Poisson GLM, Cox PH, & degrees of freedom

Introduction

We discuss connections between the Cox proportional hazards model and Poisson generalized linear models as described in Whitehead (1980). We fit comparable models to a sample dataset using coxph(), glm(), phmm(), and glmer() and explore similarities.

A simple Cox PH example

Generate data

We generate proportional hazards mixed model data.

## [1] 30

Fit the Cox PH model

## Call:
## coxph(formula = Surv(time, event) ~ Z1 + Z2, data = phmmd, x = TRUE, 
##     y = TRUE, method = "breslow")
## 
##   n= 50, number of events= 30 
## 
##      coef exp(coef) se(coef)     z Pr(>|z|)    
## Z1 1.5061    4.5091   0.4313 3.492  0.00048 ***
## Z2 0.4376    1.5490   0.3708 1.180  0.23798    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##    exp(coef) exp(-coef) lower .95 upper .95
## Z1     4.509     0.2218    1.9361    10.501
## Z2     1.549     0.6456    0.7488     3.204
## 
## Concordance= 0.696  (se = 0.053 )
## Likelihood ratio test= 16.81  on 2 df,   p=2e-04
## Wald test            = 14.93  on 2 df,   p=6e-04
## Score (logrank) test = 17.2  on 2 df,   p=2e-04

Next we create data to fit an auxilary Poisson model as described in Whitehead (1980) using the pseudoPoisPHMM() function provided in the phmm package. This function also extracts the linear predictors as estimated from the Cox PH model so that we can calculate likelihoods and degrees of freedom.

Likelihood and degrees of freedom for Poisson GLM from Cox PH parameters

Poisson likelihood:

## [1] -65.95449
## [1] 25.25443

Poisson degrees of freedom

## [1] 32

Fit auxiliary Poisson GLM

We fit an auxiliary Poisson GLM and note that the parameter estimates for z1 and z2 are identical to the coxph() fit, and the likelihood and degrees of freedom are as expected.

## 
## Call:
## glm(formula = m ~ -1 + t + z1 + z2 + offset(log(N)), family = poisson, 
##     data = ppd)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0148  -0.8050  -0.4622   0.3374   1.7482  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## t0.000446182539531382  -5.1899     1.0759  -4.824 1.41e-06 ***
## t0.00163087691684562   -5.1813     1.0767  -4.812 1.49e-06 ***
## t0.00275830723468582   -5.1725     1.0774  -4.801 1.58e-06 ***
## t0.00280059794673464   -5.1466     1.0778  -4.775 1.80e-06 ***
## t0.00318134995082413   -5.1051     1.0759  -4.745 2.09e-06 ***
## t0.00320419136302427   -5.0618     1.0739  -4.713 2.44e-06 ***
## t0.00395636869870054   -5.0166     1.0718  -4.681 2.86e-06 ***
## t0.00511123775406486   -5.0063     1.0727  -4.667 3.05e-06 ***
## t0.00559427171447325   -4.9756     1.0729  -4.637 3.53e-06 ***
## t0.00766727170160828   -4.9262     1.0705  -4.602 4.19e-06 ***
## t0.00808285780728387   -4.9189     1.0715  -4.591 4.42e-06 ***
## t0.019339488197591     -4.8312     1.0691  -4.519 6.22e-06 ***
## t0.0299199501201303    -4.7739     1.0662  -4.477 7.56e-06 ***
## t0.0531838782317072    -4.7040     1.0642  -4.420 9.86e-06 ***
## t0.066999301944422     -4.6476     1.0652  -4.363 1.28e-05 ***
## t0.0855879977109686    -4.6034     1.0652  -4.322 1.55e-05 ***
## t0.128630049328015     -4.5408     1.0664  -4.258 2.06e-05 ***
## t0.131437682173085     -4.4634     1.0623  -4.202 2.65e-05 ***
## t0.15257919709977      -4.3669     1.0591  -4.123 3.74e-05 ***
## t0.157383776779992     -4.2092     1.0531  -3.997 6.41e-05 ***
## t0.163824053514786     -4.1398     1.0522  -3.934 8.34e-05 ***
## t0.168953982363505     -4.0653     1.0515  -3.866 0.000111 ***
## t0.227852125295401     -3.8120     1.0431  -3.654 0.000258 ***
## t0.280623578426198     -3.7668     1.0471  -3.597 0.000322 ***
## t0.314323389014675     -3.6567     1.0463  -3.495 0.000474 ***
## t0.351296650884504     -3.5733     1.0492  -3.406 0.000660 ***
## t0.485749622685594     -3.0723     1.0355  -2.967 0.003007 ** 
## t0.509510538708177     -2.9979     1.0372  -2.890 0.003849 ** 
## t0.529434934651452     -2.7430     1.0338  -2.653 0.007969 ** 
## t0.540077948287249     -2.6765     1.0385  -2.577 0.009960 ** 
## z1                      1.5061     0.4313   3.492 0.000480 ***
## z2                      0.4376     0.3708   1.180 0.237981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1701.491  on 118  degrees of freedom
## Residual deviance:   71.909  on  86  degrees of freedom
## AIC: 195.91
## 
## Number of Fisher Scoring iterations: 7
##    coxph.coef  glm.coef
## Z1  1.5060975 1.5060975
## Z2  0.4376126 0.4376126
##      coxph.pois.loglik glm.loglik
## [1,]         -65.95449  -65.95449

The additional parameter estimates correspond to the estimated log baseline hazard, which we verify using the basehaz() function.

##                       coxph.bh.step glm.bh.step
## t0.000446182539531382     -5.189938   -5.189938
## t0.00163087691684562      -5.181269   -5.181269
## t0.00275830723468582      -5.172524   -5.172524
## t0.00280059794673464      -5.146624   -5.146624
## t0.00318134995082413      -5.105131   -5.105131

Extending to PHMM

Fit PHMM

## 
## Proportional Hazards Mixed-Effects Model fit by MCMC-EM
##   Model: Surv(time, event) ~ Z1 + Z2 + (Z1 + Z2 | cluster) 
##   Data: phmmd 
##   Log-likelihood:
## Conditional     Laplace         RIS 
##      -83.08     -118.76     -118.70 
## 
## Fixed effects: Surv(time, event) ~ Z1 + Z2 
##    Estimate Std.Error
## Z1   1.6170    0.4564
## Z2   0.5818    0.5866
## 
## Random effects: (Z1 + Z2 | cluster) 
## Estimated variance-covariance matrix:
##             (Intercept)       Z1    Z2
## (Intercept)     0.01026 0.000000 0.000
## Z1              0.00000 0.006868 0.000
## Z2              0.00000 0.000000 1.056
## 
## Number of Observations: 50
## Number of Groups:  5

Likelihood and degrees of freedom for Poisson GLMM from PHMM parameters

Poisson likelihood:

## Conditional 
##   -13.58648

Poisson degrees of freedom

## [1] 5.018931

Fit auxiliary Poisson GLMM

We fit an auxiliary Poisson GLMM, although with a general variance-covariance matrix for the random effects (phmm() only fits models with diagonal variance-covariance matrix).

##                         Estimate Std. Error   z value     Pr(>|z|)
## t0.000446182539531382 -5.7813397  1.1440995 -5.053179 4.345156e-07
## t0.00163087691684562  -5.7685008  1.1453474 -5.036464 4.742104e-07
## t0.00275830723468582  -5.7531424  1.1471637 -5.015101 5.300550e-07
## t0.00280059794673464  -5.7378389  1.1486000 -4.995507 5.868147e-07
## t0.00318134995082413  -5.6452747  1.1414477 -4.945715 7.586501e-07
## t0.00320419136302427  -5.5432601  1.1349421 -4.884179 1.038609e-06
## t0.00395636869870054  -5.3975473  1.1228024 -4.807210 1.530511e-06
## t0.00511123775406486  -5.3752136  1.1248473 -4.778616 1.765056e-06
## t0.00559427171447325  -5.3521882  1.1261561 -4.752616 2.008011e-06
## t0.00766727170160828  -5.1728904  1.1132452 -4.646677 3.373250e-06
## t0.00808285780728387  -5.1646583  1.1148223 -4.632719 3.608942e-06
## t0.019339488197591    -4.9601814  1.1019248 -4.501379 6.751395e-06
## t0.0299199501201303   -4.6818910  1.0850479 -4.314916 1.596633e-05
## t0.0531838782317072   -4.6126510  1.0816498 -4.264459 2.003875e-05
## t0.066999301944422    -4.5481475  1.0821894 -4.202728 2.637175e-05
## t0.0855879977109686   -4.4951855  1.0818533 -4.155079 3.251755e-05
## t0.128630049328015    -4.4249733  1.0829876 -4.085895 4.390729e-05
## t0.131437682173085    -4.3506932  1.0767235 -4.040678 5.329686e-05
## t0.15257919709977     -4.2702442  1.0774013 -3.963467 7.386916e-05
## t0.157383776779992    -4.1073777  1.0689456 -3.842457 1.218087e-04
## t0.163824053514786    -4.0253605  1.0673062 -3.771514 1.622599e-04
## t0.168953982363505    -3.9362644  1.0656891 -3.693633 2.210728e-04
## t0.227852125295401    -3.6778267  1.0541765 -3.488815 4.851671e-04
## t0.280623578426198    -3.6268487  1.0584957 -3.426418 6.115984e-04
## t0.314323389014675    -3.4875614  1.0563771 -3.301436 9.619133e-04
## t0.351296650884504    -3.3234060  1.0598050 -3.135866 1.713477e-03
## t0.485749622685594    -2.9208484  1.0476710 -2.787944 5.304365e-03
## t0.509510538708177    -2.8564227  1.0482173 -2.725029 6.429581e-03
## t0.529434934651452    -2.5278619  1.0453509 -2.418195 1.559773e-02
## t0.540077948287249    -2.4051694  1.0540487 -2.281839 2.249885e-02
## z1                     1.5783789  0.4787804  3.296666 9.783994e-04
## z2                     0.6575325  0.6543760  1.004824 3.149818e-01
##        Z1        Z2 
## 1.6169634 0.5818235
## 'log Lik.' -102.0292 (df=38)
## [1] 5.364446
##                       phmm.bh.step glm.bh.step
## t0.000446182539531382    -5.786086   -5.781340
## t0.00163087691684562     -5.770504   -5.768501
## t0.00275830723468582     -5.749254   -5.753142
## t0.00280059794673464     -5.732263   -5.737839
## t0.00318134995082413     -5.644879   -5.645275