
rcdk: Integrating the CDK with R

Rajarshi Guha
Miguel Rojas Cherto

May 10, 2010

Contents

1 Introduction 2

2 Input / Output 2

3 Visualization 4

4 Manipulating Molecules 5

4.1 Adding Information to Molecules . 5

4.2 Atoms and Bonds . 6

4.3 Substructure Matching . 7

5 Molecular Descriptors 7

6 Fingerprints 11

7 Handling Molecular Formulae 12

7.1 Parsing a Molecule To a Molecular Formula . 13

7.2 Initializing a Formula from the Symbol Expression 14

7.3 Generating Molecular Formula . 14

7.4 Calculating Isotope Pattern . 15

1

1 Introduction

Given that much of cheminformatics involves mathematical and statistical modeling of chemical
information, R is a natural platform for such work. There are many cheminformatics applications
that will generate useful information such as descriptors, fingerprints and so on. While one can al-
ways run these applications to generate data that is then imported into R, it can be convenient to be
able to manipulate chemical structures and generate chemical information with the R environment.

The CDK is a Java library for cheminformatics that supports a wide variety of cheminformatics
functionality ranging from reading molecular file formats, performing ring perception and armaticity
detection to fingerprint generation and molecular descriptors.

The goal of the rcdk package is to allow an R user to access the cheminformatics functionality of the
CDK from within R. While one can use the rJava package to make direct calls to specific methods
in the CDK, from R, such usage does not usually follow common R idioms. The goal of the rcdk is
to allow users to use the CDK classes and methods in an R-like fashion.

The library is loaded as follows

> library(rcdk)

To list the documentation for all available packages try

> library(help = rcdk)

The package also provides an example data set, called bpdata which contains 277 molecules, in
SMILES format and their associated boiling points (BP) in Kelvin. The data.frame has two
columns, viz., the SMILES and the BP. Molecules names are used as row names.

2 Input / Output

Chemical structures come in a variety of formats and the CDK supports many of them. Many such
formats are disk based and these files can be parsed and loaded by specifying their full paths

> mols <- load.molecules(c("data1.sdf", "/some/path/data2.sdf"))

Note that the above function will load any file format that is supported by the CDK, so there’s no
need to specify formats. In addition one can specify a URL (which should start with “http://”) to
specify remote files as well. The result of this function is a list of molecule objects. The molecule
objects are of class jobjRef (provided by the rJava package). As a result,they are pretty opaque
to the user and are really meant to be processed using methods from the rcdk or rJava packages.

2

Another common way to obtain molecule objects is by parsing SMILES strings. The simplest way
to do this is

> smile <- "c1ccccc1CC(=O)C(N)CC1CCCCOC1"

> mol <- parse.smiles(smile)

While this usage is correct, it is not particularly efficient. This is because the method must instan-
tiate a parser each time it is called. This takes some time and will also use memory. A better way
is to create the parser yourself and then supply it to parse.smiles. This makes parsing multiple
SMILES much more efficient:

> smiles <- c("CCC", "c1ccccc1", "CCCC(C)(C)CC(=O)NC")

> sp <- get.smiles.parser()

> mols <- sapply(smiles, parse.smiles, parser = sp)

Given a list of molecule objects, it is possible to serialize them to a file in some specified format.
Currently, the only output formats are SMILES or SDF. To write molecules to a disk file in SDF
format:

> write.molecules(mols, filename = "mymols.sdf")

By default, if mols is a list of multiple molecules, all of them will be written to a single SDF file.
If this is not desired, you can write each on to individual files (which are prefixed by the value of
filename):

> write.molecules(mols, filename = "mymols.sdf", together = FALSE)

To generate a SMILES representation of a molecule we can do

> get.smiles(mols[[1]])

[1] "CCC"

> unlist(lapply(mols, get.smiles))

CCC c1ccccc1 CCCC(C)(C)CC(=O)NC
"CCC" "c1ccccc1" "O=C(NC)CC(C)(C)CCC"

3

3 Visualization

Currently the rcdk package only supports 2D visualization. This can be used to view the structure
of individual molecules or multiple molecules in a tabular format. It is also possible to view a
molecular-data table, where one of the columns is the 2D image and the remainder can contain
data associated with the molecules.

Unfortunately, due to event handling issues, the depictions will display on OS X, but the Swing
window will become unresponsive. As a result, it is not recommended to generate 2D depictions
on OS X.

Molecule visualization is performed using the view.molecule.2d function. For viewing a single
molecule or a list of multiple molecules, it is simply

> sp <- get.smiles.parser()

> smiles <- c("CCC", "CCN", "CCN(C)(C)", "c1ccccc1Cc1ccccc1",

+ "C1CCC1CC(CN(C)(C))CC(=O)CC")

> mols <- sapply(smiles, parse.smiles, parser = sp)

> view.molecule.2d(mols[[1]])

> view.molecule.2d(mols)

If multiple molecules are provided, they are display in a matrix format, with a default of four
columns. This can be changed via the ncol argument. Furthermore, the size of the images are 200
× 200 pixels, by default. But this can be easily changed via the cellx and celly arguments.

In many cases, it is useful to view a “molecular spreadsheet”, which is a table of molecules along
with information related to the molecules being viewed. The data is arranged in a spreadsheet
like manner, with one of the columns being molecules and the remainder being textual or numeric
information.

This can be achieved using the view.table method which takes a list of molecule objects and a
data.frame containing the associated data. As expected, the number of rows in the data.frame
should equal the length of the molecule list.

> dframe <- data.frame(x = runif(4), toxicity = factor(c("Toxic",

+ "Toxic", "Nontoxic", "Nontoxic")), solubility = c("yes",

+ "yes", "no", "yes"))

> view.table(mols[1:4], dframe)

As shown, the view.table supports numeric, character and factor data types.

4

4 Manipulating Molecules

In general, given a jobjRef for a molecule object one can access all the class and methods of the
CDK library via rJava. However this can be cumbersome. The rcdk package is in the process of
exposing methods and classes that manipulate molecules. This section describes them - more will
be implemented in future releases.

4.1 Adding Information to Molecules

In many scenarios it’s useful to associate information with molecules. Within R, you could always
create a data.frame and store the molecule objects along with relevant information in it. However,
when serializing the molecules, you want to be able to store the associated information.

Using the CDK it’s possible to directly add information to a molecule object using properties.
Note that adding such properties uses a key-value paradigm, where the key should be of class
character. The value can be of class integer, double, character or jobjRef. Obviously, after
setting a property, you can get a property by its key.

> mol <- parse.smiles("c1ccccc1", parser = sp)

> set.property(mol, "title", "Molecule 1")

> set.property(mol, "hvyAtomCount", 6)

> get.property(mol, "title")

[1] "Molecule 1"

It is also possible to get all available properties at once in the from of a list. The property names
are used as the list names.

> get.properties(mol)

$title
[1] "Molecule 1"

$hvyAtomCount
[1] 6

After adding such properties to the molecule, you can write it out to an SD file, so that the property
values become SD tags.

> write.molecules(mol, "tagged.sdf", write.props = TRUE)

5

4.2 Atoms and Bonds

Probably the most important thing to do is to get the atoms and bonds of a molecule. The code
below gets the atoms and bonds as lists of jobjRef objects, which can be manipulated using rJava
or via other methods of this package.

> mol <- parse.smiles("c1ccccc1C(Cl)(Br)c1ccccc1")

> atoms <- get.atoms(mol)

> bonds <- get.bonds(mol)

> cat("No. of atoms =", length(atoms), "\n")

No. of atoms = 15

> cat("No. of bonds =", length(bonds), "\n")

No. of bonds = 16

Right now, given an atom the rcdk package does not offer a lot of methods to operate on it. One
must access the CDK directly. In the future more manipulators will be added. Right now, you can
get the symbol for each atom

> unlist(lapply(atoms, get.symbol))

[1] "C" "C" "C" "C" "C" "C" "C" "Cl" "Br" "C" "C" "C" "C" "C"
[15] "C"

It’s also possible to get the 3D (or 2D coordinates) for an atom.

> coords <- get.point3d(atoms[[1]])

Given this, it’s quite easy to get the 3D coordinate matrix for a molecule

> coords <- do.call("rbind", lapply(atoms, get.point3d))

Once you have the coordinate matrix, a quick way to check whether the molecule is flat is to do

> if (any(apply(coords, 2, function(x) length(unique(x))) ==

+ 1)) {

+ print("molecule is flat")

+ }

6

This is quite a simplistic check that just looks at whether the X, Y or Z coordinates are constant.
To be more rigorous one could evaluate the moments of inertia about the axes.

4.3 Substructure Matching

The CDK library supports substructure searches using SMARTS (or SMILES) patterns. The
implementation allows one to check whether a target molecule contains a substructure or not as
well as to retrieve the atoms and bonds of the target molecule that match the query substructure.
At this point, the rcdk only support the former operation - given a query pattern, does it occur
or not in a list of target molecules. The match method of this package is modeled after the same
method in the base package. An example of its usage would be to identify molecules that contain
a carbon atom that has exactly two bonded neighbors.

> mols <- sapply(c("CC(C)(C)C", "c1ccc(Cl)cc1C(=O)O", "CCC(N)(N)CC"),

+ parse.smiles)

> query <- "[#6D2]"

> hits <- match(query, mols)

> print(hits)

[1] NA

5 Molecular Descriptors

Probably the most desired feature when doing predictive modeling of molecular activities is molec-
ular descriptors. The CDK implements a variety of molecular descriptors, categorized into topo-
logical, constitutional, geometric, electronic and hybrid. It is possible to evaluate all available
descriptors at one go, or evaluate individual descriptors.

First, we can take a look at the available descriptor categories.

> dc <- get.desc.categories()

> dc

[1] "electronic" "protein" "topological" "geometrical"
[5] "constitutional" "hybrid"

Given the categories we can get the names of the descriptors for a single category. Of course, you
can always provide the category name directly.

> dn <- get.desc.names(dc[1])

7

Each descriptor name is actually a fully qualified Java class name for the corresponding descriptor.
These names can be supplied to eval.desc to evaluate a single or multiple descriptors for one or
more molecules.

> aDesc <- eval.desc(mol, dn[1])

> allDescs <- eval.desc(mol, dn)

The return value of eval.desc is a data.frame with the descriptors in the columns and the molecules
in the rows. For the above example we get a single row. But given a list of molecules, we can easily
get a descriptor matrix. For example, lets build a linear regression model to predict boiling points
for the BP dataset. First we need a set of descriptors and so we evaluate all available descriptors.
Also note that since a descriptor might belong to more than one category, we should obtain a
unique set of descriptor names

> data(bpdata)

> mols <- sapply(bpdata[, 1], parse.smiles, parser = sp)

> descNames <- unique(unlist(sapply(get.desc.categories(),

+ get.desc.names)))

> descs <- eval.desc(mols, descNames)

> class(descs)

[1] "data.frame"

> dim(descs)

[1] 277 289

As you can see we get a data.frame. Many of the columns will be NA. This is because when a
descriptor cannot be evaluated (due to some error) it returns NA. In our case, since our molecules
have no 3D coordinates many geometric, electronic and hybrid descriptors cannot be evaluated.

Given the ubiquity of certain descriptors, some of them are directly available via their own functions.
Specifically, one can calculate TPSA (topological polar surface area), AlogP and XlogP without
having to go through eval.desc.1.

> mol <- parse.smiles("CC(=O)CC(=O)NCN")

> convert.implicit.to.explicit(mol)

> get.tpsa(mol)

1Note that AlogP and XlogP assume that hydrogens are explicitly specified in the molecule. This may not be true
if the molecules were obtained from SMILES

8

[1] 72.19

> get.xlogp(mol)

[1] -0.883

> get.alogp(mol)

[1] -1.5983

In any case, now that we have a descriptor matrix, we easily build a linear regression model. First,
remove NA’s, correlated and constant columns. The code is shown below, but since it involves a
stochastic element, we will not run it for this example. If we were to perform feature selection,
then this type of reduction would have to be performed.

> descs <- descs[, !apply(descs, 2, function(x) any(is.na(x)))]

> descs <- descs[, !apply(descs, 2, function(x) length(unique(x)) ==

+ 1)]

> r2 <- which(cor(descs)^2 > 0.6, arr.ind = TRUE)

> r2 <- r2[r2[, 1] > r2[, 2],]

> descs <- descs[, -unique(r2[, 2])]

Note that the above correlation reduction step is pretty crude and there are better ways to do it.
Given the reduced descriptor matrix, we can perform feature selection (say using leaps or a GA) to
identify a suitable subset of descriptors. For now, we’ll select some descriptors that we know are
correlated to BP. The fit is shown in Figure 1 which plots the observed versus predicted BP’s.

> model <- lm(BP ~ khs.sCH3 + khs.sF + apol + nHBDon, data.frame(bpdata,

+ descs))

> summary(model)

Call:
lm(formula = BP ~ khs.sCH3 + khs.sF + apol + nHBDon, data = data.frame(bpdata,

descs))

Residuals:
Min 1Q Median 3Q Max

-94.395 -20.911 -1.168 19.574 114.237

Coefficients:

9

Estimate Std. Error t value Pr(>|t|)
(Intercept) 267.3135 6.0006 44.548 <2e-16 ***
khs.sCH3 -22.7948 2.0676 -11.025 <2e-16 ***
khs.sF -24.4121 2.6548 -9.196 <2e-16 ***
apol 8.6211 0.3132 27.523 <2e-16 ***
nHBDon 47.1187 3.7061 12.714 <2e-16 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 34.08 on 272 degrees of freedom
Multiple R-squared: 0.837, Adjusted R-squared: 0.8346
F-statistic: 349.1 on 4 and 272 DF, p-value: < 2.2e-16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●● ●
●

● ●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

● ●

●
●

● ●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●●

●●●● ●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

200 300 400 500 600

20
0

30
0

40
0

50
0

60
0

Observed BP

P
re

di
ct

ed
 B

P

Figure 1: A plot of observed versus predicted boiling points, obtained from a linear regression
model using 277 molecules.

10

6 Fingerprints

Fingerprints are a common representation used for a variety of purposes such as similarity searching
and predictive modeling. The CDK provides four types of fingerprints, viz.,

• Standard - a path based, hashed fingerprint. The default size is 1024 bits, but this can be
changed via an argument

• Extended - similar to the Standard form, but takes into account ring systems. Default size is
1024 bits

• EState - a structural key type fingerprint that checks for the presence or absence of 79 EState
substructures. Length of the fingerprint is 79 bits

• MACCS - the well known 166 bit structural keys

When using rcdk to evaluate fingerprints, you will need the fingerprint package. Since this is a
dependency of the rcdk package, it should have been automatically installed.

To generate the fingerprints, we must first obtain molecule objects. Thus for example,

> sp <- get.smiles.parser()

> smiles <- c("CCC", "CCN", "CCN(C)(C)", "c1ccccc1Cc1ccccc1",

+ "C1CCC1CC(CN(C)(C))CC(=O)CC")

> mols <- sapply(smiles, parse.smiles, parser = sp)

> fp <- get.fingerprint(mols[[1]], type = "maccs")

The variable, fp, will be of class fingerprint and can be manipulated using the methods provided
by the package of the same name. A simple example is to perform a hierarchical clustering of the
first 50 structures in the BP dataset.

> mols <- sapply(bpdata[1:50, 1], parse.smiles, parser = sp)

> fps <- lapply(mols, get.fingerprint, type = "extended")

> fp.sim <- fp.sim.matrix(fps, method = "tanimoto")

> fp.dist <- 1 - fp.sim

Once we have the distance matrix (which we must derive from the Tanimoto similarity matrix), we
can then perform the clustering and visualize it.

Another common task for fingerprints is similarity searching. In other words, given a collection of
“target” molecules, find those molecules that are similar to a “query” molecule. This is achieved by
evaluating a similarity metric between the query and each of the target molecules. Those target
molecules exceeding a user defined cutoff will be returned. With the help of the fingerprint package
this is easily accomplished.

11

For example, we can identify all the molecules in the BP dataset that have a Tanimoto similarity
of 0.3 or more with acetalehyde, and then create a summary in Table 1. Note that this could also
be accomplished with molecular descriptors, in which case you’d probably evaluate the Euclidean
distance between descriptor vectors.

> query.mol <- parse.smiles("CC(=O)", parser = sp)

> target.mols <- sapply(bpdata[, 1], parse.smiles, parser = sp)

> query.fp <- get.fingerprint(query.mol, type = "maccs")

> target.fps <- lapply(target.mols, get.fingerprint, type = "maccs")

> sims <- unlist(lapply(target.fps, distance, fp2 = query.fp,

+ method = "tanimoto"))

> hits <- which(sims > 0.3)

SMILES Similarity
1 O=C 0.50
7 CCC=O 0.50
9 CC(C)C=O 0.50
3 CC(=O)Cl 0.43
6 CC(=O)C 0.43
4 CC(=O)O 0.38
5 COC=O 0.38

10 CC(C)C(=O)C 0.38
11 CC(C)C(=O)C(C)C 0.38
2 CO 0.33
8 C(=O)CCC 0.33

Table 1: Summary of molecules in the BP dataset that are greater than 0.3 similar to acetaldehyde

7 Handling Molecular Formulae

The molecular formula is the simplest way to characterize a molecular compound. It specifies the
actual number of atoms of each element contained in the molecule. A molecular formula is repre-
sented by the chemical symbol of each constituent element. If a molecule contains more than one
atom for a particular element, the quantity is shown as subscript after the chemical symbol. Oth-
erwise, the number of neutrons (atomic mass) that an atom is composed can differ. This different
type of atoms are known as isotopes. The number of nucleos is denoted as superscripted prefix
previous to the chemical element. Generally it is not added when the isotope that characterizes
the element is the most occurrence in nature. E.g. C4H11O

2D.

12

7.1 Parsing a Molecule To a Molecular Formula

Front a molecule, defined as conjunct of atoms helding together by chemical bonds, we can simplify it
taking only the information about the atoms. rcdk package provides a parser to translate molecules
to molecular formlulas, the get.mol2formula function.

> sp <- get.smiles.parser()

> molecule <- sapply("N", parse.smiles, parser = sp)[[1]]

> convert.implicit.to.explicit(molecule)

> formula <- get.mol2formula(molecule, charge = 0)

Note that the above formula object is a CDKFormula-class. A cdkFormula-class contains some
attributes that defines a molecular formula. For example, the mass, the charge, the isotopes, the
character representation of the molecular formula and the IMolecularFormula jobjRef object.

The molecular mass for this formula.

> formula@mass

[1] 17.02655

The charge for this formula.

> formula@charge

[1] 0

The isotopes for this formula. It is formed for three columns. isoto (the symbol expression of the
isotope), number (number of atoms for this isotope) and mass (exact mass of this isotope).

> formula@isotopes

isoto number mass
[1,] "H" "3" "1.007825032"
[2,] "N" "1" "14.003074"

The jobjRef object from the IMolecularFormula java class in CDK.

> formula@objectJ

13

[1] "Java-Object{org.openscience.cdk.formula.MolecularFormula@6d83db82}"

The symbol expression of the molecular formula.

> formula@string

[1] "H3N"

Depending of the circumstances, you may want to change the charge of the molecular formula.

> formula <- set.charge.formula(formula, charge = 1)

7.2 Initializing a Formula from the Symbol Expression

Other way to create a cdkFormula is from the symbol expression. Thus, setting the characters of
the elemental formula, the function get.formula parses it to an object of cdkFormula-class.

> formula <- get.formula("NH4", charge = 1)

> formula

cdkFormula: H4N , mass = 18.03383 , charge = 1

7.3 Generating Molecular Formula

Mass spectrometry is an essential and reliable technique to determine the molecular mass of com-
pounds. Conversely, one can use the measured mass to identify the compound via its elemental
formula. One of the limitations of the method is the precision and accuracy of the instrumentation.
As a result, rather than specify exact masses, we specify tolerances or ranges of possible mass, re-
sulting in multiple candidate formulae for a given mass window. The generate.formula function
returns a list formulas which have a given mass (within an error window):

> mfSet <- generate.formula(18.03383, window = 1, elements = list(c("C",

+ 0, 50), c("H", 0, 50), c("N", 0, 50)), validation = FALSE)

> for (i in 1:length(mfSet)) {

+ print(mfSet[i])

+ }

14

[[1]]
cdkFormula: H4N , mass = 18.03437 , charge = 0

[[1]]
cdkFormula: CH6 , mass = 18.04695 , charge = 0

[[1]]
cdkFormula: H18 , mass = 18.14085 , charge = 0

Important to know is if an elemental formula is valid. The method isvalid.formula provides this
function. Two constraints can be applied, the nitrogen rule and the (Ring Double Bond Equivalent)
RDBE rule.

> formula <- get.formula("NH4", charge = 0)

> isvalid.formula(formula, rule = c("nitrogen", "RDBE"))

[1] FALSE

We can observe that the ammonium is only valid if it is defined with charge of +1.

7.4 Calculating Isotope Pattern

Due to the measurement errors in medium resolution spectrometry, a given error window can result
in a massive number of candidate formulae. The isotope pattern of ions obtained experimentally can
be compared with the theoretical ones. The best match is reflected as the most probable elemental
formula. rcdk provides the function get.isotopes.pattern which predicts the theoretical isotope
pattern given a formula.

> formula <- get.formula("CHCl3", charge = 0)

> isotopes <- get.isotopes.pattern(formula, minAbund = 0.1)

> isotopes

mass abund
[1,] 117.9144 1.0000000
[2,] 119.9114 0.9588282
[3,] 121.9085 0.3064505

In this example we generate a formula for a possible compound with a charge (z =≈ 0) containing
the standard elements C, H, and Cl. The isotope pattern can be visually inspectd, as shown in
Figure 3.

15

> clustering <- hclust(as.dist(fp.dist))

> plot(clustering, main = "A Clustering of the BP dataset")
26 35

37 31 27 30 36 42
43 49 22 24

7
2 6

25 1
17

11 3 8
14 20 46

15 47
29 40 41 48

34
16

5 10 33 23 28 39 44
45 50 32 38

18
12 4 9

21
13 19

0.
0

0.
2

0.
4

0.
6

0.
8

A Clustering of the BP dataset

hclust (*, "complete")
as.dist(fp.dist)

H
ei

gh
t

Figure 2: A clustering of the first 50 molecules of the BP dataset, using the CDK extended finger-
prints.

16

> plot(isotopes, type = "h", xlab = "m/z", ylab = "Intensity")

118 119 120 121 122

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m/z

In
te

ns
ity

Figure 3: Theoretical isotope pattern given a molecular formula.

17

	Introduction
	Input / Output
	Visualization
	Manipulating Molecules
	Adding Information to Molecules
	Atoms and Bonds
	Substructure Matching

	Molecular Descriptors
	Fingerprints
	Handling Molecular Formulae
	Parsing a Molecule To a Molecular Formula
	Initializing a Formula from the Symbol Expression
	Generating Molecular Formula
	Calculating Isotope Pattern

