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Given k sets of objects Xy, ..., X, a k-ary relation R on D(R) = (X1,...,X}) is a subset
G(R) of the Cartesian product X; X --- x Xj. Le., D(R) is a k-tuple of sets and G(R) is a set of
k-tuples. We refer to D(R) and G(R) as the domain and the graph of the relation R, respectively
(alternative notions are that of ground and figure, respectively).

Relations are a very fundamental mathematical concept: well-known examples include the
linear order defined on the set of integers, the equivalence relation, notions of preference relations
used in economics and political sciences, etc. Package relations provides data structures along
with common basic operations for relations and also relation ensembles (collections of relations
with the same domain), as well as various algorithms for finding suitable consensus relations for
given relation ensembles. In addition, the package also includes support for sets and tuples of
R objects upon which relations are built.

1 Sets and Tuples

There is only rudimentary support in base R for sets. Typically, they are represented using atomic
or recursive vectors (lists), and one can use operations such as union(), intersect (), setdiff (),
setequal (), and is.element () to emulate set operations. However, there are several drawbacks:
first of all, quite a few other operations such as the Cartesian product, the power set, the subset
predicate, etc., are missing. Then, the current facilities do not make use of a class system, making
extensions hard (if not impossible). Another consequence is that no distinction can be made
between sequences (ordered collections of objects) and sets (unordered collections of objects),
which is key for the definition of relations, where both concepts are combined. Therefore, we
decided to add more formalized and extended support for sets, and, because they are needed for
Cartesian products, also for tuples.

The tuple functions in package relations represent basic infrastructure for handling tuples of
general (R) objects. They are used, e.g., to correctly represent Cartesian products of sets, resulting
in a set of tuples (see below). Although tuple objects should behave like “ordinary” vectors for
the most common operations (see examples), some functions may yield unexpected results (e.g.,
table()) or simply not work (e.g., plot ()) since tuple objects are in fact list objects internally.
There are several constructors: tuple() for arbitrarily many objects, and singleton(), pair(),
and triple() for tuples of lengths 1, 2 and 3, respectively. Note that tuple elements can be
named.

> tuple(1, 2, 3, TRUE)

(1, 2, 3, TRUE)

> triple(1, 2, 3)

(1, 2, 3)

> pair(Name = "David", Height = 185)

(Name = David, Height = 185)



> tuple_is_triple(triple(1, 2, 3))

(1] TRUE

> tuple_is_ntuple(tuple(1, 2, 3, 4), 4)
[1] TRUE

> as.tuple(1:3)

(1, 2, 3

> c(tuple("a", "b"), 1)

(a, b, 1)

> tuple(1l, 2, 3) * tuple(2, 3, 4)

(2, 6, 12)

> rep(tuple(1, 2, 3), 2)

(1, 2, 3, 1, 2, 3)

The Summary () methods will also work if defined for the elements:
> sum(tuple(1, 2, 3))

[11 6

> range(tuple(1, 2, 3))

[1]1 13

In addition, there is a tuple_outer() function to apply functions to all combinations of tuple
elements. Note that tuple_outer () will also work for regular vectors and thus can really be seen
as an extension of outer():

> tuple_outer(pair(1, 2), triple(1, 2, 3))

123
1123
2246

> tuple_outer(1:5, 1:4, "~")

1 2 3 4
11 1 1 1
22 4 8 16
33 9 27 81
4 4 16 64 256
5 5 25 125 625

The basic constructor for creating sets is the set () function accepting an arbitrary number
of R objects as arguments (which can be named). In addition, there is a generic as.set () for
converting suitable objects to sets.

> s <- set(1, 2, 3)
> s



{1, 2, 3%}

> snamed <- set(one = 1, 2, three = 3)
> snamed

{one = 1, 2, three = 3}

> snamed[["one"]]

[1] 1

> set(c, "test", list(1, 2, 3))
{<<function>>, test, <<1list(3)>>}

> set(set(), set(1))

{3, {13}

> 82 <- as.set(2:5)
> s2

{2, 3, 4, 5}

There are some basic predicate functions (and corresponding operators) defined for the (in)equality,
(proper) sub-(super-)set, and element-of. Note that all the set_is_foo () functions are vectorized:

> set_is_empty(set())

(1] TRUE

> set_is_equal(set(1), set(1))

(1] TRUE

> set(1) == set(1)

[1] TRUE

> set(1) != set(2)

[1] TRUE

> set_is_subset(set(1), set(l, 2))
(1] TRUE

> set(1) <= set(1, 2)

(1] TRUE

> set(1, 2) >= set(1)

[1] TRUE

> set_is_proper_subset(set (1), set(1))
[1] FALSE

> set(1) < set(1)



[1] FALSE

> set(1, 2) > set(1)

(1] TRUE

> set_is_element (1, set(1, 2, 3))
(1] TRUE

> 1 Jek set(l, 2, 3)

[1] TRUE

> set_is_element(1:4, set(1, 2, 3))
[11] TRUE TRUE TRUE FALSE

> 1:4 Jey set(1, 2, 3)

[11] TRUE TRUE TRUE FALSE

c(Q), +, and | for the union, - for the complement, & for the intersection, %D% for the symmetric
difference, * and “n for the (n-fold) Cartesian product (yielding a set of n-tuples), and 2~ for
the power set. set_union(), set_intersection(), and set_symdiff () accept more than two
arguments. The length method for sets gives the cardinality. set_combn() returns the set of
all subsets of specified length. Note that (currently) the rep() method for sets will just return its
argument since set elements are unique.

> length(s)

[11 3

> length(set())
[11 0

>s -1

{2, 3}

> s + set("a")
{1, 2, 3, a}

> s | set("a")
{1, 2, 3, a}

> s & s2

{2, 3%}

> s D7 s2

{1, 2, 3, 4, 5}

> set(1, 2, 3) - set(1, 2)

1The n-ary symmetric difference of a collection of sets consists of all elements contained in an odd number of
the sets in the collection.



{3}

> set_intersection(set(1, 2, 3), set(2, 3, 4), set(3, 4, 5))
{3}

> set_union(set(1, 2, 3), set(2, 3, 4), set(3, 4, 5))

{1, 2, 3, 4, 5}

> set_symdiff (set(1, 2, 3), set(2, 3, 4), set(3, 4, 5))

{1, 3, 5%}

> s * s2

{, 2, @2, 2), @, 2, 1, 3), (2, 3), 3, 3), 1, 9, (2, 4, @G,
4), (1, 5)’ (2’ 5)’ (3’ 5)}

> s * s

{, O, @, , @6, 1, 1, 2), 2, 2, @, 2, {, 3), 2, 3), @G,
33

> 872

{(1} 1)} (2, 1), (3’ 1), (1’ 2), (2’ 2), (3, 2), (1, 3), (2, 3), (3,
33

> s73

{1, 1, 1, (2,1, O, 3,1, O, 1,2, 1, (2,2, 1, 3,2, 1), 1,
3, 1), (2, 3, 1), 3,3, 1), (1, 1, 2), (2,1, 2), (3,1, 2), (1, 2,
2), (2, 2, 2), (3, 2, 2), (1, 3, 2), (2, 3, 2), (3, 3, 2, (1, 1, 3,
(2, 1, 3, 3,1, 3, 1, 2, 3, (2, 2, 3, @3, 2, 3), (1, 3, 3), (2,
3, 3, (3, 3, 3)}

> 27s

{3, {13, {2}, {3}, {1, 23}, {1, 3}, {2, 3}, {1, 2, 3}}
> set_combn(as.set(1:3), 2)

{{1, 2}, {1, 3}, {2, 3}}

The Summary () methods will also work if defined for the elements:
> sum(s)

(11 6

> range(s)

[11 13

Using set_outer (), it is possible to apply a function on all factorial combinations of the elements
of two sets. If only one set is specified, the function is applied to all pairs of this set.

> set_outer(set(1, 2), set(1, 2, 3), "/")



3
3333333
6666667

N =

2
1 0.5 0.
2 1.0 0.
> X <- set_outer(set(1, 2), set(1, 2, 3), set)
> X[[2, 3]]
{2, 3}
> set_outer(2°set(1, 2, 3), set_is_subset)

3 {1 {2y {3F {1, 2} {1, 3} {2, 3} {1, 2, 3}

8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
{1} FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
{2} FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
{3} FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
{1, 2} FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
{1, 3%} FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
{2, 3} FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
{1, 2, 3} FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

Because set elements are unordered, it is not sensible to use positional subscripting. However, it
is possible to iterate over all elements using for () and lapply()/sapply():

> sapply(s, sqrt)
[1] 1.000000 1.414214 1.732051
> for (i in s) print(i)

(1] 1
[1] 2
(1] 3

2 Relations and Relation Ensembles

2.1 Relations

For a k-ary relation R with domain D(R) = (X7, ..., X)), we refer to s = (s1, ..., Sx), where each
s; gives the cardinality of X;, as the size of the relation. Note that often, relations are identified
with their graph; strictly speaking, the relation is the pair (D(R), G(R)). We say that a k-tuple
t is contained in the relation R iff it is an element of G(R). The incidence (array) I(R) of R is
a k-dimensional 0/1 array of size s whose elements indicate whether the corresponding k-tuples
are contained in R or not.

Package relations implements finite relations as an S3 class which allows for a variety of repre-
sentations (even though currently, only dense array representations of the incidences are employed).
Other than by the generator relation(), relations can be obtained by coercion via the generic
function as.relation(), which has methods for at least logical and numeric vectors, unordered
and ordered factors, arrays including matrices, and data frames. Unordered factors are coerced to
equivalence relations; ordered factors and numeric vectors are coerced to order relations. Logical
vectors give unary relations (predicates). A (feasible) k-dimensional array is taken as the inci-
dence of a k-ary relation. Finally, a data frame is taken as a relation table (object by attribute
representation of the relation graph). Note that missing values will be propagated in the coercion.

> R <- relation(graph = data.frame(A = c(1, 1:3), B = c(2:4, 4)))
> relation_domain(R)



Relation domain:

A pair (A, B) with elements:
{1, 2, 3}

{2, 3, 4}

> relation_graph(R)

Relation graph:

A set with pairs (A, B):

1, 2)
1, 3
2, 4
(3, 4)

> as.tuple(R)

(Domain = (A = {1, 2, 3}, B = {2, 3, 4}), Graph = {(1, 2), (1, 3), (2,

4), (3, b
> relation_incidence (R)

Incidences:
B
A

W N =

O O = N
O O W
[ @ N

> R <- relation(graph = set(tuple(l, 2), tuple(l, 3), tuple(2,
+ 4), tuple(3, 4)))
> relation_incidence (R)

Incidences:
234

O O =
O O =
= = O

> R <- relation(domain = set(c, "test"), graph = set(tuple(c, c),
tuple(c, "test")))
> relation_incidence(R)

+

Incidences:
X
X <<function>> test
<<function>> 1 1
test 0 0

> as.relation(1:3)
A binary relation of size 3 x 3.

> relation_graph(as.relation(c(TRUE, FALSE, TRUE)))



Relation graph:

A set with singletons:
)
(3

> relation_graph(as.relation(factor(c("A", "B", "A"))))

Relation graph:

A set with pairs:
(1, 1
(3, 1
(2, 2)
(1, 3)
(3, 3)

The characteristic function fr (sometimes also referred to as indicator function) of a relation
R is the predicate (Boolean-valued) function on the Cartesian product X; x --- x X}, such that
fr(t) is true iff the k-tuple ¢ is in G(R). Characteristic functions can both be recovered from a
relation via relation_charfun(), and be used in the generator for the creation. In the following,
R represents “a divides b”:

v

divides <- function(a, b) b %} a ==
R <- relation(domain = 1ist(1 : 10, 1 : 10), charfun = divides)
>R

v

A binary relation of size 10 x 10.

v

"AIl%" <- relation_charfun(R)
2 5l% 6

A\

[1] TRUE

>c(2, 3, 4) %l 6
[1] TRUE TRUE FALSE
>2 4% c(2, 3, 6)
[1] TRUE FALSE TRUE
> "R (2, 6)

[1] TRUE

Quite a few relation_is_foo () predicate functions are available. For example, rela-
tions with arity 2, 3, and 4 are typically referred to as binary, ternary, and quaternary rela-
tions, respectively—the corresponding functions in package relations are relation_is_binary(),
relation_is_ternary(), etc. For binary relations R, it is customary to write xRy iff (z,y) is
contained in R. For predicates available on binary relations, see Table 1. An endorelation on X
(or binary relation over X) is a binary relation with domain (X, X). Endorelations may or may
not have certain basic properties (such as transitivity, reflexivity, etc.) which can be tested in
relations using the corresponding predicates (see Table 2 for an overview). Some combinations of
these basic properties have special names because of their widespread use (such as linear order, or
preference), and can again be tested using the functions provided (see Table 3).



left-total for all x there is at least one y such that zRy.
right-total | for all y there is at least one x such that zRy.
functional | for all x there is at most one y such that xRy.
surjective | the same as right-total.

injective for all y there is at most one x such that zRy.
bijective left-total, right-total, functional and injective.
Table 1: Some properties foo of binary relations—the predicates in relations are

relation_is_foo () (with hyphens replaced by underscores).

reflexive xRz for all x.
irreflexive there is no = such that xRx.
coreflexive xRy implies x = y.
symmetric xRy implies yRzx.
asymmetric xRy implies that not yRx.
antisymmetric | xRy and yRz imply that x = y.
transitive xRy and yRz imply that xRz.
complete for all x and y, xRy or yRx.
Table 2: Some properties bar of endorelations—the predicates in relations are
relation_is_bar ().

preorder reflexive and transitive.

quasiorder the same as preorder.

equivalence a symmetric preorder.

weak order complete and transitive.

preference the same as weak order.

partial order an antisymmetric preorder.

strict partial order | irreflexive, transitive and antisymmetric.

linear order a complete partial order.

strict linear order | a complete strict partial order.

tournament complete and antisymmetric.

Table 3: Some categories baz of endorelations—the predicates in relations are relation_is_baz ()
(with spaces replaced by underscores).



> R <- as.relation(1:5)
> relation_is_binary(R)

(1] TRUE

> relation_is_transitive(R)

[1] TRUE

> relation_is_partial_order(R)
[1] TRUE

Relations with the same domain can naturally be ordered according to their graphs. ILe.,
Ry < Ry iff G(R;) is a subset of G(Rz), or equivalently, if every k-tuple ¢ contained in R; is
also contained in Rs. This induces a lattice structure, with meet (greatest lower bound) and
join (least upper bound) the intersection and union of the graphs, respectively, also known as
the intersection and wunion of the relations. The least element moves metric on this lattice is
the symmetric difference metric, i.e., the cardinality of the symmetric difference of the graphs
(the number of tuples in exactly one of the relation graphs). This “symdiff” dissimilarity between
(ensembles of) relations can be computed by relation_dissimilarity().

x <- matrix(0, 3, 3)

R1 <- as.relation(row(x) >= col(x))
R2 <- as.relation(row(x) <= col(x))
R3 <- as.relation(row(x) < col(x))
relation_incidence (max(R1, R2))

vV VvV Vv VvV

Incidences:
123

w N =
=R
e
=R

> relation_incidence (min(R1, R2))

Incidences:
123

W N =
O O =
O = O
= O O

> R3 < R2
[1] TRUE
> relation_dissimilarity(min(R1, R2), max(R1, R2))

[,1]
[1,] 6

The complement of a relation R is the relation with domain D(R) whose graph is the comple-
ment of G(R), i.e., which contains exactly the tuples not contained in R. For binary relations R
and S with domains (X,Y) and (Y, Z), the composition of R and S is defined by taking xSz iff
there is a y such that xRy and ySz. The dual (or converse) R* of the relation R with domain
(X,Y) is the relation with domain (Y, X) such that zR*y iff yRx.
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> relation_incidence(R1 * R2)

Incidences:
123

w N =
=R
e
=R

> relation_incidence(!R1)

Incidences:
123

w N =
o O O
O O =
OV

> relation_incidence (t(R2))

Incidences:
123

[OVIN I
e
= = O
= O O

There is a plot () method for certain endorelations (currently, only complete or antisymmetric
transitive relations are supported) provided that package Rgraphviz (Gentry and Long, 2007) is
available, creating a Hasse diagram of the relation. The following code produces the Hasse diagram
corresponding to the inclusion relation on the power set of {1,2,3} which is a partial order (see
Figure 1).

> ps <- 2”set("all’ ’Ib”, Ilcll)
> inc <- set_outer(ps, "<=")
> plot(relation(incidence = inc))

2.2 Relational Algebra

In addition to the basic operations defined on relations, the package provides functionality similar
to the corresponding operations defined in relational algebra theory as introduced by Codd (1970).
Note, however, that domains in database relations, unlike the concept of relations we use here,
are unordered. In fact, a database relation (“table”) is defined as a set of elements called “tuples”,
where the “tuple” components are named, but unordered. Thus, a “tuple” in this Codd sense is a
set of mappings from the attribute names into the union of the attribute domains. The functions
defined in relations, however, preserve and respect the column ordering.

The projection of a relation on a specified margin (i.e., a vector of domain names or indices)
is the relation obtained when all tuples are restricted to this margin. As a consequence, duplicate
tuples are removed. The corresponding function in package relations is relation_projection().

> Person <- data.frame(Name = c("Harry", "Sally", "George", "Helena",
+ "Peter"), Age = c(34, 28, 29, 54, 34), Weight = c(80, 64,

+ 70, 54, 80), stringsAsFactors = FALSE)

> Person <- as.relation(Person)

> relation_table (Person)

Name Age Weight
Harry 34 80

11



K

Figure 1: Hasse Diagram of the inclusion relation on the power set of {1,2,3}.

Peter 34 80
Sally 28 64
George 29 70
Helena 54 54

> relation_table(relation_projection(Person, c("Age", "Weight")))

Age Weight
34 80
28 64
29 70
54 54

(Note that Harry and Peter have the same age and weight.)

The selection of a relation is the relation obtained by taking a subset of the rela-
tion graph, defined by some logical expression. The corresponding function in relations is
relation_selection().

> relation_table(R1 <- relation_selection(Person, Age < 29))

Name Age Weight
Sally 28 64

> relation_table(R2 <- relation_selection(Person, Age >= 34))

Name  Age Weight
Harry 34 80
Peter 34 80
Helena 54 54

> relation_table(R3 <- relation_selection(Person, Age == Weight))

Name Age Weight
Helena 54 54

12



The union of two relations simply combines the graph elements of both relations; the comple-
ment of two relations X and Y removes the tuples of Y from X. One can use - as a shortcut for
relation_complement (), and %U% or | for relation_union(). The difference between %U% and
| is that the latter only works for identical domains.

> relation_table(R1 J%UJ R2)

Name Age Weight
Harry 34 80
Peter 34 80
Sally 28 64
Helena 54 54

> relation_table(R2 | R3)

Name Age Weight
Harry 34 80
Peter 34 80
Helena 54 54

> relation_table(Person - R2)

Name Age Weight
Sally 28 64
George 29 70

The intersection (symmetric difference) of two relations is the relation with all tuples they
have (do not have) in common. One can use & instead of relation_intersection() in case of
identical domains.

> relation_table(relation_intersection(R2, R3))

Name Age Weight
Helena 54 54

> relation_table(R2 & R3)

Name Age Weight
Helena 54 54

> relation_table(relation_symdiff (R2, R3))

Name Age Weight
Harry 34 80
Peter 34 80

The Cartesian product of two relations is obtained by basically building the Cartesian prod-
uct of all graph elements, but combining the resulting pairs into single tuples. A shortcut for
relation_cartesian() is %><%.

Employee <- data.frame(Name = c("Harry", "Sally", "George", "Harriet",
"John"), EmpId = c(3415, 2241, 3401, 2202, 3999), DeptName = c("Finance",
"Sales", "Finance", "Sales", "N.N."), stringsAsFactors = FALSE)

Employee <- as.relation(Employee)

relation_table(Employee)

vV VvV + + V
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Name EmpId DeptName
Harry 3415 Finance
George 3401 Finance
Sally 2241 Sales
Harriet 2202 Sales
John 3999 N.N.

> Dept <- data.frame(DeptName = c("Finance", "Sales", "Production"),

+ Manager = c("George", "Harriet", "Charles"), stringsAsFactors = FALSE)
> Dept <- as.relation(Dept)

> relation_table(Dept)

DeptName  Manager
Finance George

Sales Harriet
Production Charles

> relation_table(Employee 7><J}, Dept)

Name EmpId DeptName DeptName  Manager

Harry 3415 Finance Finance George
George 3401 Finance Finance George
Sally 2241 Sales Finance George
Harriet 2202 Sales Finance George
John 3999 N.N. Finance George
Harry 3415 Finance Sales Harriet
George 3401 Finance Sales Harriet
Sally 2241 Sales Sales Harriet
Harriet 2202 Sales Sales Harriet
John 3999 N.N. Sales Harriet

Harry 3415 Finance Production Charles
George 3401 Finance Production Charles
Sally 2241 Sales Production Charles
Harriet 2202 Sales Production Charles
John 3999 N.N. Production Charles

The division of relation X by relation Y is the reversed Cartesian product. The result is
a relation with the domain unique to X and containing the maximum number of tuples which,
multiplied by Y, are contained in X. The remainder of this operation is the complement of X
and the division of X by Y. Note that for both operations, the domain of ¥ must be contained in
the domain of X. The shortcuts for relation_division() and relation_remainder () are %/%
and %%, respectively.

> Completed <- data.frame(Student = c("Fred", "Fred", "Fred", "Eugene",

+ "Eugene", "Sara", "Sara"), Task = c("Databasel", "Database2",
+ "Compilerl", "Databasel", "Compilerl", "Databasel", "Database2"),
+ stringsAsFactors = FALSE)

> Completed <- as.relation(Completed)
> relation_table(Completed)

Student Task

Fred Databasel
Eugene Databasel
Sara Databasel
Fred Database?2

14



Sara Database2
Fred Compilerl
Eugene Compileril

> DBProject <- data.frame(Task = c("Databasel", "Database2"), stringsAsFactors = FALSE)
> DBProject <- as.relation(DBProject)
> relation_table(DBProject)

Task
Databasel
Database2

> relation_table(Completed/,//DBProject)

Student
Fred
Sara

> relation_table(Completed),;DBProject)

Student Task

Eugene Databasel
Fred Compilerl
Eugene Compileril

The (natural) join of two relations is their Cartesian product, restricted to the subset where
the elements of the common attributes do match. The left/right/full outer join of two relations
X and Y is the union of X /Y /(X and Y), and the inner join of X and Y. The implementation
of relation_join() uses merge(), and so the left/right/full outer joins are obtained by setting
all.x/all.y/all to TRUE in relation_join(). The domains to be matched are specified using
by. Alternatively, one can use the operators %|><|%, %=><%, %><=%, and %=><=), for the natural
join, left join, right join, and full outer join, respectively.

> relation_table(Employee 7|><|7, Dept)

Name EmpId DeptName Manager
Harry 3415 Finance George
George 3401 Finance George
Sally 2241 Sales Harriet
Harriet 2202 Sales Harriet

> relation_table(Employee },=><}, Dept)

Name EmpId DeptName Manager
Harry 3415 Finance George
George 3401 Finance George
John 3999 N.N. NA
Sally 2241 Sales Harriet
Harriet 2202 Sales Harriet

> relation_table(Employee },><=J, Dept)

Name EmpId DeptName Manager
Harry 3415 Finance George

George 3401 Finance George
NA NA Production Charles
Sally 2241 Sales Harriet
Harriet 2202 Sales Harriet
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> relation_table (Employee J},=><=}, Dept)

Name EmpId DeptName Manager
Harry 3415 Finance George

George 3401 Finance George
John 3999 N.N. NA

NA NA Production Charles
Sally 2241 Sales Harriet
Harriet 2202 Sales Harriet

The left (right) semijoin of two relations X and Y is the join of these, projected to the attributes
of X (Y). Thus, it yields all tuples of X (Y) participating in the join of X and Y. Shortcuts for
relation_semijoin() are %|><% and %><|% for left and right semijoin, respectively.

> relation_table(Employee J|><}, Dept)

Name EmpId DeptName
Harry 3415 Finance
George 3401 Finance
Sally 2241 Sales
Harriet 2202 Sales

> relation_table(Employee }><|} Dept)

DeptName Manager
Finance George
Sales Harriet

The left (right) antijoin of two relations X and Y is the complement of X (Y) and the join of
both, projected to the attributes of X (V). Thus, it yields all tuples of X (Y') not participating
in the join of X and Y. Shortcuts for relation_antijoin() are %|>% and %<|% for left and right
antijoin, respectively.

> relation_table(Employee J|>), Dept)

Name EmpId DeptName
John 3999 N.N.

> relation_table(Employee /<|} Dept)

DeptName  Manager
Production Charles

2.3 Relation Ensembles

“Relation ensembles” are collections of relations R; = (D, G;) with the same domain D and possibly
different graphs ;. Such ensembles are implemented as suitably classed lists of relation objects
(of class relation_ensemble and inheriting from tuple), making it possible to use lapply() for
computations on the individual relations in the ensemble. Relation ensembles can be created via
relation_ensemble (), or by coercion via the generic function as.relation_ensemble() which
has methods for at least data frames (regarding each variable as a separate relation). Available
methods for relation ensembles include those for subscripting, c¢(), t(), rep(), print(), and
plot (). In addition, there are summary methods defined (min(), max(), and range()). Other
operations work element-wise like on tuples due to the inheritance.

The Cetacea data set (Vescia, 1985) is a data frame with 15 variables relating to morphology,
osteology, or behavior, with both self-explanatory names and levels, and a common zoological
classification (variable CLASS) for 36 types of cetacea. We consider each variable an equivalence
relation on the objects, excluding 2 variables with missing values, giving a relation ensemble of
length 14 (number of complete variables in the data set).
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> data("Cetacea")
> ind <- sapply(Cetacea, function(s) all(!is.na(s)))
> relations <- as.relation_ensemble(Cetacea[, ind])
> print(relations)

An ensemble of 14 relations of size 36 x 36.

Available methods for relation ensembles allow to determine duplicated (relation) entries, to repli-
cate and combine, and extract unique elements:

> any(duplicated(relations))
[1] FALSE

> thrice <- c(rep(relations, 2), relations)
> all.equal (unique(thrice), relations)

[1] "names for current but not for target"

Note that unique () does not preserve attributes, and hence names. In case one wants otherwise,
one can subscript by a logical vector indicating the non-duplicated entries:

> all.equal(thrice[!duplicated(thrice)], relations)
[1] TRUE

Relation (cross-)dissimilarities can be computed for relations and ensembles thereof:
> relation_dissimilarity(relations([1:2], relations["CLASS"])

CLASS
NECK 584
FORM_OF_THE_HEAD 330

To determine which single variable is “closest” to the zoological classification:

> d <- relation_dissimilarity(relations)
> sort(as.matrix(d) [, "CLASS"])[-1]

BLOW_HOLE DORSAL_FIN
190 240
SET_OF_TEETH FLIPPERS
288 298
FORM_OF _THE_HEAD FEEDING
330 382
HABITAT BEAK
398 456
COLOR LONGITUDINAL_FURROWS_ON_THE_THROAT
494 506
CERVICAL_VERTEBRAE SIZE_OF_THE_HEAD
508 542
NECK
584

There is also an Ops group method for relation ensembles which works elementwise (in essence,
as for tuples):

> complement <- !relations
> complement

An ensemble of 14 relations of size 36 x 36.
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3 Consensus Relations

Consensus relations “synthesize” the information in the elements of a relation ensemble into a single
relation, often by minimizing a criterion function measuring how dissimilar consensus candidates
are from the (elements of) the ensemble (the so-called “optimization approach”), typically of the
form L(R) = > wpd(Ry, R), where d is a suitable dissimilarity measure and wy, is the case weight
given to element R; of the ensemble (such consensus relations are called “central relations” in
Régnier, 1965).

Consensus relations can be computed by relation_consensus(), which has the following
built-in methods. Apart from Condorcet’s, these are applicable to ensembles of endorelations
only.

"Borda" the consensus method proposed by Borda (1781). For each relation R, and object x, one
determines the Borda/Kendall scores, i.e., the number of objects y such that yRyz (“wins”
in case of orderings). These are then aggregated across relations by weighted averaging.
Finally, objects are ordered according to their aggregated scores.

"Copeland" the consensus method proposed by Copeland (1951) is similar to the Borda method,
except that the Copeland scores are the number of objects y such that yRpx, minus the
number of objects y such that xRpy (“defeats” in case of orderings).

"Condorcet" the consensus method proposed by Condorcet (1785), in fact minimizing the crite-
rion function L with d as symmetric difference distance over all possible relations. In the case
of endorelations, consensus is obtained by weighting voting, such that xRy if the weighted
number of times that x Rpy is no less than the weighted number of times that this is not the
case. Even when aggregating linear orders, this can lead to intransitive consensus solutions
(“effet Condorcet”).

"SD/F" an exact solver for determining the consensus relation by minimizing the criterion func-
tion L with d as symmetric difference distance (“SD”) over a suitable class (“("Family)) of
endorelations as indicated by F, with values:

equivalence relations: reflexive, symmetric, and transitive.

linear orders: complete (hence reflexive), antisymmetric, and transitive.

partial orders: reflexive, antisymmetric and transitive.

U o ™

complete preorders (preference relations, “orderings”): complete (hence reflexive) and tran-
sitive.

tournaments: complete (hence reflexive) and antisymmetric.
complete relations.

antisymmetric relations.

0 = Q A

symmetric relations.

These consensus relations are determined by reformulating the consensus problem as an
integer program (for the relation incidences), which is solved via package IpSolve. See Hornik
and Meyer (2007) for details.

In the following, we first show an example of computing a consensus equivalence (i.e., a consen-
sus partition) of 30 felines repeating the classical analysis of Marcotorchino and Michaud (1982).
The data comprises 10 morphological and 4 behavioral variables, taken here as different classifi-
cations of the same 30 animals:

> data("Felines")
> relations <- as.relation_ensemble(Felines)

Now fit an equivalence relation to this, and look at the classes:

18



> E <- relation_consensus(relations, "SD/E")
> ids <- relation_class_ids(E)
> split(rownames (Felines), ids)

$°1°
[1] "LION" "TIGRE"
$-2°
[1] "JAGUAR" "LEOPARD" "ONCE" "PUMA" "NEBUL"  "LYNX"
$°3°
[1] "GUEPARD"
$-4°
[1] "SERVAL"  "OCELOT" "CARACAL" "VIVERRIN" "YAGUARUN" "CHAUS"
[7] "DORE" "MERGUAY" "MARGERIT" "CAFER" "CHINE" "BENGALE"
[13] "ROUILLEU" "MALAIS" "BORNEQ" "NIGRIPES" "MANUL" "MARBRE"
[19] "TIGRIN" "TEMMINCK" "ANDES"

Next, we demonstrate the computation of consensus preferences, using an example from Cook and
Kress (1992, pp. 481ff). The input data is a “preference” matrix of paired comparisons, which we
first transform into a tournament.

> pm <- matrix(c(0, 1, 0, 1, 1, 0, 0, O, 1, 1, 1, 1, 0, O, O, O,
+ 0, 1, 0, 0, 0, 0, 1, 1, 0), nr = 5, byrow = TRUE, dimnames = list(letters[1
+ letters[1:5]))
> R <- as.relation(l - pm)
> relation_incidence(R)
Incidences:
abcde
al10100
b11100
c00111
d11011
el11001

> relation_is_tournament (R)
(1] TRUE
Next, we seek a linear consensus order:

> L <- relation_consensus(R, "SD/L")
> relation_incidence (L)

Incidences:

abcde
al0100
b11100
c00100
d11111
el1101

or perhaps more conveniently, the class ids sorted according to increasing preference:

> relation_class_ids (L)
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abcde
4 3512

Note, however, that this linear order is not unique; we can compute all consensus linear orders,

and also produce a comparing plot (see Figure 2):

> L <- relation_consensus(R, "SD/L", control = list(all = TRUE))
> print(L)

An ensemble of 2 relations of size 5 x 5.
> if (require("Rgraphviz")) plot(L)
Finally, we compute the closest preference relation with at most 3 indifference classes:

> P3 <- relation_consensus(R, "SD/P", control = list(k = 3))
> relation_incidence (P3)

Incidences:

abcde
al10000
b11001
cl1111
d11111
el11001

\

relation_class_ids (P3)
abcde
32112
(Note again that this preference is not unique; there are 6 consensus preferences with k = 3 classes,
which can be computed as above by adding all = TRUE to the control list.)

Figure 2: Hasse Diagram of all consensus relations (linear orders) for an example provided by
Cook and Kress.
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