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Abstract

The planar package solves the electromagnetic problem of dipole
emission near a planar multilayer stack. It comprises two sets of func-
tions; i) to compute the effective Fresnel reflection coefficient of a
multilayer structure; ii) to evaluate the modified dipolar field as an
integral over plane waves reflected at the interface.

1 Fresnel coefficients

The functions recursive.fresnel and multilayer both compute the Fres-
nel coefficients for a multilayer stack, using two different methods (recursive
application of Fresnel coefficients for a layer; and transfer matrix, respec-
tively). multilayer is more versatile in that it also returns the fields and
enhancement factors. recursive.fresnel, on the other hand, is more ro-
bust for some calculations involving lossless layers. Both functions are com-
plemented by a faster implementation in C++, though the output is not as
comprehensive.

1.1 Multilayer optics
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Figure 1: demo(bragg_stack). Reflectivity of a Bragg stack with varying
number of layers. Reproducing Fig. 6.6, p. 188 of Mac Leod’s Thin Film
Optical Filters the structure is a stack of lambda/4 layers of indices nH and
nL on a glass substrate with increasing number of layers, the reflectivity
stop-band becomes stronger.

1.2 Kretschmann configuration – planar surface plasmon-
polaritons

First, we look at the reflectivity of a thin metal film excited in the Kretschmann
configuration.

In the same configuration, SPPs may be excited for a wide range of fre-
quencies. The dispersion of the surface mode may be observed as a high
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Figure 2: demo(LFIEF_distance). Comparison of the near field enhance-
ment outside of a thin metal film, calculated with i) the transfer matrix
method of multilayer; ii) Fresnel reflection and transmission coefficients.

reflectivity trace when plotted as a function of incident in-plane wavevector
and energy.

Free-space radiation cannot directly couple to SPP modes due to a mo-
mentum mismatch. Using evanescent illumination, in-plane wavevectors of
arbitrarily large value may be obtained and allow the mapping of the coupled-
SPPs dispersion in a symmetric configuration.
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Figure 3: demo(field_profile_multilayer). Local field enhancement fac-
tors for a dipole near or inside a multilayer. Note that the field and its
derivative are continuous across all interfaces.
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Figure 4: demo(kretschmann_angle_scan). Reflectivity of a thin metal film,
50 nm thick, sandwiched between glass (n = 1.5) and air. The SPP is excited
at the metal/air interface. By changing the incident angle, the normalised
in-plane wavevector q varies from 0 (normal incidence) to 1 (grazing internal
angle).
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q = kx k1
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Figure 5: demo(dispersion_kretschmann). Reflectivity of a thin metal film,
50 nm thick, sandwiched between semi-infinite glass (n = 1.5) and air. The
dispersion of the SPP mode appears as a dark curve following the equation

kspp = k0
√

εmetalεair
εmetal+εair
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Figure 6: demo(dispersion_symmetric).Reflectivity of a thin metal film,
50 nm thick, sandwiched between semi-infinite glass (n = 1.5) on either
side. Coupled SPPs are excited when the normalized in-plane wavevector
q is greater than 1. Note that values of |r|2 > 1 are not unphysical, as no
power is transferred by evanescent waves.
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2 Decay rates

From [RE09] (p. 571), and [NH06] (pp. 335–360), the total decay rate for a
dipole perpendicular to the interface is

M⊥
tot = 1 +

3

2

∫ ∞

0

ℜ

{
q3√
1− q2

rp(q) exp
(
2ik1d

√
1− q2

)}
dq (1)

The integrand diverges as q → 1, it is therefore advantageous to perform
the substitution u :=

√
1− q2. In order to maintain a real path of inte-

gration, the integral is first split into a radiative region (0 ≤ q ≤ 1, u :=√
1− q2 ≥ 0), and an evanescent region (1 ≤ q ≤ ∞, −iu :=

√
q2 − 1 ≥ 0).

After some algebraic manipulation, we obtain,

M⊥
tot = 1 +

3

2
(I1 + I2) (2)

where

I1 + I2 =

∫ 1

0

[
1− u2

]
· ℜ

{
rp(

√
1− u2) exp (2idk1u)

}
du

+

∫ ∞

0

[
1 + u2

]
· exp (−2dk1u) · ℑ

{
rp(

√
1 + u2)

}
du

(3)

Similarly, for the parallel dipole

M
∥
tot = 1+

3

4

∫ ∞

0

ℜ

{[
rs(q)√
1− q2

− rp(q)
√
1− q2

]
· q · exp

(
2ik1d

√
1− q2

)}
dq

(4)
which can be rewritten as,

M
∥
tot = 1 +

3

4

(
I
∥
1 + I

∥
2

)
(5)

where

I
∥
1 + I

∥
2 =

∫ 1

0

ℜ
{[

rs(
√
1− u2)− u2 · rp(

√
1− u2)

]
exp (2idk1u)

}
du

+

∫ ∞

0

exp (−2dk1u) · ℑ
{
rs(

√
1 + u2) + u2 · rp(

√
1 + u2)

}
du

(6)
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Figure 7: demo(dipole_integrand). Integrand in the resonance region of
the total decay rate enhancement factorMtot for a dipole situated 5 nm above
a metal interface.

2.1 Angular pattern of dipole emission

By virtue of reciprocity, the local field intensity enhancement factor also
represent the probability of emission of a dipole in a particular direction.
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Figure 8: Integrand of the total decay rate enhancement factor Mtot for a
dipole situated 5 nm above a metal interface, for several emission wavelengths.
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Figure 9: demo(decay_rates). Total and radiative decay rate enhancements
for a dipole near a metal interface. Reproducing Fig. 6.1, p. 304 from Prin-
ciples of Surface-Enhanced Raman Spectroscopy. A dipole is placed near a
semi-infinite air/metal interface with orientation either parallel or perpendic-
ular to the interface the total decay rates peak at the wavelength of excitation
of planar SPPs epsilon=-1 at the interface (loss channel). The radiative de-
cay rate in the upper medium has a trough at the wavelength where ε = 0
(Dn = 0, by continuity En = 0).
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Figure 10: demo(integrated_decay_rates). Integrated decay rates and
efficiency for a dipole near a semi-infinite air/metal interface for gold and
silver, varying the wavelength and the dipole-interface distance.
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Figure 11: demo(decay_fluo_distance). Fluorescence decay rates vs dis-
tance in the Kretschmann configuration.
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Figure 12: demo(LFIEF_angular_pattern_dummy). Radiation pattern of a
dipole in a vacuum (dummy interface, parallel and perpendicular orientation,
p-polarisation).
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Figure 13: demo(LFIEF_angular_pattern_kretschmann). Radiation pat-
tern of a dipole near a dielectric / metal/ dielectric multilayer, p-polarisation.
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