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Abstract

A slightly modified version of this introduction to the phtt package is submitted to
the Journal of Statistical Software.

The R-package phtt provides estimation procedures for panel data with large dimen-
sions n, T , and general forms of unobservable heterogeneous effects. Particularly, the
estimation procedures are those of Bai (2009) and Kneip, Sickles, and Song (2012), which
complement one another very well: both models assume the unobservable heterogeneous
effects to have a factor structure. The method of Bai (2009) assumes that the factors
are stationary, whereas the method of Kneip et al. (2012) allows the factors to be non-
stationary. Additionally, the phtt package provides a wide range of dimensionality criteria
in order to estimate the number of the unobserved factors simultaneously with the remain-
ing model parameters.

Keywords: Panel data, unobserved heterogeneity, principal component analysis, factor dimen-
sion.

1. Introduction

One of the main difficulties and at the same time appealing advantages of panel models is their
need to deal with the problem of unobserved heterogeneity. Classical panel models, such as
fixed effects or random effects, try to model unobserved heterogeneity using dummy variables
or structural assumptions on the error term (see, e.g., Baltagi (2005)). In both cases the
unobserved heterogeneity is assumed to remain constant over time within each cross-sectional
unit—apart from an eventual common time trend. This assumption might be reasonable for
approximating panel data with fairly small temporal dimensions T ; however, for panel data
with large T this assumption becomes implausible.

Nowadays, the availability of panel data with large cross-sectional dimensions n and large
time dimensions T has triggered the development of a new class of panel data models. Recent
discussions by Ahn, Lee, and Schmidt (2006), Pesaran (2006), Bai (2009), Bai, Kao, and
Ng (2009), and Kneip et al. (2012) have focused on advanced panel models for which the
unobservable individual effects are allowed to have heterogeneous time trends that can be
approximated by a factor structure. The basic form of this new class of panel models can be
presented as follows:

yit =

P∑
j=1

xitjβj + νit + εit, for i ∈ {1, . . . , n}, and t ∈ {1, . . . , T}, (1)
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where yit is the dependent variable for each individual i at time t, xitj is the jth element
of the vector of explanatory variables xit ∈ RP , and εit is the idiosyncratic error term. The
time-varying individual effects νit ∈ R of individual i for the time points t ∈ {1, . . . , T} are
assumed to have a d-dimensional factor structure. The following two specifications of the
time-varying individual effects νit are implemented in the R package phtt:

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012).
(2)

Here, λil are unobserved individual loadings parameters, flt are unobserved common factors
for the model of Bai (2009), fl(t) are the unobserved common factors for the model of Kneip
et al. (2012), and d is the unknown factor dimension. We consider the standard case of iid
error terms εit with E(εit) = 0 and V(εit) = σ2.

Note that the explicit consideration of an intercept in model (1) is not necessary but may
facilitate interpretations. If xit includes an intercept, the time-varying individual effects νit
are centered around zero. If xit does not include an intercept, the time-varying individual
effects νit are centered around the overall mean.

Model (1) includes the classical panel data models with additive time-invariant individual
effects and common time-specific effects. Consider the case in which d = 2 with a first
common factor f1t = 1 for all t ∈ {1, . . . , T} that has individual loadings parameters λi1, and
a second common factor f2t that has the same loadings parameter λi2 = 1 for all i ∈ {1, . . . , n}.
An intrinsic problem of factor models lies in the fact that the true factors are only identifi-
able up to rotation. In order to ensure the uniqueness of these parameters, a number of d2

restrictions are required. The usual normalization conditions are given by

(a) 1
T

∑T
t=1 f

2
lt = 1 for all l ∈ {1, . . . , d},

(b)
∑T

t=1 fltfkt = 0 for all l, k ∈ {1, . . . , d} with k 6= l, and

(c)
∑N

i=1 λilλik = 0 for all l, k ∈ {1, . . . , d} with k 6= l.

For the model of Kneip et al. (2012), flt in conditions (a) and (b) has to be replaced by fl(t).

Kneip et al. (2012) consider the case in which the common factors fl(t) show relatively smooth
patterns over time. This includes strongly positive auto-correlated stationary as well as non-
stationary factors. The authors propose to approximate the time-varying individual effects
vi(t) by smooth functions ϑi(t). In this way (1) becomes a semi-parametric model and its
estimation is done using a two-step estimation procedure, explained in more detail in Section
2.

Alternatively, Bai (2009) proposes an iterated least squares approach to estimate (1) for
stationary time-varying individual effects vit such as ARMA or white noise processes. The
estimators are the result of an iterative procedure solving a system of non-linear equations.
However, Bai (2009) assumes the factor dimension d to be a known parameter, which is
usually not the case. Therefore, the phtt package uses an algorithmic refinement of Bai’s
method proposed by Bada and Kneip (2010) in order to estimate the number of unobserved
common factors d jointly with the remaining model parameters; see Section 4 for more details.

Besides the implementations of the methods proposed by Kneip et al. (2012), Bai (2009), and
Bada and Kneip (2010) the R package phtt comes with a wide range of criteria (13 in total)
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for estimating the factor dimension d. The main functions of the phtt package are given in
the following list:

� KSS() : Computes the estimators of the model parameters according to the method of
Kneip et al. (2012); see Section 2

� Eup() : Computes the estimators of the model parameters according to the method of
Bai (2009) and Bada and Kneip (2010); see Section 4

� OptDim() : Allows for a comparison of the optimal factor dimensions d̂ obtained from
many different panel criteria; see Section 3

� checkSpecif() : Tests whether to use a classical fix effects panel model or a panel
model with individual effects νit; see Section 5.1

The functions are provided with print()-, summary()-, plot()-, coef()- and residuals()-
methods.

Standard methods for estimating models for panel and longitudinal data are also implemented
in the R R Development Core Team (2012) packages plm (Croissant and Millo 2008), nlme
(Pinheiro, Bates, DebRoy, Sarkar, and R Core team 2012), and lme4 (Bates, Maechler, and
Bolker 2012); see Croissant and Millo (2008) for an exhaustive comparison of these packages.
Recently, Millo and Piras (2012) published the R package splm for spatial panel data models.
The phtt package further extends the toolbox for statisticians and econometricians and pro-
vides the possibility of analyzing panel data in the case when the unobserved heterogeneity
is time-varying.

To the best of our knowledge, the phtt package Bada and Liebl (2012) is the first software pack-
age that offers the estimation methods of Bai (2009) and Kneip et al. (2012). Regarding the
different dimensionality criteria (in total 13) that can by accessed via the function OptDim()

only those of Bai and Ng (2002) are publicly available as MATLAB codes (The MathWorks
Inc. 2012) from the homepage of Serena Ng (http://www.columbia.edu/~sn2294/).

To demonstrate the use of our functions, we re-explore the well known Cigar dataset, which is
frequently used in the literature of panel models. The panel contains the amounts of cigarette
consumption of n = 46 American states from 1963 to 1992 (T = 30) as well as data about the
income per capita and cigarette prices in the same states during the same period (see, e.g.,
Baltagi and Levin (1986) for more details on the dataset).

We follow Baltagi and Li (2004), who estimate the following panel model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit. (3)

Here, Consumptionit presents the sales of cigarettes (packs of cigarettes per capita), Priceit
is the average real retail price of cigarettes, and Incomeit is the real disposable income per
capita. The index i ∈ {1, . . . , 46} denotes the single states and the index t ∈ {1, . . . , 30}
denotes the year.

Baltagi and Li (2004) assume the error term eit to be affected by time-varying spatial cor-
relations between neighboring states. To estimate the model, the authors use a pre-defined
n×n spatial weights matrix W = {ωij}i,j=1,...,n, where ωij is equal to one if state i and state
j are neighboring states and zero else. If a state i has more than one neighboring state then
the corresponding ωij ’s are normalized to sum up to one.

http://www.columbia.edu/~sn2294/
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However, the model of Baltagi and Li (2004) is very restrictive, since the assumptions on the
structure of the error term eit are fixed a priori. Instead, we apply the panel methods intro-
duced above and allow for the state-cross-correlations in the error term eit to be approximated
from the data by a multidimensional factor structure such that

eit =
d∑
l=1

λilflt + εit.

The Cigar dataset can be obtained from the phtt package using the function data("Cigar").
The panels of the variables ln(Consumptionit), ln(Priceit), and ln(Incomeit) are shown in
Figure 1.

Die heruntergeladenen Quellpakete sind in

'/tmp/RtmpmFJYZs/downloaded_packages'
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Figure 1: Plots of the dependent variable ln(Consumptionit) and regressor variables
ln(Priceit) and ln(Incomeit).

Section 2 is devoted to a short introduction of the method of Kneip et al. (2012), which is
appropriate for relatively smooth common factors fl(t). Section 3 presents the usage of the
function OptDim(), which provides access to a wide range of panel dimensionality criteria
recently discussed in the literature on factor models. Section 4 deals with the explanation
as well as application of the panel method proposed by Bai (2009), which is appropriate for
stationary and relatively unstructured common factors flt.

2. Panel models for heterogeneity in time trends
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The panel model proposed by Kneip et al. (2012) can be presented as follows:

yit =

P∑
j=1

xitjβj + vi(t) + εit, (4)

where the time-varying individual effects vi(t) are parametrized in terms of common non-
parametric basis functions f1(t), . . . , fd(t) such that

vi(t) =

d∑
l=1

λilfl(t). (5)

The asymptotic properties of this method rely on second order differences of vi(t), which
apply for continuous functions as well as for classical discontinuous stochastic time series
processes such as (S)AR(I)MA processes. Therefore, the functional notation of the time-
varying individual effects vi(t) and their underlying common factors f1(t), . . . , fd(t) does not
restrict them to a purely functional interpretation. The main idea of this approach is to
approximate the time series of the time-varying individual effects vi(t) by smooth functions
ϑi(t).

The estimation approach proposed by Kneip et al. (2012) relies on a two-step procedure: first,
estimates of the common slope parameters βj and the time-varying individual effects vi(t) are
obtained semi-parametrically. Second, functional principal component analysis is used to
estimate the common factors f1(t), . . . , fd(t), and to re-estimate the time-varying individual
effects vi(t) more efficiently. In the following we describe both steps in more detail.

Step 1: The unobserved parameters βj and vi(t) are estimated by the minimization of

n∑
i=1

1

T

T∑
t=1

yit − P∑
j=1

xitjβj − ϑi(t)

2

+

n∑
i=1

κ

∫ T

1

1

T

(
ϑ
(m)
i (s)

)2
ds, (6)

over all βj ∈ R and allm-times continuously differentiable functions ϑi, where ϑ
(m)
i denotes the

mth derivative of the function ϑi. A first approximation of vi(t) is then given by ṽi(t) := ϑ̂i(t).
Spline theory implies that any solution ϑ̂i(t) possesses an expansion in terms of a natural spline
basis z1(t), . . . , zT (t) such that ϑ̂i(t) =

∑T
s=1 ζ̂iszs(t); see, e.g., De Boor (2001). Using the

latter expression, we can rewrite (6) to formalize the following objective function:

S(β, ζ) =

n∑
i=1

(
||Yi −Xiβ − Zζi||2 + κζ>i Aζi

)
, (7)

where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, β = (β1, . . . , βp)

>, ζi = (ζi1, . . . , ζiT )>, Z

and A are T × T matrices with elements {zs(t)}s,t=1,...,T and {
∫
z
(m)
s (t)z

(m)
k (t)dt}s,k=1,...,T

respectively. κ is a preselected smoothing parameter to control the smoothness of ϑ̂i(t). We
follow the usual choice of m = 2, which leads to cubic smoothing splines.

The semi-parametric estimators β̂, ζ̂i = (ζ̂i1, . . . , ζ̂iT )>, and ṽi = (ṽi1, . . . , ṽiT )> can be ob-
tained by minimizing S(β, ζ) over all β ∈ Rp and ζ ∈ RT×n.
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The solutions are given by

β̂ =

(
N∑
i=1

X>i (I −Zκ)Xi

)−1( N∑
i=1

X>i (I −Zκ)Yi

)
, (8)

ζ̂i = (Z>Z + κR)−1Z>(Yi −Xiβ̂), and (9)

ṽi = Zκ
(
Yi −Xiβ̂

)
, where Zκ = Z

(
Z>Z + κR

)−1
Z>. (10)

Step 2: The common factors are obtained by the first d eigenvectors γ̂1, . . . , γ̂d that corre-
spond to the largest eigenvalues ρ̂1, . . . , ρ̂d of the empirical covariance matrix

Σ̂ =
1

n
ṽiṽ
>
i . (11)

The estimator of the common factor fl(t) is then defined by the lth scaled eigenvector

f̂l(t) =
√
T γ̂lt for all l ∈ {1, . . . , d}, (12)

where γ̂lt is the tth element of the eigenvector γ̂l. The scaling factor
√
T yields that f̂l(t)

satisfies the normalization condition 1
T

∑T
t=1 f̂l(t)

2 = 1 as listed above in Section 1. The
estimates of the individual loadings parameters λil are obtained by ordinary least squares

regressions of
(
Yi −Xiβ̂

)
on f̂l, where f̂l = (f̂l(1), . . . , f̂l(T ))

′
. Recall from conditions (a)

and (b) that λ̂il can be calculated as follows:

λ̂il =
1

T
f̂>l

(
Yi −Xiβ̂

)
. (13)

The time-varying individual effects vi(t) are re-estimated by v̂i(t) :=
∑d

l=1 λ̂lf̂l(t), where the
factor dimension d can be determined, e.g., by the sequential testing procedure of Kneip et al.
(2012) or by any other dimensionality criteria. In Section 3 we introduce several such criteria.

To determine the optimal smoothing parameter κopt, the authors propose the following cross
validation (CV) criterion:

CV (κ) =
n∑
i=1

||Yi −Xiβ̂−i −
d∑
l=1

λ̂−i,lf̂−i,l||2. (14)

Unfortunately, this criterion is computationally very costly and requires determining the factor
dimension d in advance. To overcome this disadvantage, we propose a plug-in smoothing
parameter that is discussed in more detail in Section 2.1.

Kneip et al. (2012) show the consistency of the estimators as n, T → ∞ and derive the
asymptotic distribution of common slope estimators β̂ as (β̂ − E(β̂|ε)) = N(0, Σ̂β), where

Σ̂β = σ2

(
n∑
i=1

X>i (I −Zκ)Xi

)−1( n∑
i=1

X>i (I −Zκ)2Xi

)(
n∑
i=1

X>i (I −Zκ)Xi

)−1
. (15)

A consistent estimator of σ2 can be obtained by

σ̂2 =
1

(n− 1)T

n∑
i=1

||Yi −Xiβ̂ −
d̂∑
l=1

λ̂i,lf̂l(t)||2. (16)
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2.1. Computational details

A problem that remains to be discussed is the determination of the smoothing parameter κ
in (8), (12), and (13). Generally, it is possible to determine κ by the CV criterion in (14);
however, for relatively large dimensions T and n cross validation is computationally very
costly. Moreover, Kneip et al. (2012) do not explain how the factor dimension d is to be
specified during the optimization process, which is critical since d̂ itself depends on κ; see
(21) in Section 3.

We propose to determine the smoothing parameter κ by generalized cross validation (GCV).
However, we cannot apply the classical GCV formulas as proposed, e.g., in Craven and Wahba
(1978) since we do not know the parameters β and vi(t). Our computational algorithm for
determining the GCV smoothing parameter κGCV is based on the method of Cao and Ramsay
(2010), who propose optimizing objective functions of the form (7) by updating the parameters
iteratively in a functional hierarchy. Formally, the iteration algorithm can be described as
follows:

1. For given κ and β, we optimize (7) with respect to ζi to get

ζ̂i = (Z ′Z + κR)−1Z>(Yi −Xiβ). (17)

2. By using (17), we minimize (7) with respect to β to get

β̂ =

(
N∑
i=1

X>i Xi

)−1( N∑
i=1

X>i (Yi − Zζ̂i)

)
(18)

3. Once (17) and (18) are obtained, we optimize the following GCV criterion to calculate
κGCV :

κGCV = arg min
κ

1
n
T tr(I −Zκ)2

n∑
i=1

||Yi −Xiβ̂ −Zκ(Yi −Xiβ̂)||2. (19)

The program starts with initial estimates of β and κ and proceeds with steps 1, 2, and 3 in
recurrence until convergence of all parameters, where the initial value β̂start is defined in (45)
and the initial value κstart is the GCV-smoothing parameter of the residuals Yi −Xiβ̂start.

The advantage of this approach is that the inversion of the P × P matrix in (18) does not
have to be be updated during the iteration process. Moreover, the determination of the GCV-
minimizer in (19) can be easily performed in R using the function smooth.spline(), which
calls on a rapid C-routine.

The GCV smoothing parameter κGCV in (19) does not explicitly account for the factor struc-
ture of the time-varying individual effects vi(t) as formalized in (2). However, given the
assumption of a factor structure, the goal is not to obtain optimal estimates of vi(t) but
rather to obtain optimal estimates of the common factors fl(t), which implies that the opti-
mal smoothing parameter κopt will be smaller than κGCV ; see Kneip et al. (2012).

We use the GCV smoothing parameter κGCV as an upper bound for κopt and approximate
the optimal smoothing parameter by the following naive plug-in estimator:

κplug-in = 0.75 · κGCV .
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Alternatively, it is possible to optimize the CV criterion (14). In this case, the optimal
smoothing parameter κopt is selected from the interval (0, κGCV ) and the factor dimension d
in (14) is estimated by (21) using the plug-in estimator κplug-in.

2.2. Application

This section is devoted to the application of the method above discussed, which is accessible
through the function KSS(). In total, the function KSS() has the following arguments:

R> args(KSS)

function (formula, additive.effects = c("none", "individual",

"time", "twoways"), consult.dim.crit = FALSE, d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, level = 0.01, spar = NULL,

CV = FALSE, convergence = 1e-06, restrict.mode = c("restrict.factors",

"restrict.loadings"), ...)

NULL

The argument additive.effects makes it possible to extend the model (4) for additional
additive individual, time, or twoways effects as discussed in Section 5. If the logical argu-
ment consult.dim.crit is set to TRUE all dimensionality criteria discussed in Section 3 are
computed and the user is asked to choose one of their results.

The arguments d.max and sig2.hat are required for the computation of some dimensionality
criteria discussed in Section 3. If their default values are maintained, the function internally

computes d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in (16), where bxc indicates the integer

part of x. The argument level allows us to adjust the significance level for the dimensionality
testing procedure (21) of Kneip et al. (2012); see Section 3.

The factor dimension d can also be pre-specified by the argument factor.dim. Recall from re-
striction (a) that 1

T

∑T
t=1 f̂l(t)

2 = 1. Alternatively, it is possible to standardize the individual

loadings parameters such that 1
n

∑n
i=1 λ̂il = 1, which can be done by setting restrict.mode

= "restrict.loadings".

As an illustration we estimate the Cigarettes model (3) introduced in Section 1:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit (20)

with eit =
d∑
l=1

λil fl(t) + εit,

where vi(t) =
∑d

l=1 λil fl(t). In the following lines of code we load the Cigar dataset and take
logarithms of the three variables, Consumptionit, Priceit/cpit and Incomeit/cpit, where cpit
is the consumer price index. Please note that we store the variables as T × n-matrices. This
is necessary, because the formula argument of the KSS()-function takes the panel variables
as matrices in which the number of rows has to be equal to the temporal dimension T and
the number of columns has to be equal to the individual dimension n.

Note that the function KSS() is written for balanced panels, and eventually missing values
have to be replaced in a pre-processing step by appropriate estimates.
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R> library("phtt")

R> data("Cigar")

R> N <- 46

R> T <- 30

R> l.Consumption <- log(matrix(Cigar$sales, T, N))

R> cpi <- matrix(Cigar$cpi, T, N)

R> l.Price <- log(matrix(Cigar$price, T, N)/cpi)

R> l.Income <- log(matrix(Cigar$ndi, T, N)/cpi)

The model parameters β1, β2, the factors fl(t), the loadings parameters λil, and the factor
dimension d can be estimated by the KSS()-function with its default arguments. Inferences
about the slope parameters can be obtained by using the method summary().

R> Cigar.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income)

R> (Cigar.KSS.summary <- summary(Cigar.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income)

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)

(Intercept) 4.0600 0.1770 23.00 < 2.2e-16 ***

l.Price -0.2600 0.0223 -11.70 < 2.2e-16 ***

l.Income 0.1550 0.0382 4.05 5.17e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Additive Effects Type: none

Used Dimension of the Unobserved Factors: 6

Residual standard error: 0.000725 on 921 degrees of freedom

R-squared: 0.99

The effects of the log-real prices for cigarettes ln(Priceit) and the log-real incomes ln(Incomeit)
on the log-sales of cigarettes ln(Consumptionit) are highly significant and in line with results
in the literature. The summary output reports an estimated factor dimension of d̂ = 6. In
order to get a visual impression of the six estimated common factors f̂1(t), . . . , f̂6(t) and the
estimated time-varying individual effects v̂1(t), . . . , v̂n(t), we provide a plot()-method for the
KSS-summary object.

R> plot(Cigar.KSS.summary)
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Figure 2: Left panel: Estimated factors f̂1(t), . . . , f̂6(t). Right panel: Estimated time-
varying individual effects v̂1(t), . . . , v̂n(t).

The left panel of Figure 2 shows the six estimated common factors f̂1(t), . . . , f̂6(t) and the right
panel of Figure 2 shows the n = 46 estimated time-varying individual effects v̂1(t), . . . , v̂n(t).
Obviously, there is one nearly time-invariant common factor; this suggests extending the
model (20) by additive individual effects; see Section 5 for more details.

By setting the logical argument consult.dim.crit=TRUE, the user can choose from other
dimensionality criteria, which are discussed in Section 3. Note that the consideration of
different factor dimensions d would not alter the results for the slope parameters β since the
estimation procedure of Kneip et al. (2012) for the slope parameters β does not depend on
the dimensionality parameter d.

3. Panel criteria for selecting the number of factors

In order to estimate the factor dimension d, Kneip et al. (2012) propose a sequential testing
procedure based on the following test statistic:

KSS(d) =
n
∑T

r=d+1 ρ̂r − (n− 1)σ̂2tr(ZκP̂dZκ)

σ̂2
√

2N · tr((ZκP̂dZκ)2)

a∼ N(0, 1), (21)

where P̂d = I − 1
T

∑d
l=1 flf

>
l with fl = (fl(1), . . . , fl(T ))>, and

σ̂2 =
1

(n− 1)tr((I −Zκ)2)

n∑
i=1

||(I −Zκ)(Yi −Xiβ̂)||2. (22)

The selection method can be described as follows: choose a significance level α (e.g., α = 1%)
and begin with H0 : d = 0. Test if KSS(0) ≤ z1−α, where z1−α is the (1− α)-quantile of the
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standard normal distribution. If the null hypothesis can be rejected, go on with d = 1, 2, 3, . . .
until H0 cannot be rejected.

The dimensionality criterion of Kneip et al. (2012) can be used for stationary as well as non-
stationary factors. However, this selection procedure has a tendency to ignore factors that
are weakly auto-correlated. As a result, the number of factors can be underestimated.

More robust against this kind of underestimation are the criteria of Bai and Ng (2002). The
basic idea of their approach consists simply of finding a suitable penalty term gnT , which
countersteers the undesired variance reduction caused by an increasing number of factors d̂.
Formally, d̂ can be obtained by minimizing the following criterion:

PC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT (23)

for all l ∈ {1, 2, . . .}, where ŷit(l) is the fitted variable for a given factor dimension l. To
estimate consistently the dimension of stationary factors Bai and Ng (2002) propose specifying
gnT by one of the following penalty terms:

g
(PC1)
nT = σ̂2

(n+ T )

nT
log(

nT

n+ T
) (24)

g
(PC2)
nT = σ̂2

(n+ T )

nT
log(min{n, T}) (25)

g
(PC3)
nT = σ̂2

log(min{n, T})
min{n, T}

, (26)

where σ̂2 is a consistent estimator of σ2, the variance of εit. The proposed criteria are denoted
by PC1, PC2, and PC3, respectively. In practice, σ̂2 can be obtained by

σ̂2(dmax) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(dmax))2, (27)

where dmax is an arbitrary maximal dimension that is larger than d. This kind of variance
estimation can, however, be inappropriate in some cases, especially when (27) underestimates
the true variance σ2. The latter can be the case, if the error terms are auto-correlated. To
overcome this problem, Bai and Ng (2002) propose three additional criteria (IC1, IC2, and
IC3):

IC(l) = log

(
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2
)

+ lgnT (28)

with

g
(IC1)
nT =

(n+ T )

nT
log(

nT

n+ T
) (29)

g
(IC2)
nT =

(n+ T )

nT
log(min{n, T}) (30)

g
(IC3)
nT =

log(min{n, T})
min{n, T}

. (31)
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Under similar assumptions, Ahn and Horenstein (2009) propose selecting d by maximizing
the ratio of adjacent eigenvalues (or the ratio of their growth rate). The criteria are referred
to as Eigenvalue Ratio (ER) and Growth Ratio (GR) and defined as following:

ER = ρ̂l
ρ̂l+1

GR =
log(

∑T
r=l ρ̂r/

∑T
r=l+1 ρ̂r)

log(
∑T

r=l+1 ρ̂r/
∑T

r=l+2 ρ̂r)
.

Note that the theory of the above dimensionality criteria PC1, PC2, PC3, IC1, IC2, IC3,
ER, and GR is developed for stationary factors. In order to estimate the number of unit root
factors, Bai (2004) proposes the following panel criteria:

IPC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT (32)

where

g
(IPC1)
nT = σ̂2

log(log(T ))

T

(n+ T )

nT
log(

nT

n+ T
) (33)

g
(IPC2)
nT = σ̂2

log(log(T ))

T

(n+ T )

nT
log(min{n, T}) (34)

g
(IPC3)
nT = σ̂2

log(log(T ))

T

log(min{n, T})
min{n, T}

. (35)

Alternatively, Onatski (2010) has introduced a threshold approach based on the empirical dis-
tribution of the largest eigenvalue, which can be used for both stationary and non-stationary
factors. The estimated dimension is obtained by

d̂ = max{l ≤ dmax : ρ̂l − ρ̂l−1 ≥ δ},

where δ is a positive threshold, estimated iteratively from the data.

3.1. Application

The dimensionality criteria introduced above are implemented in the function OptDim(),
which has the following arguments:

R> args(OptDim)

function (Obj, criteria = c("PC1", "PC2", "PC3", "IC1", "IC2",

"IC3", "IPC1", "IPC2", "IPC3", "KSS.C", "ED", "ER", "GR"),

standardize = FALSE, d.max, sig2.hat, spar, level = 0.01)

NULL

The desired criteria can be selected by one or several of the following character variables:
"KSS.C", "PC1", "PC2", "PC3", "IC1", "IC2" , "IC3", "ER", "GR", "IPC1", "IPC2", "IPC3",
and "ED". The default significance level used for the "KSS"-criterion is level = 0.01. The
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values of dmax and σ̂2 can be specified externally by the arguments d.max and sig2.hat.

By default, d.max is computed internally as d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in

(22) and (27). The input variable can be standardized by choosing standardize = TRUE. In
this case, the calculation of the eigenvalues is based on the correlation matrix instead of the
covariance matrix.

As an illustration, imagine that we are interested in the estimation of the factor dimension
of the variable ln(Consumptionit) with the dimensionality criterion "PC1". The function
OptDim() requires a T × n matrix as input variable.

R> OptDim(Obj = l.Consumption, criteria = "PC1")

Call: OptDim.default(Obj = l.Consumption, criteria = "PC1")

---------

Criterion of Bai and Ng (2002):

PC1

7

OptDim() offers the possibility of comparing the result of different selection procedures by
giving the corresponding criteria to the argument criteria. If the argument criteria is left
unspecified, OptDim() automatically compares all 13 dimensionality selection procedures.

R> (OptDim.obj <- OptDim(Obj = l.Consumption, criteria = c("PC3", "ER", "GR",

+ "IPC1", "IPC2", "IPC3"), standardize = TRUE))

Call: OptDim.default(Obj = l.Consumption, criteria = c("PC3", "ER",

"GR", "IPC1", "IPC2", "IPC3"), standardize = TRUE)

---------

Criterion of Bai and Ng (2002):

PC3

8

--------

Criteria of Ahn and Horenstein (2008):

ER GR

3 3

---------

Criteria of Bai (2004):

IPC1 IPC2 IPC3

3 3 2
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In order help users to choose the most appropriate dimensionality criterion for the data,
OptDim-objects are provided with a plot()-method. This method displays, in descending
order, the magnitude of the eigenvalues in percentage of the total variance and indicates
where the given criteria detect the optimal dimension: see Figure 3.

R> plot(OptDim.obj)

Screeplot

Ordered eigenvalues

P
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8
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ER,    GR,    IPC1,    IPC2
PC3

Figure 3: Scree plot produced by the plot()-method for OptDim-objects. Most of the dimen-
sionality criteria (ER, GR, IPC1 and IPC2) suggest using the dimension d̂ = 3.

In this regard, the function KSS() offers us the ability to compare the results of all dimen-
sionality criteria and to select one of them. If the KSS()-argument consult.dim = TRUE the
results of the dimensionality criteria are printed on the console of R and the user is asked to
choose one of the results.

R> KSS(formula = l.Consumption ~ -1 + l.Price + l.Income, consult.dim = TRUE)

-----------------------------------------------------------

Results of Dimension-Estimations

-Bai:

PC1 PC2 PC3 IC1 IC2 IC3 IPC3 IPC2 IPC3

7 6 7 5 5 5 3 3 3
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-KSS:

KSS.C

6

-Onatski:

ED

3

-RH:

ER GR

3 4

-----------------------------------------------------------

Please, choose one of the proposed integers:

After entering a number of factors, e.g., 6 we get the following feedback:

Used dimension of unobs. factor structure is: 6

-----------------------------------------------------------

Note that the maximum number of factors that can be given, cannot exceed the maximal
number of all proposed factor dimensions (here maximal dimension would be 7). A higher
dimension can be chosen using the argument factor.dim.

4. Panel models with stationary common factors

The panel model proposed by Bai (2009) can be presented as follows:

yit =

P∑
j=1

xitjβj + vit + εit, (36)

where

vit =
d∑
l=1

λilflt. (37)

Combining (36) with (37) and writing the model in matrix notation, we get

Yi = Xiβ + FΛ>i + εi (38)

where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, εi = (εi1, . . . , εiT )>, Λi = (λ1, . . . , λn)> and

F = (f1, . . . , fT )> with λi = (λi1, . . . , λid), ft = (f1t, . . . , fdt), and εi = (εi1, . . . , εiT )>.

The asymptotic properties of Bai’s method rely, among others, on the following assumption:

1

T
F>F

p→ ΣF as T →∞, (39)

where ΣF is a fixed positive definite d × d matrix. This rules out the large class of non-
stationary stochastic processes such as unit root processes.



16 The R-package phtt

4.1. Model with known number of factors d

Bai (2009) proposes to estimate the model parameters β, F and Λi by minimizing the following
least squares objective function:

S(β, F,Λi) =

n∑
i

||Yi −Xiβ − FΛ>i ||2 (40)

For each given F , the OLS estimator of β can be obtained by

β̂(F ) =

(
n∑
i=1

X>i PdXi

)−1( n∑
i=1

X>i PdYi

)

where Pd = I−F (F>F )−1F> = I−FF>/T . If β is known, F can be estimated by using the
first d eigenvectors γ̂ = (γ̂1, . . . , γ̂d) corresponding to the first d eigenvalues of the empirical
covariance matrix Σ̂ = (nT )−1

∑n
i=1wiw

>
i , where wi = Yi −Xiβ. That is,

F̂ (β) =
√
T γ̂.

The idea of Bai (2009) is to start with initial values for β or F and calculate the estimators
iteratively. The method requires, however, the factor dimension d to be known, which is
usually not the case in empirical applications.

4.2. Model with unknown number of factors d

Bada and Kneip (2010) propose an algorithmic refinement of the method of Bai (2009) in order
to provide a joint estimation of the factor dimension d together with the other parameters
β, F , and Λi. In this case, the optimization criterion can be defined as a penalized least
squares objective function:

S(β, F,Λi, l) =

N∑
i

||Yi −Xiβ − FΛ>i ||2 + lgnT (41)

The role of the additional term lgnT is to pick up the optimal dimension d̂, of the unobserved
factor structure. The penalty factor gnT can be chosen according to Bai and Ng (2002).
Alternatively, gnT can be replaced by the threshold δ proposed by Onatski (2010). The
estimation algorithm is based on the parameter cascading method of Cao and Ramsay (2010)
that can be described as follows:

1. Minimizing (41) with respect to Λi for each given β, F and d, we get

Λ̂>i (β, F, d) = F> (Yi −Xiβ) /T. (42)

2. Introducing (42) in (41) and minimizing with respect to F for each given β and d, we
get

F̂ (β, d) =
√
T γ̂(β, d), (43)

where γ̂(β, d) is a T × d matrix that contains the first d eigenvectors corresponding to
the first d eigenvalues ρ1, . . . , ρd of the covariance matrix Σ̂ = (nT )−1

∑n
i=1wiw

>
i with

wi = Yi −Xiβ.
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3. Reintegrating (43) and (42) in (41) and minimizing with respect to β for each given d,
we get

β̂(d) =

(
N∑
i=1

X>i Xi

)−1( N∑
i=1

X>i

(
Yi − F̂ Λ̂>i (β̂, d)

))
. (44)

4. Optimizing (41) with respect to l given the results in (42), (43), and (44) allows us to
select d̂ as

d̂ = min
l

N∑
i

||Yi −Xiβ̂ − F̂ Λ̂>i ||2 + lgnT , for all l ∈ {0, 1, . . . , dmax}.

The final estimators are obtained by alternating between an inner iteration to optimize
β̂(d), F̂ (d), and Λ̂i(d) for each given d and an outer iteration to select the optimal dimension
d̂. The updating process is repeated in its entirety till the convergence of all the parameters.
This is why the estimators are called entirely updated estimators (Eup).

It is notable that the objective functions (41) and (40) are not globally convex. There is
no guarantee that the iteration algorithm converges to the global optimum. Therefore, it is
important to choose reasonable starting values d̂start and β̂start. We propose to select a large
dimension dmax and to start the iteration with the following estimate of β:

β̂start =

(
N∑
i=1

X>i (I −GG>)Xi

)−1( N∑
i=1

X>i (I −GG>)Yi

)
, (45)

where G is the T ×dmax matrix of the eigenvectors corresponding to the first dmax eigenvalues
of the augmented covariance matrix

ΓAug =
1

nT

n∑
i=1

(Yi, Xi)(Y
>
i , X

>
i )>.

The intuition behind these starting estimates relies on the fact that the unobserved factors
cannot escape from the space spanned by the eigenvectors G. The orthogonal projection of Xi

on G in (45) eliminates the effect of a possible correlation between the observed regressors and
unobserved factors, which can heavily distort the value of β0 if it is neglected. Greenaway-
McGrevy, Han, and Sul (2012) give conditions under which (45) is a consistent estimator of
β.

According to Bai (2009), the asymptotic distribution of the slope estimator β̂ for known d
and i.i.d. εit is: √

nT (β̂(d)− β)
a∼ N(0,Σβ),

where Σβ = D−10 σ2. Here, σ2 = Var(εit) and D0 = plim 1
nT

∑n
i=1 Z

>
i Zi with Zi = PdXi −

1
n

∑n
k=1 PdXiaik and aik = Λi(

1
n

∑n
i=1 Λ>i Λi)

−1Λ>k . Bada and Kneip (2010) show that if

limn,T→∞ P (d̂ = d) = 1, the entirely updated estimator β̂ = β̂(d̂) will have the same asymp-

totic distribution as β̂(d). The asymptotic variance of the estimator β̂ can be estimated as
follows:

Σ̂β = (
1

nT

n∑
i=1

Z>i Zi)
−1 1

nT

n∑
i=1

ε̂>i ε̂i,
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where ε̂i = Yi −Xiβ̂ − F̂ Λ̂>i .

4.3. Application

The above described methods are implemented in the function Eup(), which takes the follow-
ing arguments:

R> args(Eup)

function (formula, additive.effects = c("none", "individual",

"time", "twoways"), dim.criterion = c("PC1", "PC2", "PC3",

"IC1", "IC2", "IC3", "IPC1", "IPC2", "IPC3", "ED"), d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, double.iteration = TRUE,

start.beta = NULL, max.iteration = 500, convergence = 1e-06,

restrict.mode = c("restrict.factors", "restrict.loadings"),

...)

NULL

The argument additive.effects gives the possibility of extending the model (38) for addi-
tional additive effects as discussed in more detail in Section 5. The argument dim.criterion
specifies the dimensionality criterion to be used if factor.dim is left unspecified and de-
faults to dim.criterion = "PC1". The arguments d.max and sig2.hat are required for the
computation of some dimensionality criteria discussed in Section 3. If their default values are
maintained, the function internally computes d.max as min{

√
n,
√
T} and sig2.hat according

to (27).

Setting the argument double.iteration=FALSE may speed up computations, because the
updates of d̂ will be done simultaneously with F̂ without waiting for their inner convergences.
However, in this case, the convergence of the parameters is less stable than in the default
setting.

The argument start.beta allows us to give a vector of starting values for the slope pa-
rameters βstart. The maximal number of iteration and the convergence condition can be
controlled by max.iteration and convergence. Finally, by choosing restrict.mode =

c("restrict.loadings"), the restriction 1
T

∑
t f

2
lt = 1 will be replaced by the restriction

1
n

∑
i λ

2
il = 1 for all l ∈ {1, . . . d}.

In our application, we take first-order differences of the observed time series. This is because
some factors show temporal trends, which can violate the stationarity condition (39); see
Figure 2. We consider the following modified Cigarettes model:

O ln(Consumptionit) = β1O ln(Priceit) + β2O ln(Incomeit) + eit,

with eit =
d∑
l=1

λilflt + εit,

where Oxt = xt − xt−1. In order to avoid notational mess, we use the same notation for
the unobserved time-varying individual effects vit =

∑d
l=1 λilflt as above in (20). The O-

transformation can be easily performed in R using the standard diff()-function as follows:
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R> d.l.Consumption <- diff(l.Consumption)

R> d.l.Price <- diff(l.Price)

R> d.l.Income <- diff(l.Income)

As previously mentioned for the KSS()-function, the formula argument of the Eup()-function
takes balanced panel variables as T × n dimensional matrices, where the number of rows has
to be equal to the temporal dimension T and the number of columns has to be equal to the
individual dimension n.

R> (Cigar.Eup <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ dim.criterion = "PC3"))

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

dim.criterion = "PC3")

Coeff(s) of the Observed Regressor(s) :

d.l.Price d.l.Income

-0.3171044 0.1838808

Additive Effects Type: none

Dimension of the Unobserved Factors: 7

Number of iterations: 115

Inferences about the slope parameters can be obtained by using the method summary().

R> summary(Cigar.Eup)

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

dim.criterion = "PC3")

Residuals:

Min 1Q Median 3Q Max

-0.09340 -0.01170 0.00063 0.01260 0.07690

Slope-Coefficients:

Estimate Std.Err Z value Pr(>z)

d.l.Price -0.3170 0.0237 -13.40 < 2.2e-16 ***

d.l.Income 0.1840 0.0372 4.95 7.48e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Additive Effects Type: none

Dimension of the Unobserved Factors: 7

Residual standard error: 0.0006995 on 807 degrees of freedom,

R-squared: 0.78

The summary output reports that "PC3" detects 7 common factors. The effect of the log-real
prices for cigarettes on the log-sales is negative and amounts to −0.317104. The estimated
effect of the real disposable log-income per capita is 0.183882, which is smaller than the effect
estimated by the method of Kneip et al. (2012).

The estimated factors f̂tl as well as the individual effects v̂it can be plotted using the plot()-
method for summary.Eup-objects. The corresponding graphics are shown in Figure 4.

R> plot(summary(Cigar.Eup))
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Figure 4: Left Panel: Estimated factors f̂1t, . . . , f̂7t. Right panel: Estimated time-
varying individual effects v̂1t, . . . , v̂nt.

5. Models with additive and interactive unobserved effects

Even though the classical additive "individual", "time", and "twoways" effects can be
absorbed by the factor structure, there are good reasons to model them explicitly. On the
one hand, if there are such effects in the true model, then neglecting them will result in non-
efficient estimators; see Bai et al. (2009). On the other hand, additive effects can be very
useful for interpretation purposes.

Consider now the following model:

yit = µ+ αi + θt + x>itβ + νit + εit (46)



Oualid Bada, Dominik Liebl 21

with

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012),

where αi are time-constant individual effects and θt is a common time-varying effect.

In order to ensure identification of the additional additive effects αi and θt, we need the
following further restrictions:

(d)
∑n

i=1 λil = 0 for all l ∈ {1, . . . , d}

(e)
∑T

t=1 flt = 0 for all l ∈ {1, . . . , d}

(f)
∑n

i=1 αi = 0

(g)
∑T

t=1 θt = 0

By using the classical within-transformations on the observed variables, we can eliminate the
additive effects αi and θt, such that

ẏit = ẋ>itβ + νit + ε̇it,

where ẏit = yit − 1
T

∑T
t=1 yit −

1
n

∑n
i=1 yit + 1

nT

∑T
t=1

∑n
i=1 yit, ẋit = xit − 1

T

∑T
t=1 xit −

1
n

∑n
i=1 xit+

1
nT

∑T
t=1

∑n
i=1 xit, and ε̇it = εit− 1

T

∑T
t=1 εit−

1
n

∑n
i=1 εit+

1
nT

∑T
t=1

∑n
i=1 εit. Note

that restrictions (d) and (e) insure that the transformation does not affect the time-varying
individual effects νit.

The parameters β and νit can be estimated by the above introduced estimation procedures. All
possible variants of (46) are implemented in the functions KSS() and Eup(). The appropriate
model can be specified by the argument additive.effects = c("none", "individual",

"time", "twoways"):

"none" yit = µ+ x>itβ + νit + εit

"individual" yit = µ+ αi + x>itβ + νit + εit

"time" yit = µ+ θt + x>itβ + νit + εit

"twoways" yit = µ+ αi + θt + x>itβ + νit + εit.

The presence of µ can be controlled by -1 in the formula-object: a formula with -1 refers
to a model without intercept. However, for identification purposes, if a twoways model is
specified, the presence -1 in the formula will be ignored.

As an illustration we continue with the application of the KSS()-function in Section 2. The
left panel of Figure 2 shows that one of the six estimated factors is nearly time-invariant.
This motivates us to augment the model (20) for a time-constant additive effects αi. In this
case it is convenient to use an intercept µ, which yields the following model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit, (47)

where vi(t) =
d∑
l=1

λil fl(t).

The estimation of the augmented model (47) can be done using the following lines of code.
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R> Cigar2.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income,

+ additive.effects = "individual")

R> (Cigar2.KSS.summary <- summary(Cigar2.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income, additive.effects = "individual")

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)

(Intercept) 4.0500 0.1760 23.10 < 2.2e-16 ***

l.Price -0.2600 0.0222 -11.70 < 2.2e-16 ***

l.Income 0.1570 0.0381 4.11 3.88e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Additive Effects Type: individual

Used Dimension of the Unobserved Factors: 5

Residual standard error: 0.000734 on 951 degrees of freedom

R-squared: 0.99

Again, the plot() method provides an useful visualization of the results.

R> plot(Cigar2.KSS.summary)

The "individual"-transformation of the data does not affect the estimation of the slope
parameters but reduces the estimated dimension from d̂ = 6 to d̂ = 5. The remaining five
common factors f̂1, . . . , f̂5 correspond to those of model (20); see the middle panel of Figure
5. The estimated time-constant state-specific effects αi are shown in the left plot of Figure
5. The extraction of the αi’s from the factor structure yields a denser set of time-varying
individual effects v̂i shown in the right panel of Figure 5.

5.1. Specification tests

Model specification is an important step for any empirical analysis. The phtt package is
equipped with two types of specification tests: the first is a Hausman-type test appropriate
for the model of Bai et al. (2009); see Section 5.1.1. The second one examines the existence
of a factor structure in Bai’s model as well as in the model of Kneip et al. (2012); see Section
5.1.2.

Testing the sufficiency of classical additive effects
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Figure 5: Left Panel: Estimated time-constant state-specific effects α̂1, . . . , α̂n. Middle
Panel: Estimated common factors f̂1(t), . . . , f̂5(t). Right Panel: Estimated time-varying
individual effects v̂1(t), . . . , v̂n(t).

For the case in which there are only one or two factors (1 ≤ d ≤ 2), it is interesting to
check whether or not these factors can be interpreted as classical "individual", "time", or
"twoways" effects. Bai et al. (2009) considers the following testing problem:

H0: vit = αi + θt
H1: vit =

∑2
l=1 λilflt

The model with factor structure, as described in Section 4, is consistent under both hypothe-
ses. However, it is less efficient under H0 than the classical within estimator, while the latter is
inconsistent under H1 if xit and vit are correlated. These conditions are favorable for applying
the Hausman test:

JBai = nT
(
β̂ − β̂within

)
∆−1

(
β̂ − β̂within

)
a∼ χ2

P , (48)

where β̂within is the classical within least squares estimator, ∆ = V ar
(
β̂ − β̂within

)
, P is the

vector-dimension of β, and χ2
P is the χ2-distribution with P degree of freedom.

The null hypothesis H0 can be rejected, if JBai > χ2
P,1−α, where χ2

P,1−α is the (1−α)-quantile

of the χ2 distribution with P degrees of freedom.

To calculate JBai we can replace ∆ by its consistent estimator

∆̂ =

( 1

nT

n∑
i=1

Z>i Zi

)−1
−

(
1

nT

n∑
i=1

T∑
t=1

ẋ>i ẋi

)−1 σ̂2, (49)

where

σ̂2 =
1

nT − (n+ T )d̂− P + 1

n∑
i=1

T∑
t=1

(yit − x>it β̂ −
d̂∑
l=1

λ̂ilf̂lt)
2. (50)
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The test is implemented in the function checkSpecif(), which takes the following arguments:

R> checkSpecif(obj1, obj2, level = 0.05)

The arguments obj1 and obj2 take both objects of class Eup produced by the function Eup():

obj1 Takes an Eup-object from an estimation with "individual", "time", or "twoways"

effects and a factor dimension equal to d = 0; specified as factor.dim = 0.

obj2 Takes an Eup-object from an estimation with "none"-effects and a positive factor di-
mension 1 ≤ d ≤ 2:
factor.dim=1 for testing "individual" or "time" effects.
factor.dim=2 for testing "twoways" effects.

The argument level is used to specify the significance level.

However, the Hausman test of Bai et al. (2009) has a clear disadvantage. It is applicable only
in situations of one or two factors (1 ≤ d ≤ 2). This is, e.g., not fulfilled in our demonstrations
using the Cigar dataset, where the estimated factor dimension d̂ lies between six and seven;
see Figures 2 and 4. The problem is that in such cases the matrix ∆̂ in (49) can become
negative definite, which would yield a negative test statistic JBai in (48). If the test is applied
in such situations, an error message is printed:

R> twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 0, additive.effects = "twoways")

R> not.twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 2, additive.effects = "none")

R> checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj, level = 0.01)

Error in checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj, level = 0.01) :

The assumptions of the test are not fulfilled.

The (unobserved) true number of factors is probably greater than 2.

An alternative test for the sufficiency of a classical additive effects model is given by the
following test proposed by Kneip et al. (2012). This test can be applied for arbitrary factor
dimensions d.

Testing the existence of common factors

This section is concerned with testing the existence of common factors. In contrast to the
Hausman type statistic discussed above, the goal of this test is not merely to decide which
model specification is more appropriate for the data, but rather to test in general the existence
of common factors beyond the eventual presence of additional classical "individual", "time"
, or "twoways" effects in the model.

This test relies on using the dimensionality criterion proposed by Kneip et al. (2012) to
test the following hypothesis after eliminating eventual additive "individual", "time", or
"twoways" effects:

H0: d = 0
H1: d > 0
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Under H0 the slope parameters β can be estimated by the classical within estimation method.
In this simple case, the dimensionality test of Kneip et al. (2012) can be reduced to the
following test statistic:

JKSS =
n tr(Σ̂w)− (n− 1)(T − 1)σ̂2√

2n(T − 1)σ̂2
a∼ N(0, 1),

where Σ̂w is the covariance matrix of the within residuals. The reason for this simplification
is that under H0 there is no need for smoothing, which allows us to set κ = 0.

We reject H0: d = 0 at a significance level α if JKSS > z1−α, where z1−α is the (1−α)-quantile
of the standard normal distribution. It is important to note that the performance of the test
depends heavily on the accuracy of the variance estimator σ̂2. We propose to use the variance
estimators (16) or (50), which are consistent under both hypotheses as long as d̂ is greater
than the unknown dimension d. Internally, the test procedure sets d̂ =d.max.

This test can be performed for Eup- as well as for KSS-objects by using the function checkSpecif()

leaving the second argument obj2 unspecified. In the following we apply the test for both
models:

R> Eup.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ additive.effects = "twoways")

R> checkSpecif(Eup.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

13.29 0.00 2.33 0.01

R> KSS.obj <- KSS(l.Consumption ~ -1 + l.Price + l.Income,

+ additive.effects = "twoways")

R> checkSpecif(KSS.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

104229.55 0.00 2.33 0.01

The null hypothesis H0: d = 0 can be rejected for both models at a significance level α = 0.01.
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6. Interpretation

This section is intended to outline an exemplary interpretation of the panel model (47), which
is estimated by the function KSS() in Section 5. The interpretation of models estimated by
the function Eup() can be done accordingly. For convenience sake we re-write the model (47)
in the following:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit,

where vi(t) =
d∑
l=1

λil fl(t).

A researcher, who chooses the panel models proposed by Kneip et al. (2012) or Bai (2009)
will probably find them attractive due to their ability to control for very general forms of
unobserved heterogeneity. Beyond this a further great advantage of these models is that
the time-varying individual effects vi(t) provide a valuable source of information about the
differences between the individuals i. These differences are often of particular interest as,
e.g., in the literature on stochastic frontier analysis.

The left panel of Figure 5 shows that the different states i have considerable different time-
constant levels α̂i of cigarette consumption. A classical further econometric analysis could
be to regress the additive individual effects α̂i on other time-constant variables, such as the
general populations compositions, the cigarette taxes, etc.

The right panel of Figure 5 shows the five estimated common factors f̂1(t), . . . , f̂5(t). It is a
good practice to start the interpretation of the single common factors with an overview about
their importance in describing the differences between the vi(t)’s, which is reflected in the
variances of the individual loadings parameters λ̂il. A convenient depiction is the quantity
of variance-shares of the individual loadings parameters on the total variance of the loadings
parameters

coef(Cigar2.KSS)$Var.shares.of.loadings.param[l] = V(λ̂il)/

d̂∑
k=1

V(λik),

which is shown for all common functions f̂1(t), . . . , f̂5(t) in the following table:

Common Factor Share of total variance of vi(t)

f̂1(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[1] = 66.32%

f̂2(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[2] = 24.28%

f̂3(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[3] = 5.98%

f̂4(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[4] = 1.92%

f̂5(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[5] = 1.50%

Table 1: List of the variance shares of the common factors f̂1(t), . . . , f̂5(t).

The values in Table 1 suggest to focus on the first two common factors, which explain together
about 90% of the total variance of the time-varying individual effects v̂i(t).

The first two common factors
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coef(Cigar2.KSS)$Common.factors[,1] = f̂1(t) and

coef(Cigar2.KSS)$Common.factors[,2] = f̂2(t)

are plotted as black solid and red dashed lines in the middle panel of Figure 5. Figure 6
visualizes the differences of the time-varying individual effects vi(t) in the direction of the first
common factor (i.e: λ̂i1f̂1(t)) and in the direction of the second common factor (i.e: λ̂i2f̂2(t)).
As for the time-constant individual effects α̂i a further econometric analysis could be to regress
the individual loadings parameters λ̂i1 and λ̂i2 on other explanatory time-constant variables.
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Figure 6: Left Panel: Visualization of the differences of the time-varying individual effects
vi(t) in the direction of the first factor f̂1(t) (i.e: λ̂i1f̂1(t)). Right Panel: Visualization of
the differences of the time-varying individual effects vi(t) in the direction of the second factor
f̂2(t) (i.e: λ̂i2f̂2(t)).

Generally, for both models proposed by Kneip et al. (2012) and Bai (2009) the time-vaying
individual effects

νit =
d∑
l=1

λilflt

can be interpreted as it is usually done in the literature on factor models. An important
topic that is not covered in this section is the rotation of the common factors. Often, the
common factors fl can be interpreted economically only after the application of an appro-
priate rotation scheme for the set of factors f̂1, . . . , f̂d̂. The latter can be done, e.g., using
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the function varimax() from the stats package. Sometimes it is also preferable to stan-
dardize the individual loadings parameters instead of the common factors as it is done, e.g.,
in Ahn, Hoon Lee, and Schmidt (2001). This can be done by choosing restrict.mode =

c("restrict.loadings") in the functions KSS() and Eup() respectively.

7. Summary

This paper introduces the R package phtt for the new class of panel models proposed by
Bai (2009) and Kneip et al. (2012). The two main functions of the package are the Eup()-
function for the estimation procedure proposed in Bai (2009) and the KSS()-function for
the estimation procedure proposed in Kneip et al. (2012). Both of the main functions are
supported by several print, summary, and plot methods. While parts of the method of Bai
(2009) are available for commercially available software packages, the estimation procedure
proposed by Kneip et al. (2012) is not available elsewhere. A further remarkable feature of
our phtt package is the OptDim()-function, which provides an ease access to many different
dimensionality criteria proposed in the literature on factor models. The usage of the functions
is demonstrated in several real data applications.
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