = −Ͷ݈݃ cos .∗ݔ

Therefore, for ݔ∗ = ʹ��, Δ is positive and the equilibria is a centre. However, for ݔ∗ =ሺʹ� + ͳሻ�, Δ is negative and the equilibria is a saddle. We can confirm this for the

points ሺͲ,Ͳሻ and ሺ�, Ͳሻ using phaseR:

> simplePendulum.stability.1 <- stability(simplePendulum,

+ y.star = c(0, 0), parameters = 5)

T: 0 Delta: 1.962 Discriminant: -7.848 Classification:

Centre

> simplePendulum.stability.2 <- stability(simplePendulum,

+ y.star = c(pi, 0), parameters = 5)

T: 0 Delta: -1.962 Discriminant: 7.848 Classification:

Saddle

CHAPTER 5

45

Example 9: As a final example, we again turn to a real physical system. The van Der

Pol oscillator is a classic example in physics, describing a non-conservative oscillator

with non-linear damping. It can be written in the form:

�݀ݔ݀ = �݀ݕ݀ ,ݕ = ሺͳߤ − ݕଶሻݔ − .ݔ

It is provided in the package as vanDerPol. We consider only the case of ߤ > Ͳ, i.e.

when the oscillator is damped. The nullclines can then be computed as:

ݔ ∶ ݕ = Ͳ, ݕ ∶ ሺͳߤ − ݕଶሻݔ − ݔ = Ͳ ⟹ ݕ = ሺͳߤݔ − .ଶሻݔ

The form of these nullclines indicates that the only equilibrium point is ሺͲ,Ͳሻ. The

stability of this, we again find from the Jacobian:

 � = (Ͳ ͳ−ʹݕ∗ݔߤ∗ − ͳ ሺͳߤ − (ଶሻ∗ݔ = (Ͳ ͳ−ͳ ⟹ ,ሺ଴,଴ሻ|(ߤ � = ,ߤ , Δ = ͳ, , �ଶ − ͶΔ = ଶߤ − Ͷ. ,,

Thus if ߤ > ʹ then we will have an unstable node, whereas for ߤ < ʹ we will have an

unstable focus. We take the cases ߤ = ͳ and ߤ = ͵ as examples to indicate this using

phaseR:

> vanDerPol.stability.1 <- stability(vanDerPol, y.star =

+ c(0, 0), parameters = 3)

T: 3 Delta: 1 Discriminant: 5 Classification: Unstable

node

> vanDerPol.stability.2 <- stability(vanDerPol, y.star =

+ c(0, 0), parameters = 1)

T: 1 Delta: 1 Discriminant: -3 Classification:

Unstable focus

However, when we plot trajectories along with the nullclines and velocity field we

find:

> vanDerPol.flowField.1 <- flowField(vanDerPol, x.lim =

+ c(-5, 5), y.lim = c(-5, 5), parameters = 3, points = 15,

+ add = FALSE, xlab = "x", ylab = "y")

> grid()

> vanDerPol.nullclines.1 <- nullclines(vanDerPol, x.lim =

+ c(-5, 5), y.lim = c(-5, 5), parameters = 3, points = 500)

CHAPTER 5

46

> y0 <- matrix(c(2, 0, 0, 2, 0.5, 0.5), ncol = 2, nrow = 3,

+ byrow = TRUE)

> vanDerPol.trajectory.1 <- trajectory(vanDerPol, y0 = y0,

+ t.end = 10, parameters = 3, xlab = "x", ylab = "y")

It appears that the solutions are bounded, and indeed oscillate as the name

suggestions. This oscillating behaviour is an example of a limit cycle. This

characterisation; where trajectories are pushed away near the equilibria (hence the

classification as unstable), but move towards it far away, is typical of limit cycles.

CHAPTER 6

47

Chapter 6: Additional Available Systems

As well as those studied in Chapter 5, numerous other derivative functions for one

and two dimensional systems are available in phaseR. This chapter provides a list of

them. In some instances further explanation of the models is provided in their

respective exercises in Chapter 7. Again, parameters are specified in the order they

appear in the model; for ultimate clarify see the help page for the function with R.

System 1: The exponential growth model, often used in Biology and Chemistry to

model growth and decay of biological or chemical species, is given by:

�݀ݕ݀ = .ݕߚ

It is provided in the package as the function exponential.

System 2: The monomolecular growth model, often used to model the heating and

cooling of objects, or to model physiological processes, is given by:

�݀ݕ݀ = �ሺߚ − .ሻݕ

It is provided in the package as the function monomolecular.

System 3: The von Bertalanffy model, often used in Biology to model the growth of

organisms, is given by:

�݀ݕ݀ = ଶ/ଷݕߙ − .ݕߚ

It is provided in the package as the function vonBertalanffy.

System 4: Function example3 is a linear two dimensional system given by:

�݀ݔ݀ = �݀ݕ݀ ,ݔ− = −Ͷݔ.

System 5: Function example6 is a linear two dimensional system given by:

�݀ݔ݀ = ݔ + �݀ݕ݀ ,ݕʹ = ݔʹ− + .ݕ

CHAPTER 6

48

System 6: Function example7 is a linear two dimensional system given by:

�݀ݔ݀ = ݔ− − �݀ݕ݀ ,ݕ = Ͷݔ + .ݕ

System 7: Function example9 is a linear two dimensional system given by:

�݀ݔ݀ = ݔʹ− + �݀ݕ݀ ,ݕ͵ = ͹ݔ + ͸ݕ.

System 8: Function example10 is a non-linear two dimensional system given by:

�݀ݔ݀ = ݔ− + ଷݔ �݀ݕ݀ , = .ݕʹ−

System 9: Function example13 is a non-linear two dimensional system given by:

�݀ݔ݀ = ʹ − ଶݔ − ଶݕ �݀ݕ݀ , = ଶݔ − .ଶݕ

System 10: Function example14 is a non-linear two dimensional system given by:

�݀ݔ݀ = ଶݔ − ݕ − ͳͲ, ݀݀ݕ� = ଶݔ͵− + .ݕݔ

System 11: Function example15 is a non-linear two dimensional system given by:

�݀ݔ݀ = ଶݔ − ݕݔ͵ + �݀ݕ݀ ,ݔʹ = ݔ + ݕ − ͳ.

System 12: The non-dimensional version of the Lindemann Mechanism, used for gas-

phase unimolecular reaction modelling, can be written in the form:

�݀ݔ݀ = ଶݔ− + �݀ݕ݀ ,ݕݔߙ = ଶݔ − ݕݔߙ − .ݕ

It is provided in the package as the function lindemannMechanism.

System 13: The SIR model for the spread of an infectious disease can be written in the

form:

�݀ݔ݀ = �݀ݕ݀ ,ݕݔߚ− = ݕݔߚ − .ݕߥ

CHAPTER 6

49

It is provided in the package as the function SIR.

System 14: The Lotka-Volterra model, used to model interacting species of predator

and prey in Biology, is given by:

�݀ݔ݀ = ݔߣ − �݀ݕ݀ ,ݕݔ߳ = ݕݔ� − .ݕ�

It is provided in the package as the function lotkaVolterra,

System 15: A simple two species competition model, used in Ecology, is given by:

�݀ݔ݀ = �ଵݔ (�ଵ − ݔ − ଵ�ݕଵଶߙ �݀ݕ݀ ,(= �ଶݕ (�ଶ − ݕ − ଶ�ݔଶଵߙ).

It is provided in the package as the function competition.

CHAPTER 6

50

CHAPTER 7

51

Chapter 7: Exercises

Finally, this chapter contains numerous exercises that can be undertaken by the user

to practice phase plane analysis themselves, both by hand and/or with help from

phaseR. As such, parts of each exercise can be chosen so as to practice either

performing the analysis yourself or computationally. Accompanying solutions can be

found in the doc/ directory of the packages install.

Exercise 1: Reproduce the plots and stability analysis of Sections 2.2 and 2.3 for

example1 using the programs available in phaseR.

Exercise 2: In Biology, the exponential growth model is used, for example, to model

the growth or decline of a population. Qualitatively analyse it using the function

exponential. Since ݕ represents abundance, restrict attention to the case ݕሺͲሻ >Ͳ. In addition, begin with the case ߚ = ͳ. Where is the equilibrium point? What

happens as you change the sign of ߚ? What conclusions can we drawn in general about

this model? How does the sign of ߚ reflect the biological system we may be modelling?

Perform the analysis both yourself, and provide code for checking your results using

phaseR.

Exercise 3: The monomolecular growth model assumes that the rate of change of a

function, is proportional to the difference between its current value and some

hypothetical value �, i.e.:

�݀ݕ݀ = �ሺߚ − .ሻݕ

Qualitatively analyse this model using the derivative function monomolecular.

Again, restrict attention to the case ݕሺͲሻ > Ͳ, and begin with the values ߚ = ͳ, � = ͵.

Where is the equilibrium point? Is it stable? Perform the analysis both yourself, and

provide code for checking your results using phaseR.

Exercise 4: von Bertalanffy assumed that an organism would gain material by anabolic

processes, proportional to surface area. In addition, material would be lost by

catabolic processes, proportional to weight. Since weight is related to surface area by

a 2/3 power, his ODE for rate of change of weight ݕ therefore was:

�݀ݕ݀ = ଶ/ଷݕߙ − .ݕߚ

Qualitatively analyse this model using the derivative function vonBertanalffy.

Again, restrict attention to the case ݕሺͲሻ > Ͳ, and begin with the values ߙ = ߚ ,ʹ = ͳ.

CHAPTER 7

52

Where are the equilibrium points? Are they stable? Perform the analysis both

yourself, and provide code for checking your results using phaseR.

Exercise 5: Create your own derivative function, as explained earlier, for the ODE

given by:

�݀ݕ݀ = sin .ݕ

Focusing on the range ݕ ∈ [−ʹ�, ʹ�], perform a qualitative analysis yourself and

provide code for checking your results using phaseR. Specifically, identify the

location of the equilibria and classify them.

Exercise 6: Repeat the example analysis of Sections 3.2 to 3.4, using the

lotkaVolterra function and the parameter values ߣ = ߳ = � = � = ͳ, using the

programs available in phaseR.

Exercise 7: For each of the following linear two dimensional systems, perform a phase

plane analysis. Ensure to identify and plot the nullclines, and then plot the velocity

field. From this add trajectories for several initial conditions. Then locate the

equilibrium point(s) and determine their classification. Perform this analysis first by

hand and then also provide code to check your results using phaseR.

a) example3

b) example6

c) example7

d) example9

Exercise 8: For each of the following non-linear two dimensional systems, perform a

phase plane analysis. Ensure to identify and plot the nullclines, and then plot the

velocity field. From this add trajectories for several initial conditions. Then locate the

equilibrium point(s) and determine their classification. Perform this analysis first by

hand and then also provide code to check your results using phaseR.

a) example10

b) example13

c) example14

d) example15

Exercise 9: Create your own derivative function, as explained earlier, for the ODE

system given by:

�݀ݔ݀ = ͸ݔ − �݀ݕ݀ ,ݕ͵ = Ͷݔ + .ݕ͵

CHAPTER 7

53

Then perform a phase plane analysis; identifying and plotting nullclines, the velocity

field, trajectories, and locating the equilibrium point and classifying it. Perform this

analysis first by hand and then also provide code to check your results using phaseR.

Exercise 10: Create your own derivative function, as explained earlier, for the ODE

system given by:

�݀ݔ݀ = ଶݔ + ଶݕ − ͳ͵, ݀݀ݕ� = ݕݔ − ݔʹ − ݕʹ + Ͷ.

Then perform a phase plane analysis; identifying and plotting nullclines, the velocity

field, trajectories, and locating the equilibria and classifying them. Perform this

analysis first by hand and also provide code to check your results using phaseR.

Exercise 11: Perform a phase plane analysis of the Lindemann Mechanism first by

hand and then using the function lindemannMechanism in phaseR. Where is the

equilibrium point? Is it stable? Hint: It only makes sense to consider the case where ݔ

and ݕ, and the parameter (which is acquired as the rate of two reaction constants),

are positive.

Exercise 12: Assuming that susceptible individuals ሺݔሻ become infected at a rate ߚ

when they come in to contact with infected individuals ሺݕሻ, and that those who are

infected recover at a rate ߥ, we acquire the SIR model:

�݀ݔ݀ = �݀ݕ݀ ,ݕݔߚ− = ݕݔߚ − .ݕߥ

Assuming that the total population for this model is 10, perform a phase plane

analysis of this SIR epidemic model first by hand and then using the function SIR in

phaseR. Where are the equilibrium points and what is their stability? What

conclusion can be biologically drawn from the cases where ߚ/ߥ < ͳͲ and ߚ/ߥ > ͳͲ.

Hint: It only makes sense to consider the case where ݔ and ݕ, and both parameters,

are positive.

Exercise 13: Assuming prey ሺݔሻ are born at a constant rate ߣ, that predators ሺݕሻ die at

a rate �, and that predator and prey interact to bring about the decrease of prey at

rate ߳, but the increase of predators at rate �, we acquire the Lotka Volterra model:

�݀ݔ݀ = ݔߣ − �݀ݕ݀ ,ݕݔ߳ = ݕݔ� − .ݕ�

Perform a phase plane analysis of the Lotka Volterra model first by hand and then

using the function lotkaVolterra in phaseR. Where are the equilibrium points?

CHAPTER 7

54

Are they stable? What does thing mean biologically? Hint: It only makes sense to

consider the case where ݔ and ݕ, and all four parameters, are positive.

Exercise 14: Assuming two species interact in competition with each other for

resources, and grow logistically in the absence of the other species, we acquire the

following species competition model:

�݀ݔ݀ = �ଵݔ (�ଵ − ݔ − ଵ�ݕଵଶߙ �݀ݕ݀ ,(= �ଶݕ (�ଶ − ݕ − ଶ�ݔଶଵߙ).

Perform a phase plane analysis of the Species Competition model first by hand and

then using the function competition in phaseR. Identify the four possible cases

depending upon the parameter values. Where are the equilibrium points? Do not

worry about classifying the equilibrium points by hand, but use trajectories to make

your case. What does thing mean biologically? Hint: It only makes sense to consider

the case where ݔ and ݕ, and all six parameters, are positive.

