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This vignette is aimed at presenting additional information on the R package rehh by describing how to use
it to perform whole genome scan for footprints of selection using statistics related to the Extended Haplotype
Homozygosity (EHH) (Sabeti et al. 2002). Importantly, the current implementation of tests assumes markers
are bi-allelic.

The rehh package is currently available for most platforms (Linux, MS Windows and MacOSX) from the
CRAN repository (http://cran.r-project.org/) and may be installed using standard procedure. Once the
package has been successfully installed on your system, it can be loaded using the following command:

library(rehh)

1 Input Files

The package rehh basically requires as input:

1. haplotype data file(s) (in three possible format) for each population of interest (see 1.1)
2. a SNP information file (see 1.2)

Important Note: For a given chromosome, SNPs are assumed to be ordered in the same way
in both the haplotype file (columns) and the SNP information file.

For illustration purposes, example files that originate from a previously published study on the Creole cattle
breed from Guadeloupe (CGU) (Gautier and Naves 2011) are provided in the package and can be copied
in the working directory with the following command:

make.example.files()

In the following examples, the command make.example.file() is assumed to have been run (see above) so
that example files are in the working directory.

1.1 Haplotype data file

Three haplotype input file formats are supported:

1. a standard haplotype format. Each line represents a haplotype (the first element being an haplotype
identifier) with SNP genotype in columns as in the example file bta12_cgu.hap created when running
the function make.example.files() and that consists of 280 haplotypes (identifier 1 to 280) of 1424
SNPs each. See 1.3.1 for a detailed example.

2. A (transposed) format with haplotype in columns and SNPs in row as in the example file bta12_cgu.thap
created when running the function make.example.files(). Note that this format is similar to the
one produced by the phasing program SHAPEIT2 (O’Connell et al. 2014). See 1.3.2 for a detailed
example.

3. the output file format from the phasing program fastPHASE (Scheet and Stephens 2006) as in the
bta12_hapguess_switch.out example file created when running the function make.example.files().
Note that haplotypes might originate from several different populations (i.e., if the -u fastPHASE
option was used). See 1.3.3 for a detailed example.

By default alleles are assumed to be coded as 0 (missing data), 1 (ancestral allele) or 2 (derived allele).
Recoding of the alleles in this format, according to the SNP information data file (see 1.2) can be performed
with the recode.allele option of the function data2haplohh() (see 1.3).
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1.2 SNP information data file

This data file should contain SNP information as in the map.inp example file created when running the
function make.example.files(). Each line contains five columns corresponding to:

1. the SNP name
2. the SNP chromosome (or scaffold) of origin
3. the SNP position on the chromosome (or scaffold). Note that it is up to the user to choose either

physical or genetic map positions (if available).
4. the SNP ancestral allele (as coded in the haplotype input file)
5. the SNP derived alleles (as coded in the haplotype input file)

The fourth and fifth columns (allele coding) should be filled in but the corresponding information is only
used when activating the recode.allele option of the function data2haplohh() (see 1.3). In that case, for
each SNP, the allele specified in the fourth (respectively fifth) column will be recoded as 1 (respectively 2),
any other allele name will be recoded as 0 (i.e., missing data). More importantly, it should be noticed that
the ancestral or derived allele information associated to this coding are only relevant for within population
tests (based on iHS). In other words, if one is only interested in across-population tests (based on Rsb or
xpEHH ), assignment of the two SNP alleles in the fourth and fifth column may be performed randomly.

As an illustration, the following R command displays the first five row of the map.inp example file created
when running the function make.example.files():

head(read.table("map.inp"))

> V1 V2 V3 V4 V5
> 1 F0100190 1 113642 T A
> 2 F0100220 1 244699 C G
> 3 F0100250 1 369419 G C
> 4 F0100270 1 447278 A T
> 5 F0100280 1 487654 T A
> 6 F0100290 1 524507 C G

1.3 Loading data files

The data2haplohh() function allows to convert data file into an R object of class haplohh subsequently
used by the functions of the rehh package. The following main options are available to recode alleles or select
SNPs (based on Minor Allele Frequency or percentage of missing data) and haplotypes (based on percentage
of missing data):

1. Allele recoding option: This option is activated with recode.allele=TRUE and allows to recode
haplotype according to the ancestral and derived allele definition available in the SNP information file
(fourth and fifth columns) as: 0 (missing data), 1 (ancestral allele) or 2 (derived allele).

2. Discard haplotypes with a high amount of missing data. If haplotypes contain missing data
(which is generally not the case since most phasing programs allow imputing missing genotypes),
it is possible to discard those with less min_perc_geno.hap % of the SNPs genotyped. By default
min_perc_geno.hap=100 meaning that only completely phased haplotypes are retained.

3. Discard SNPs with a high amount of missing data. It is possible to discard SNPs genotyped on
less than min_perc_geno.snp % of the haplotypes. By default min_perc_geno.snp=100 meaning that
only fully genotyped SNPs are retained.
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4. Discard SNPs with a low Minor Allele Frequency. It is possible to discard SNPs with a MAF
below min_maf. This is generally not recommended and by default min_maf=0 meaning that all SNPs
are retained.1

More details about the different arguments of the function are available in the documentation accessible using
the command:

?data2haplohh

In the following we detail three different examples based on the example data files provided with the package
(see 1).

1.3.1 Example 1: reading haplotype file in standard format

In this example, the example haplotype input file bta12_cgu.hap (standard format) and SNP information
input files map.inp are converted into an haplohh object named hap. Because the map file contains information
for SNPs mapping to other chromosomes than the one of interest (BTA12), we use the option chr.name=12.
Allele recoding is activated (recode.allele=TRUE) to allow recoding alleles in the rehh format (0,1 or 2).

hap<-data2haplohh(hap_file="bta12_cgu.hap",map_file="map.inp",
recode.allele=TRUE,chr.name=12)

> Map file seems OK: 1424 SNPs declared for chromosome 12
> Standard rehh input file assumed
> Alleles are being recoded according to map file as:
> 0 (missing data), 1 (ancestral allele) or 2 (derived allele)
> Discard Haplotype with less than 100 % of genotyped SNPs
> No haplotype discarded
> Discard SNPs genotyped on less than 100 % of haplotypes
> No SNP discarded
> Data consists of 280 haplotypes and 1424 SNPs

If no value is specified for chr.name argument and more than one chromosome is detected in the map file,
the function asks interactively which chromosome to choose:

hap<-data2haplohh(hap_file="bta12_cgu.hap",map_file="map.inp",
recode.allele=TRUE)

> More than one chromosome name in Map file: map.inp
> Which chromosome should be considered among:
> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
> 1:

12

> Map file seems OK: 1424 SNPs declared for chromosome 12
> Standard rehh input file assumed
> Alleles are being recoded according to map file as:
> 0 (missing data), 1 (ancestral allele) or 2 (derived allele)

1The arguments min_perc_geno.hap, min_perc_geno.snp and min_maf are evaluated in this order.
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> Discard Haplotype with less than 100 % of genotyped SNPs
> No haplotype discarded
> Discard SNPs genotyped on less than 100 % of haplotypes
> No SNP discarded
> Data consists of 280 haplotypes and 1424 SNPs

Finally, as an example of error message, the following message is prompted if the number of SNPs in the
chromosome (for instance when a wrong chromosome is declared) does not correspond to the one in the
haplotype file:

hap<-data2haplohh(hap_file="bta12_cgu.hap",map_file="map.inp",
recode.allele=TRUE,chr.name=18)

> Map file seems OK: 1123 SNPs declared for chromosome 18
> Standard rehh input file assumed
> The number of snp in the haplotypes 1424 is not equal
> to the number of snps declared in the map file 1123

> Error in data2haplohh(hap_file = "bta12_cgu.hap", map_file = "map.inp", : Conversion stopped

1.3.2 Example 2: reading haplotype file in transposed format (SHAPIT2–like)

In this example, the example haplotype input file bta12_cgu.thap (transposed format) and SNP information
input files map.inp are converted into an haplohh object named hap. Setting haplotype.in.columns=TRUE
informs the function that the haplotype file is in transposed format:

hap<-data2haplohh(hap_file="bta12_cgu.thap",map_file="map.inp",haplotype.in.columns=TRUE,
recode.allele=TRUE,chr.name=12)

> Map file seems OK: 1424 SNPs declared for chromosome 12
> Haplotype are in columns with no header
> Alleles are being recoded according to map file as:
> 0 (missing data), 1 (ancestral allele) or 2 (derived allele)
> Discard Haplotype with less than 100 % of genotyped SNPs
> No haplotype discarded
> Discard SNPs genotyped on less than 100 % of haplotypes
> No SNP discarded
> Data consists of 280 haplotypes and 1424 SNPs

1.3.3 Example 3: reading haplotype file in fastPHASE output format

In this example, the example fastPHASE output file bta12_hapguess_switch.out and SNP information
input files map.inp are converted into a haplohh object named haplo. As explained above we use the option
chr.name=12. Because, haplotypes originate from several populations (the -u fastPHASE option was used),
we specify the population of interest (in our example the 280 haplotypes from the CGU population, see above)
using the option popsel=7 (7 corresponding to the code of CGU in the example fastPHASE input files).

hap<-data2haplohh(hap_file="bta12_hapguess_switch.out",map_file="map.inp",
recode.allele=TRUE,popsel=7,chr.name=12)
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> Map file seems OK: 1424 SNPs declared for chromosome 12
> Looks like a FastPHASE haplotype file
> Haplotypes originate from 8 different populations in the fastPhase output file
> Alleles are being recoded according to map file as:
> 0 (missing data), 1 (ancestral allele) or 2 (derived allele)
> Discard Haplotype with less than 100 % of genotyped SNPs
> No haplotype discarded
> Discard SNPs genotyped on less than 100 % of haplotypes
> No SNP discarded
> Data consists of 280 haplotypes and 1424 SNPs

If no value is specified for the popsel argument and more than one population is detected in the fastPHASE
output file, the function asks interactively which population to chose:

hap<-data2haplohh(hap_file="bta12_hapguess_switch.out",map_file="map.inp",
recode.allele=TRUE,chr.name=12)

> Map file seems OK: 1424 SNPs declared for chromosome 12
> Looks like a FastPHASE haplotype file
> Haplotypes originate from 8 different populations in the fastPhase output file
> Chosen pop. is not in the list of pop. number: 1 2 3 4 5 6 7 8
> Which population should be considered among: 1 2 3 4 5 6 7 8
> 1:

7

> Map file seems OK: 1424 SNPs declared for chromosome 12
> Looks like a FastPHASE haplotype file
> Haplotypes originate from 8 different populations in the fastPhase output file
> Alleles are being recoded according to map file as:
> 0 (missing data), 1 (ancestral allele) or 2 (derived allele)
> Discard Haplotype with less than 100 % of genotyped SNPs
> No haplotype discarded
> Discard SNPs genotyped on less than 100 % of haplotypes
> No SNP discarded
> Data consists of 280 haplotypes and 1424 SNPs

2 Computing EHH -based statistics for individual markers with
the calc_ehh(), calc_ehhs() and scan_hh() functions

2.1 Definition and Computation

2.1.1 The (allele-specific) Extended Haplotype Homozygosity (EHH )

For a given core allele (i.e., the ancestral or derived allele) at a focal SNP, the (allele–specific) extended
haplotype homozygosity (EHH ) is defined as the probability that two randomly chosen chromosomes (carrying
the core allele considered) are identical by descent (as assayed by homozygosity at all SNPs) over a given
surrounding chromosome region (Sabeti et al. 2002). The EHH thus aims at measuring to which extent an
extended haplotype is transmitted without recombination. In practice, the EHH (EHHs,t) of a tested core
allele as (as = 1 or as = 2) for a focal SNP s over the chromosome interval extending to SNP t is computed
as:
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EHHs,t = 1
nas(nas − 1)

Kas,t∑
k=1

nk(nk − 1) (1)

where nas represents the number of haplotype carrying the core allele as, Kas,t represents the number of
different extended haplotypes (from SNP s to SNP t) carrying as and nk is the number of the extended

haplotype k (i.e., nas
=

Kas,t∑
k=1

nk).

2.1.2 The integrated (allele-specific) EHH (iHH )

By definition, irrespective of the allele considered, EHH starts at 1, and decays monotonically to 0 with
increasing distance from the focal SNP. For a given core allele, the integrated EHH (iHH ) is defined as the
area under the EHH curve with respect to map position (Voight et al. 2006)2. In rehh, iHH is computed
using the trapezoid method. In practice, the integral might only be computed for the regions of the curve
above an arbitrarily small EHH value (e.g., EHH>0.05).

2.1.3 The site-specific Extended Haplotype Homozygosity (EHHS)

For a given core SNP, the (site–specific) extended haplotype homozygosity (EHHS) is defined as the probability
that two randomly chosen chromosomes are identical by descent (as assayed by homozygosity at all SNPs)
over a given surrounding chromosome region. EHHS might roughly be viewed as linear combination of the
EHH ’s for the two alternative alleles with weights function of the corresponding allele frequencies. Two
different EHHS estimators further denoted as EHHSSab (Sabeti et al. 2007) and EHHSTang (Tang et al.
2007) have been proposed. For a focal SNP s over a chromosome interval extending to SNP t, these are
computed as (following the same notation as above):

EHHSSab
s,t = 1

ns(ns − 1)

as=2∑
as=1

Kas,t∑
k=1

nk(nk − 1)

 (2)

where ns =
as=2∑
as=1

nas
and

EHHSTang
s,t =

1− h(s,t)
hap

1− h(s)
all

(3)

where:

1. h(s)
all = ns

ns−1

(
1− 1

n2
s

as=2∑
as=1

n2
as

)
is an estimator of the focal SNP heterozygosity

2. h(s,t)
hap = ns

ns−1

(
1− 1

n2
s

as=2∑
as=1

(
Kas,t∑
k=1

n2
k

))
is an estimator of haplotype heterozygosity across the chromo-

some region extending from SNP s to SNP t.
2In their seminal paper, Voight et al. considered genetic distances and apply a penalty (proportional to physical distances)

for successive SNPs separated by more than 20 kb. In addition, they did not compute iHH if any physical distance between a
pair of neighboring SNPs was above 200 kb. We did not implement such an approach in rehh although this might easily be
done (providing relevant information is available for the genome of interest) by modifying the positions of the markers in SNP
information input file.
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2.1.4 The integrated EHHS (iES)

As for the EHH (see 2.1.2), EHHS starts at 1 and decays monotonically to 0 with increasing distance from the
focal SNP. For a given focal SNP, and in a similar fashion as the iHH, iES is defined as the integrated EHHS
(Tang et al. 2007). Depending on the EHHS estimator considered (respectively, EHHSSab and EHHSTang),
two different iES estimators, that we further denoted as iESSab and iESTang respectively, can be computed.
As for iHH, the iES integral is computed using the trapezoid method and might only be computed for the
regions of the curve above an arbitrarily small EHHS value (e.g., EHHS>0.05).

2.1.5 Dealing with missing data

In the computation of both EHH and EHHS from a focal SNP s to a SNP t, only extended haplotypes with
no missing data are considered. As a consequence, the number of extended haplotypes retained to compute
these two statistics might decrease with distance from the focal SNP. However if the number of available
extended haplotypes falls below a threshold (e.g., limhaplo=5), EHH and EHHS are not computed further.
Note however that most phasing programs (such as fastPHASE or SHAPEIT2 ) allow to impute missing
genotypes resulting in phased haplotypes with no missing data.

2.2 The function calc_ehh()

The calc_ehh() function allows to compute EHH for both the ancestral (as = 1) and derived (as = 2) alleles
at the sth SNP relative to each SNP (t) upstream and downstream and corresponding iHH. The two options
limehh and limhaplo allow to specify condition to stop computing EHH (see 2.1.1). By default limehh=0.05
and limhaplo=2. Finally, if plotehh=TRUE, the decay of EHH for both the ancestral and derived alleles is
plotted against SNP map position (main_leg allows to change the plot legend). More details are available in
the R documentation by using the command:

?calc_ehh

In the following example,the EHH statistics are computed for both the ancestral and derived allele of the
456th focal SNP. Note that the haplohh_cgu_bta12 object was generated using the data2haplohh() function
with the example input files (1.3.1). For convenience, it is stored as an example object (accessible with the R
function data) as shown below:

#example haplohh object (280 haplotypes, 1424 SNPs) see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#computing EHH statistics for the focal SNP at position 456
#which display a strong signal of selection
res.ehh<-calc_ehh(haplohh_cgu_bta12,mrk=456)

The five different elements of the resulting res.ehh object are as follows:

res.ehh$ehh[1:2,454:458]

> F1205380 F1205390 F1205400 F1205420 F1205440
> Ancestral allele 0.2764706 0.5529412 1 0.8879552 0.6422969
> Derived allele 1.0000000 1.0000000 1 1.0000000 1.0000000

res.ehh$nhaplo_eval[1:2,454:458]
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> F1205380 F1205390 F1205400 F1205420 F1205440
> Ancestral allele 85 85 85 85 85
> Derived allele 195 195 195 195 195

res.ehh$freq_all1

> [1] 0.3035714

res.ehh$ihh

> Ancestral allele Derived allele
> 284633 2057152

In addition, as plotehh=TRUE by default, we obtain the following plot (Figure 1):
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Figure 1: Graphical output for the calc_ehh() function

2.3 The function calc_ehhs()

The calc_ehhs() function allows to compute the EHHS (both the EHHSSab and EHHSTang estimators) at
the sth SNP relative to each SNP (t) upstream and downstream. This function also compute the corresponding
iES (iESSab and iESTang estimators respectively). The two options limehhs and limhaplo allow to specify
condition to stop computing EHHS (see 2.1.3). By default limehhs=0.05 and limhaplo=2. Finally, if
plotehhs=TRUE, the decay of EHHS is plotted against SNP map position (main_leg allows to change the
plot legend). More details are available in the R documentation by using the command:

?calc_ehhs

In the following example, the EHHS statistics are computed for the 456th focal SNP on the haplohh_cgu_bta12
object defined above (see 2.2) was generated using the data2haplohh() function with the example input files
(see 1.3.1) described above. For convenience, it is stored as an example object (accessible with the R function
data).
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#example haplohh object (280 haplotypes, 1424 SNPs) see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#computing EHH statistics for the focal SNP at position 456
#which display a strong signal of selection
res.ehhs<-calc_ehhs(haplohh_cgu_bta12,mrk=456)

The five different elements of the resulting res.ehhs object are as follows:

res.ehhs$EHHS_Sabeti_et_al_2007[453:459]

> F1205370 F1205380 F1205390 F1205400 F1205420 F1205440 F1205450
> 0.5017153 0.5095238 0.5347926 1.0000000 0.5654122 0.5429595 0.5386841

res.ehhs$EHHS_Tang_et_al_2007[453:459]

> F1205370 F1205380 F1205390 F1205400 F1205420 F1205440 F1205450
> 0.8715588 0.8851234 0.9290193 1.0000000 0.9822104 0.9432066 0.9357794

res.ehhs$nhaplo_eval[453:459]

> F1205370 F1205380 F1205390 F1205400 F1205420 F1205440 F1205450
> 280 280 280 280 280 280 280

res.ehhs$IES_Tang_et_al_2007

> [1] 1760565

res.ehhs$IES_Sabeti_et_al_2007

> [1] 964698

In addition, as plotehh=TRUE by default, we obtain the following plot (Figure 2):

2.4 The function scan_hh()

The scan_hh() function allows to efficiently compute IHH (for both the ancestral and derived alleles) and
IES (both the iESSab and iESTang estimators) for all the SNPs in the haplohh object considered. The
options limehh, limehhs and limhaplo specify conditions to stop computing EHH and EHHS. By default
limehh=limehhs=0.05 and limhaplo=2. Finally, the option threads, set by dafault to threads=1, allows
to specify the number of available threads to parallelize computation (parallelization being carried out
over SNPs). For instance to scan the haplohh_cgu_bta12 object (containing data on 1424 SNPs for 280
haplotypes), one may use the following command:

data(haplohh_cgu_bta12)
res.scan<-scan_hh(haplohh_cgu_bta12)

The resulting object res.scan is a data frame with haplohh_cgu_bta12nsnp (number of SNPs declared in
the haplohh object) and seven columns giving for each SNP:
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Figure 2: Graphical output for the calc_ehhs() function

1. The SNP chromosome of origin
2. The SNP position
3. The SNP ancestral allele frequency
4. The estimated IHH for the ancestral allele (IHH_A)
5. The estimated IHH for the derived allele (IHH_D)
6. The estimated iESTang

7. The estimated iESSab.

As an example, the following R codes provide the dimension and the first five rows of the res.scan data
frame obtained above:

dim(res.scan)

> [1] 1424 7

head(res.scan)

> CHR POSITION freq_A iHH_A iHH_D iES_Tang_et_al_2007
> F1200140 12 79823 0.1500000 135102.2 68522.91 69776.85
> F1200150 12 125974 0.4071429 161680.3 107183.15 123607.13
> F1200170 12 175087 0.3571429 157333.1 155777.56 156021.90
> F1200180 12 219152 0.2214286 250037.4 159839.73 166214.75
> F1200190 12 256896 0.1750000 466071.8 173269.33 184453.42
> F1200210 12 316254 0.3892857 292077.5 228681.21 246572.65
> iES_Sabeti_et_al_2007
> F1200140 53669.39
> F1200150 76287.51
> F1200170 92770.96
> F1200180 110712.37
> F1200190 134092.34
> F1200210 130156.22
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Note that running scan_hh() is more efficient than running calc_ehh() and calc_ehhs() in turn as shown
in the example below (scan_hh():.

system.time(res.scan<-scan_hh(haplohh_cgu_bta12))

> user system elapsed
> 0.280 0.000 0.281

foo<-function(haplo){
res.ihh=res.ies=matrix(0,haplo@nsnp,2)
for(i in 1:length(haplo@position)){

res.ihh[i,]=calc_ehh(haplo,mrk=i,plotehh=FALSE)$ihh
tmp=calc_ehhs(haplo,mrk=i,plotehhs=FALSE)
res.ies[i,1]=tmp$IES_Tang_et_al_2007
res.ies[i,2]=tmp$IES_Sabeti_et_al_2007

}
list(res.ies=res.ies,res.ihh=res.ihh)
}
system.time(res.scan2<-foo(haplohh_cgu_bta12))

> user system elapsed
> 13.296 0.000 13.321

Note however that the same results are obtained (since the same options were used) as illustrated by the
following R code:

sum(res.scan2$res.ihh[,1]!=res.scan[,4]) + sum(res.scan2$res.ihh[,2]!=res.scan[,5]) +
sum(res.scan2$res.ies[,1]!=res.scan[,6]) + sum(res.scan2$res.ies[,2]!=res.scan[,7])

> [1] 0

3 Computing iHS, Rsb and xpEHH : the ihh2ihs(),ies2rsb() and
ies2xpehh() functions

3.1 Within population test: the iHS

3.1.1 Definition

Let UniHS represent the log-ratio of the iHH for its ancestral (iHH a) and derived (iHH d) alleles:

UniHS = log
(

iHHa

iHHd

)
The iHS of a given focal SNP s (iHS(s)) is then defined as its standardized UniHS (UniHS(s)) following
(Voight et al. 2006):

iHS(s) = UniHS(s)− µps

UniHS
σps

UniHS

where µps

UniHS and σps

UniHS represent the average and standard deviation of the UniHS computed over all the
SNPs with a derived allele frequency ps similar to that of the core SNP s. In practice, the derived allele
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frequencies are generally binned so that each bin are large enough (e.g., >10 SNPs) to obtain reliable estimate
of µps

UniHS and σps

UniHS.

Note that the iHS is constructed to have an approximately standard Gaussian distribution and to be
comparable across SNPs regardless of their underlying allele frequencies. Hence, one may further transform
iHS into piHS (Gautier and Naves 2011):

piHS = − log10 (1− 2|Φ (iHS)− 0.5|)

where Φ (x) represents the Gaussian cumulative distribution function. Assuming most of the genotyped SNPs
behave neutrally (i.e., the genome-wide empirical iHS distribution is a fair approximation of the neutral
distribution), piHS might thus be interpreted as a two-sided P-value (on a − log10 scale) associated to the
neutral hypothesis of no selection.

3.1.2 The function ihh2ihs()

The ihh2ihs() function allows to compute iHS using a matrix of iHH statistics (for both the ancestral
and derived alleles) in the same format as obtained from the scan_hh() function (see 2.4). The argument
minmaf allows to remove SNPs according to their MAF (by default SNPs with a MAF<minmaf=0.05 are
discarded from the standardization). The argument freqbin controls the size of the allele frequency bins used
to perform standardization (see 3.1.1). More precisely allele frequency bins vary from minmaf to 1-minmaf
per step of size freqbin (by default freqbin=0.025). Note that if freqbin is set to 0 (e.g., with a large
number of SNPs and few haplotypes), standardization is performed considering each observed frequency as a
frequency class.

For instance, to perform a whole genome scan one might run scan_hh() in turn on haplotype data from each
chromosome and concatenate the resulting matrices before standardization. In the following example, we
assume that the haplotype files are named as hap_chr_i.pop1 where the chromosome number i goes from 1
to 29 and the SNP information file is named snp.info. The R code below then generates a matrix wg.res
with iHHa and iHHd estimates for all SNPs in an appropriate format to perform standardization with the
ihh2ihs function:

for(i in 1:29){
hap_file=paste("hap_chr_",i,".pop1",sep="")
data<-data2haplohh(hap_file="hap_file","snp.info",chr.name=i)
res<-scan_hh(data)
if(i==1){wg.res<-res}else{wg.res<-rbind(wg.res,res)}

}
wg.ihs<-ihh2ihs(wg.res)

As a matter of illustration, results of a similar genome scan (Gautier and Naves 2011) are provided as
example data sets. The following R code allows to compute the iHS for the CGU population:

data(wgscan.cgu)
## results from a genome scan (44,057 SNPs) see ?wgscan.eut and ?wgscan.cgu for details
ihs.cgu<-ihh2ihs(wgscan.cgu)

The corresponding object ihs.cgu is a list with two elements corresponding to

1. a matrix of SNP iHS and the corresponding piHS (P-values in a − log1 0 scale assuming the iHS are
normally distributed under the neutral hypothesis). For instance, the five first rows of the ihs.cgu$iHS
data frame are displayed below using the following R command:
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head(ihs.cgu$iHS)

> CHR POSITION iHS -log10(p-value)
> F0100190 1 113642 -0.5582992 0.2390952
> F0100220 1 244699 0.2723337 0.1049282
> F0100250 1 369419 0.4810736 0.2003396
> F0100270 1 447278 1.0618710 0.5401640
> F0100280 1 487654 0.8184060 0.3839181
> F0100290 1 524507 -0.3897024 0.1569189

2.a matrix summarizing the allele frequency bins. For instance, the five first rows of the ihs.cgu$frequency.class
data frame are displayed below using the following R command:

head(ihs.cgu$frequency.class)

> Number of SNPs mean of the log(iHHA/iHHD) ratio
> 0.05 - 0.075 1635 0.7286087
> 0.075 - 0.1 1316 0.5804760
> 0.1 - 0.125 1478 0.4710504
> 0.125 - 0.15 1593 0.3720585
> 0.15 - 0.175 1078 0.3263215
> 0.175 - 0.2 1325 0.2721166
> sd of the log(iHHA/iHHD) ratio
> 0.05 - 0.075 0.6457742
> 0.075 - 0.1 0.5556798
> 0.1 - 0.125 0.5079392
> 0.125 - 0.15 0.4708235
> 0.15 - 0.175 0.4524270
> 0.175 - 0.2 0.4533404

3.1.3 Manhattan plot of the results: the function ihsplot()

The ihsplot() function allows to draw a Manhattan plot of the Whole Genome scan results as stored in
the list object produced by the function ihh2ies(). Various options are available to modify the graphical
display (see ?ihsplot).

ihsplot(ihs.cgu,plot.pval=TRUE,ylim.scan=2,main="iHS (CGU cattle breed)")

3.2 The Rsb–based pairwise population test

3.2.1 Definition

For a given SNP s, let

LRiES(s)Tang = log
(

iESpop1(s)Tang

iESpop2(s)Tang

)
represent the log-ratio of the iESpop1(s)Tang and iESpop2(s)Tang computed in the pop1 and pop2 populations
(see 2.1.4).

The Rsb for a given focal SNP is then defined as the standardized LRiES(s)Tang (Tang et al. 2007):
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Figure 3: Graphical output for the ihsplot() function
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rSB(s) = LRiES(s)Tang −medLRiESTang

σLRiESTang
(4)

where medLRiESTang and σLRiESTang represent the median and standard deviation of the LRiES(s)Tang computed
over all the analyzed SNPs. Note that the median is used instead of the mean because it is less sensitive to
extreme data points (Tang et al. 2007). More importantly, it should be noticed that the information about
the ancestral and derived status of alleles at the focal SNP is not needed.

As for the iHS (see 3.1.1), Rsb is constructed to have an approximately standard Gaussian distribution and
may further be transformed into prSB:

prSB = − log10 (1− 2|Φ (rSB)− 0.5|) (5)

where Φ (x) represents the Gaussian cumulative distribution function. Assuming most of the genotyped
SNPs behave neutrally (i.e., the genome-wide empirical Rsb distribution is a fair approximation of their
corresponding neutral distributions), prSB might thus be interpreted as a two-sided P-value (in a − log10 scale)
associated to the neutral hypothesis of no selection. Alternatively, prSB might also be computed (Gautier
and Naves 2011):

p′rSB = − log10 (|Φ (rSB) |) (6)

p′rSB and p′rSB might then be interpreted as a one-sided P-value (in a − log10 scale) allowing the identification
of those sites displaying a significantly high extended haplotype homozygosity in population pop2 (represented
in the denominator of the corresponding LRiES) relatively to the pop1 reference population.

3.2.2 The function ies2rsb()

The ies2rsb() function allows to compute Rsb using two data frames containing the iES statistics for each
of the two populations considered in the same format as the one obtained after running the scan_hh()
function (see 2.4). For instance, to perform a genome scan one might first run for each population scan_hh()
in turn on haplotype data from each chromosome and concatenate the resulting matrices. In the following
example, we assume that the haplotype files are named as hap_chr_i.pop1 and hap_chr_i.pop2 where
i is the chromosome number (going from 1 to 29), the suffixes pop1 and pop2 indicate the population of
origin and the SNP information file is named snp.info. The R code below then generates two data frames
(wg.res.pop1 and wg.res.pop2) containing the results from all SNPs in the appropriate format to compute
Rsb with the ies2rsb() function:

for(i in 1:29){
hap_file=paste("hap_chr_",i,".pop1",sep="")
data<-data2haplohh(hap_file="hap_file","snp.info",chr.name=i)
res<-scan_hh(data)
if(i==1){wg.res.pop1<-res}else{wg.res.pop1<-rbind(wg.res.pop1,res)}
hap_file=paste("hap_chr_",i,".pop2",sep="")
data<-data2haplohh(hap_file="hap_file","snp.info",chr.name=i)
res<-scan_hh(data)
if(i==1){wg.res.pop2<-res}else{wg.res.pop2<-rbind(wg.res.pop2,res)}
}

wg.rsb<-ies2rsb(wg.res.pop1,wg.res.pop2)

As a matter of illustration, one may consider results from a similar genome scan (Gautier and Naves 2011)
provided as example data sets and compute for each SNP the Rsb between the CGU and EUT populations
as follows:
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data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs) see ?wgscan.eut and ?wgscan.cgu for details
cguVSeut.rsb<-ies2rsb(wgscan.cgu,wgscan.eut,"CGU","EUT")

The resulting object cguVSeut.rsb is a data frame with of SNP Rsb (and corresponding P-Values assuming
Rsb are normally distributed under the neutral hypothesis). Note that either bilateral (default) or unilateral
might be performed (method argument). The five first rows of the cguVSeut.rsb data frame are displayed
below using the following R command:

head(cguVSeut.rsb)

> CHR POSITION Rsb (CGU vs. EUT) -log10(p-value) [bilateral]
> F0100190 1 113642 -0.3398574 0.13432529
> F0100220 1 244699 -1.0566283 0.53658299
> F0100250 1 369419 -0.1468326 0.05390941
> F0100270 1 447278 -1.8191608 1.16186336
> F0100280 1 487654 -0.2193069 0.08280392
> F0100290 1 524507 -0.7941300 0.36945032

3.2.3 Manhattan plot of the results: the function rsbplot()

The rsbplot() function allows to draw a Manhattan plot of the Whole Genome scan results as stored in
the data frame produced by the function ies2rsb(). Various options are available to modify the graphical
display (see ?rsbplot). As an example, the Figure 4 below provides the output of the function rsbplot for
the xpEHH computed above across the CGU and EUT populations (see 3.2.2). Figure 4 was drawn using the
following R code:

rsbplot(cguVSeut.rsb,plot.pval=TRUE)

3.3 The xpEHH–based pairwise population test

3.3.1 Definition

The xpEHH statistics (Sabeti et al. 2007) is similar to the Rsb except that it is based on the iESpop2(s)Sab

(instead of iESpop2(s)Tang) estimator of the iES (see 2.1.4). Hence, for or a given SNP s, let

LRiES(s)Sab = log
(

iESpop1(s)Sab

iESpop2(s)Sab

)
represent the log-ratio of the iESpop1(s)Sab and iESpop2(s)Sab computed in the pop1 and pop2 populations
(see 2.1.4).

The xpEHH for a given focal SNP is then defined as the standardized LRiES(s)Sab (Sabeti et al. 2007):

rSB(s) = LRiES(s)Sab −medLRiESSab

σLRiESSab
(7)

where medLRiESSab and σLRiESSab represent the median and standard deviation of the LRiES(s)Sab computed
over all the analyzed SNPs. More importantly, it should be noticed that the information about the ancestral
and derived status of alleles at the focal SNP is not needed.
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Figure 4: Graphical output for the rsbplot() function

As for the iHS (see 3.1.1) and Rsb, xpEHH is constructed to have an approximately standard Gaussian
distribution and may further be transformed into pxpEHH:

pxpEHH = − log10 (1− 2|Φ (xpEHH)− 0.5|) (8)

where Φ (x) represents the Gaussian cumulative distribution function. Assuming most of the genotyped
SNPs behave neutrally (i.e., the genome-wide empirical xpEHH distribution is a fair approximation of their
corresponding neutral distributions), pxpEHH might thus be interpreted as a two-sided P-value (in a − log10
scale) associated to the neutral hypothesis of no selection. Alternatively, pxpEHH might also be computed
(Gautier and Naves 2011):

p′xpEHH = − log10 (|Φ (xpEHH) |) (9)

p′xpEHH and p′xpEHH might then be interpreted as a one-sided P-value (in a − log10 scale) allowing the
identification of those sites displaying a significantly high extended haplotype homozygosity in population
pop2 (represented in the denominator of the corresponding LRiES) relatively to the pop1 reference population.

3.3.2 The function ies2xpehh()

The ies2xpehh() function allows to compute xpEHH using two data frames containing the iES statistics for
each of the two populations considered in the same format as the one obtained after running the scan_hh()

18



function (see 2.4). For instance, to perform a genome scan one might first run for each population scan_hh()
in turn on haplotype data from each chromosome and concatenate the resulting matrices. In the following
example, we assume that the haplotype files are named as hap_chr_i.pop1 and hap_chr_i.pop2 where
i is the chromosome number (going from 1 to 29), the suffixes pop1 and pop2 indicate the population of
origin and the SNP information file is named snp.info. The R code below then generates two data frames
(wg.res.pop1 and wg.res.pop2) containing the results from all SNPs in the appropriate format to compute
Rsb with the ies2rsb() function:

for(i in 1:29){
hap_file=paste("hap_chr_",i,".pop1",sep="")
data<-data2haplohh(hap_file="hap_file","snp.info",chr.name=i)
res<-scan_hh(data)
if(i==1){wg.res.pop1<-res}else{wg.res.pop1<-rbind(wg.res.pop1,res)}
hap_file=paste("hap_chr_",i,".pop2",sep="")
data<-data2haplohh(hap_file="hap_file","snp.info",chr.name=i)
res<-scan_hh(data)
if(i==1){wg.res.pop2<-res}else{wg.res.pop2<-rbind(wg.res.pop2,res)}
}

wg.xpehh<-ies2xpehh(wg.res.pop1,wg.res.pop2)

As a matter of illustration, one may consider results from a similar genome scan (Gautier and Naves
2011) provided as example data sets and compute for each SNP the xpEHH between the CGU and EUT
populations as follows:

data(wgscan.cgu) ; data(wgscan.eut)
## results from a genome scan (44,057 SNPs) see ?wgscan.eut and ?wgscan.cgu for details
cguVSeut.xpehh<-ies2xpehh(wgscan.cgu,wgscan.eut,"CGU","EUT")

The resulting object cguVSeut.xpehh is a data frame with of SNP xpEHH (and corresponding P-values
assuming xpEHH are normally distributed under the neutral hypothesis). Note that either bilateral (default)
or unilateral might be performed (method argument). The five first rows of this data frame are displayed
below using the following R command:

head(cguVSeut.xpehh)

> CHR POSITION XPEHH (CGU vs. EUT) -log10(p-value) [bilateral]
> F0100190 1 113642 -0.5555841 0.2377002
> F0100220 1 244699 -0.7516166 0.3445910
> F0100250 1 369419 -0.8885736 0.4268588
> F0100270 1 447278 -0.3470522 0.1375394
> F0100280 1 487654 -0.9182772 0.4455426
> F0100290 1 524507 -0.7521031 0.3448721

3.3.3 Manhattan plot of the results: the function xpehhplot()

The xpehhplot() function allows to draw a Manhattan plot of the Whole Genome scan results as stored in
the data frame produced by the function ies2xpehh(). Various options are available to modify the graphical
display (see ?xpehhplot). As an example, the Figure 5 below provides the output of the function xpehhplot
for the xpEHH computed above across the CGU and EUT populations (see 3.3.2). Figure 5 was drawn using
the following R code:
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xpehhplot(cguVSeut.xpehh,plot.pval=TRUE)

Figure 5: Graphical output for the xpehhplot() function

3.3.4 xpEHH vs. Rsb comparison:

A plot of the xpEHH against Rsb estimates across the CGU and EUT populations (see 3.3.2 and 3.2.2
respectively) is represented in the Figure 6 below. This figure was generated using the following R code:

plot(cguVSeut.rsb[,3],cguVSeut.xpehh[,3],xlab="Rsb",ylab="XPEHH",pch=16,
cex=0.5,cex.lab=0.75,cex.axis=0.75)

abline(a=0,b=1,lty=2)

3.4 Visual inspection of the standardized scores distribution: the function
distribplot()

The distribplot function allows to easily visualize the distributions of the standardized scores (either iHS,
Rsb or xpEHH ) and compare them to the standard Gaussian distribution. As an example, the Figure 7 below
provides the output the function distribplot when considering the iHS estimates obtained for the CGU
population (see 3.1.2) using the following R code:
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Figure 6: Comparison of the XPEHH and Rsb estimates across the CGU and EUT populations

distribplot(ihs.cgu$iHS[,3],xlab="iHS")
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Figure 7: Graphical output for the function distribplot

4 Visualizing haplotype structure around a core allele: the func-
tion bifurcation.diagram()

The function bifurcation.diagram() function draws haplotype bifurcation diagrams (Sabeti et al. 2002)
that allow to better understand the origin of an observed footprints of selection. Such diagrams indeed
consist in plotting the breakdown of LD at increasing distances from the core allele at the selected focal
SNPs. The root (focal SNP) of each diagram is the core allele and is here identified by a vertical dashed line.
The diagram is bi-directional, portraying both centromere-proximal and centromere-distal LD. Moving in
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one direction, each marker is an opportunity for a node; the diagram either divides or not based on whether
both or only one allele is present. Thus the breakdown of LD on the core haplotype background is portrayed
at progressively longer distances. The thickness of the lines corresponds to the number of samples with
the indicated long-distance haplotype. Several options are available to modify the aspect of the plots (see
command ?bifurcation.diagram) As a matter of illustration, Figure 8 shows the bifurcation diagrams for
both the derived and ancestral alleles at the 456th SNP on BTA12 CGU haplotypes. This SNP displayed
a strong signal of selection (using both iHS and Rsb statistics) and is located closed (<5kb) to a strong
candidate genes involved in horn development (Gautier and Naves 2011). Figure 8 was obtained with the
following R code:

data(haplohh_cgu_bta12)
layout(matrix(1:2,2,1))
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=1,nmrk_l=20,nmrk_r=20,

main="Bifurcation diagram (RXFP2 SNP on BTA12): Ancestral Allele")
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=2,nmrk_l=20,nmrk_r=20,

main="Bifurcation diagram (RXFP2 SNP on BTA12): Derived Allele")

28000000 28500000 29000000 29500000 30000000

Bifurcation diagram (RXFP2 SNP on BTA12): Ancestral Allele
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28000000 28500000 29000000 29500000 30000000

Bifurcation diagram (RXFP2 SNP on BTA12): Derived Allele

Position

Figure 8: Graphical output for the function bifurcation.diagram()
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