
Using rbambools package

Wolfgang Kaisers, CBiBs HHU Dusseldorf

April 25, 2013

1 What this package is made for

BAM files are a important and powerful file format in Bioinformatics. This
package pursues several objectives:

� Provide a technical (reading and writing) access to BAM files from within
R.

� Give an authentic representation of the informational structure inside
BAM files as programming interface.

� Provide a fast, C-based access to special (cumulative) aspects of the stored
information.

These objectives transform into three implementational layers:

� The samtools C-library (written by Heng Li).

� C-based align and align-gap container.

� A R S4 class library.

The samtools library is (almost) a copy of the library originally written by
Heng Li. All reading and writing transactions are done via samtools. There is
C-code which handle align data for whole ranges and C-code for accumulation
of information about splice-sites from gapped aligns.
The R-part of the code contains objects which communicate directly with sam-
tools for reading and writing files, managing of file-header data, managing data
for single aligns and functions which transform align data into data.frame for-
mat. Then there are objects that calculate and keep align-gap information for
whole BAM-files and to summarize align-gap data over several BAM-files.
Align-gaps are emphasized here because they are highly informative represen-
tations of genomic splice-sites in RNA-seq data.

2 SAM file format

Data in BAM files is compressed and optionally indexed data in SAM file for-
mat. The current definition of the SAM file format can be found here:

http://samtools.sourceforge.net/SAM1.pdf.

1

http://samtools.sourceforge.net/SAM1.pdf


BAM files contain sequence alignment data which is the result of potentially
incomplete matching sequence snippets to a reference sequence. In practice the
snippets are DNA sequences which come from short read sequencing of DNA or
RNA extracted from a biological probe and the reference sequence is a genome
reference. Usually one BAM file contains align data from one biological probe
where the read number is in the magnitude of 100 million reads. The size of the
corresponding compressed files is in the range of 10 Gbyte. A very important
feature of BAM files is that sorted BAM files can be indexed and indexed files
allow random access. This allows very fast access to aligns that are located in
arbitrary regions of the reference genome.

BAM files are divided in a header section and an alignment section.

2.1 The header section

The header section contains the following information:

Tag Description Information

HD Header line Format version and sorting
SQ Reference sequence dictionary Indexed reference sequences (Chromosomes)
RG Read group Sequencing technology
PG Program Alignment program
CO Comment

There are accessor functions for reading and writing the listed fields. The header
section is stored and retrieved as a tag delimited string. The Information is pro-
cessed in the same way. The objects parse and compose these strings from and
to object slots which then can be accessed via script code.

2.1.1 The reference sequence dictionary

The reference sequence dictionary section contains a list of reference sequences
(usually chromosomes). Off the six fields (declared in the SAM file format spec-
ification) usually only two are used:

Tag Description
SN Reference sequence name
LN Reference sequence length

The reference sequence dictionary section misses an index entry (refid) which is
used in alignment structures and is described below (˜2.2.1).

2.2 The alignment section

The alignment section contains a series of align datasets. Each align describes
the coordinates of the identified sequence matches in the reference sequence.
The information for each align basically consists of:

2



Field Content
QNAME Align name (read identifier)
RNAME Reference sequence identifier
POS Mapping position: 1-based
CIGAR Matching type string
FLAG A set of bitwise flags.

As example: A query sequence that matches on chromosome 1 at start position
1000 (1-based!) will have entries: RNAME=0 (where 0 is the ID of chr1) and
POS=1000. ”1-based” position notation means that the coordinate of the first
character in the reference sequence is 1 (not 0).

2.2.1 The RNAME identifier: refid

Although RNAME associates with a textual entry, usually this field contains
a number which identifies a sequence in the header section. To make things
complicated, RNAME is a ”0-based” sequential identifier which is not explicitly
included in the ”Reference sequence dictionary” (SQ). So, RNAME=0 means
the first SQ entry and the ”0” is not present in the header. We call this missing
value refid throughout this document and there are functions in this package
that automatically generate and use this id. The refid value is used by the sam-

tools library as sequence identifier in align-structures and for defining ranges
in index based random access.

3 Object types inside rbamtools package

The description of object types in this section starts with reading and writing
access to BAM files, proceeds to objects which elementary data inside BAM
files and ends with the description of more complex containers.

3.1 Reading and writing access

Immediate reading and writing access is provided by bamReader and bamWriter

Objects.

3.2 bamReader

An object of class bamReader is constructed and returnd by the function bam-

Reader in the following way:

> library(rbamtools)

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> # Open bam file

> reader<-bamReader(bam)

An opened bamReader can be used to access the BAM header section and to
read aligns sequenitally. bamReader can also be used to sort and index BAM
files.

3



Sorting large BAM files requires some time and produces intermediate files. So
the recommended way of sorting large BAM files is to use the samtools command
line version. Sorting BAM files within R can be done with:

> bamSort(reader,prefix="my_sorted",byName=FALSE,maxmem=1e+9)

Sorted BAM files can be indexed. Indexing results in a second file which is
usually named as the BAM file itself with an added suffix ”.bai”. An index file
can be created with:

> create.index(reader,idx_filename="index_file_name.bai")

Omitting the idx_filename argument results in adding the ”.bai” suffix to the
filename of the BAM file which is then automatically located in the same direc-
tory as the BAM file itself:

> create.index(reader)

The creation of indexes for large BAM files (10 GB) takes some minutes time
but can readily be done with this routine and of course has to be done only once
per file.
Index files must be loaded before they can be used:

> idx<- system.file("extdata", "accepted_hits.bam.bai", package="rbamtools")

> load.index(reader,idx)

The reader object can be checked for for loaded index with:

> index.initialized(reader)

[1] TRUE

A shortcut for opening a BAM file and loading the ”standard” index at the same
time is:

> reader<-bamReader(bam,idx=TRUE)

3.3 bamWriter

For creation of a bamWriter object, a bamHeader and a filename must be given.
The most convenient way of obaining a bamHeaer class is retrieving from an
opened bamReader object.
Aligns can be written to a BAM file either from single instances of bamAlign’s
or from whole bamRange objects.

3.4 Tabled reference sequences: getRefData

A data.frame with the reference sequences contained in the BAM header can be
obtained with:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr10 135534747

The returned data.frame contains in the first column (ID) the mentioned re-
fid˜2.2.1 value which is not part of the header but uses as identifier for aligns
and ranges.

4



4 Elementary data structures

The content of BAM files can be divided in header section and alignment

section.

4.1 Structures for header section

The complete header information (in binary representation) can be retrieved
from a BAM file with the function getHeader. An object of this type is needed
for creation of a bamWriter object. In order to get Access to the data itself, the
binary data has to be converted into a string representation which is maintained
inside an object of class bamHeaderText:

> header<-getHeader(reader)

> htxt<-getHeaderText(header)

The header section is divided into several seqments (as described above) with
data tags that describe the origin of the contained alignments. For each segment
there is a class which can be be obtained by calling the appropriate function on
a bamHeaderText object:

Segment ID Description S4 class Retrieving function
HD The header line headerLine headerLine
SQ Reference sequence dictionary refSeqDict refSeqDict
RG Read group
PG Program headerProgram header Program
CO Comment

4.2 Structures for alignment section

The alignment section in BAM files is a series of alignment (align) records. The
data inside of each record is represented by a bamAlign object.

5 Complex and cumulative container

5.1 Align lists for specific reference regions: bamRange

bamRange objects manage a list of bamAlign’s. As BAM files usually contain
alignment results against a reference-genome, bamRange objects contain list of
all aligns that match between a given start and stop position on a given chro-
mosome. Region coordinates are thereby defined by a refid˜2.2.1 and a start
and stop position.

5.1.1 Reading bamRange from bamReader

In order to create a bamRange object, an index-initialized bamReader object
and a numeric coordinates-vector of length three are passed to the bamRange

function.

There are several ways to provide the coordinates for which the aligns are to be
retrieved. The first way is to specify a circumscribed genomic region (e.g. where

5



a gene of interest is located). The names for the coordinates are not required
and only added for explanational purposes:

> coords<-c(0,899000,900000)

> names(coords)<-c("refid","start","stop")

> range<-bamRange(reader,coords)

> size(range)

[1] 28

The second way is to specify coordinates for a whole reference sequence (chro-
mosome). As can be seen from the output of the getRefData function, the
coordinates for the whole first chromosome should be given as:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr10 135534747

> coords<-c(0,0,249250621)

> names(coords)<-c("refid","start","stop")

> range<-bamRange(reader,coords)

> size(range)

[1] 738

The function getRefCoords is used here as shortcut:

> coords<-getRefCoords(reader,"chr1")

> coords

[1] 0 0 249250621

> range<-bamRange(reader,coords)

> size(range)

[1] 738

5.1.2 Accessing aligns in bamReader

bamReader objects keep a list of bamAlign objects. The objects can sequentially
accessed or a data.frame with the align data can be retrieved.

5.1.3 Writing aligns to bamWriter

6


	What this package is made for
	SAM file format
	The header section
	The reference sequence dictionary

	The alignment section
	The RNAME identifier: refid


	Object types inside rbamtools package
	Reading and writing access
	bamReader
	bamWriter
	Tabled reference sequences: getRefData

	Elementary data structures
	Structures for header section
	Structures for alignment section

	Complex and cumulative container
	Align lists for specific reference regions: bamRange
	Reading bamRange from bamReader
	Accessing aligns in bamReader
	Writing aligns to bamWriter



