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1 Introduction

The rockchalk package is an agglomeration of functions that I need when I’m teaching about regression. The
functions here divide into three categories.

1. Functions that help me prepare lectures. The function to create LATEX tables from regression output,
outreg, falls into this category. It speeds up the preparation of lectures immensely to include table
generating code that “just works” with R output. Some functions in R are very hard to use and get
right consistently, especially where 3 dimensional plotting is concerned. That’s where functions like
mcGraph1, mcGraph2, mcGraph3, and plotPlane come in handy. These don’t do any work that is
particularly original, but they do help to easily make the multidimensional plots that turn out “about
right” most of the time.

2. Functions simplify vital chores that are difficult for regression students. I often ask students to plot
several regression lines, “one for each sub-group of respondents,” and this sometimes proves frustrating.
The function plotSlopes is offered as my suggestion for creating interaction plots of “simple slopes”.
This handles the work of calculating predicted values and drawing them for several possible values of
a third variable. plotPlane is along the same line. If students find that useful, they can then use the
examples to build up more complicated drawings.

3. Functions that people often ask for, even if they might be unwise. A funtion to estimate a“standardised
regression” is offered. Although that is clearly unwise (in the eyes of many), some folks still want to
calculate “beta weights.” Some functions, such as meanCenter and residualCenter, are offered not
because I need those tools, but because other people propose them the use of my students. Those
procedures are, possibly, not truly helpful and in order to demonstrate that fact, I have to provide the
functions.

2 Some outreg Examples.

outreg was a function in search of a package for a long time. I didn’t bother to build rockchalk until I had
some other worthwhile functions. So it seems appropriate to start with outreg.

On May 8, 2006, Dave Armstrong, a political science PhD student at University of Maryland, posted a
code snippet in r-help that demonstrated one way to use the “cat” function from R to write LATEX markup.
That gave me the idea to write a LATEX output scheme that would help create some nice looking term and
research papers. I’d been frustrated with the LATEX output from other R functions. I needed a table-maker to
include all of the required information in a regression table without including a lot of chaff (in my opinion). I
don’t want both the standard error of b and the t value, I never want p values, I need stars for the significant
variables, and I want a minimally sufficient set of summary statistics. In 2006, there was no function that
met those needs.

These models are created with some simulated data.

s e t . s e e d (1234)
x1 <− rnorm (100)
x2 <− rnorm (100)
y1 <− 5*rnorm (100) − 3*x1 + 4*x2
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Table 1: My One Tightly Printed Regression

Estimate
(S.E.)

(Intercept) 0.983
( 0.672)

x1 -2.713*
( 0.665)

N 100
RMSE 6.643
R2 0.145
adj R2 0.137

* p ≤ 0.05

Table 2: My Spread Out Regressions

Fingers
Estimate S.E.

(Intercept) 0.983 (0.672)
x1 -2.713* (0.665)
N 100
RMSE 6.643
R2 0.145
adj R2 0.137

* p ≤ 0.05

y2 <− rnorm (100)+5*x2
dat <− data . f rame (x1 , x2 , y1 , y2 )
rm (x1 , x2 , y1 , y2 )
m1 <− lm ( y1∼x1 , data=dat )
m2 <− lm ( y1∼x2 , data=dat )
m3 <− lm ( y1 ∼ x1 + x2 , data=dat )
my i l og i t <− f unc t i on (x ) exp (x ) / (1 + exp (x ) )
y3 <− rbinom (100 , s i z e =1, p=myi l og i t ( s c a l e ( dat$y1 ) ) )
gm1 <− glm ( y3∼x1 + x2 , data=dat )

In each of the floating tables, I have presented an example use of the “outreg” function along with the
regression table that it creates.

Table 1 displays the default output, without any special options. The command is

outreg (m1)

In the literature, regression tables are sometimes presented in a tight column format, with the estimates
of the coefficients and standard errors “stacked up” to allow multiple models side by side, while sometimes
they are printed with separate columns for the coefficients and standard errors. The outreg option tight=F
provides the two column style. In Table 2, I’ve also used the argument modelLabels to insert the word
“Fingers” above the regression model. The command that produces the table is

outreg (m1, t i gh t=FALSE, modelLabels=c ( ”Fingers ”) )

The outreg function can present different models in a single table, as we see in Table 3. The default
output uses the tight format, so there is no need to specify that explicitly. In part (a) of Table 3, we have
tightly formatted columns of regression output that result from this command:

outreg ( l i s t (m1,m2) , modelLabels=c ( ”Mine” , ”Yours ”) , varLabe l s = l i s t ( x1=”B i l l i e ”) )

To my eye, there is something pleasant about the less-tightly-packed format, as illustrated in part (b) of Table
3. Note that the only difference in the commands that produce those tables is the insertion of tight=FALSE.
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Table 3: My Two Linear Regressions Tightly Printed
(a) Tightly Formatted Columns

Mine Yours
Estimate Estimate
(S.E.) (S.E.)

(Intercept) 0.983 1.222*
( 0.672) ( 0.546)

Billie -2.713* .
( 0.665)

x2 . 4.506*
( 0.531)

N 100 100
RMSE 6.643 5.458
R2 0.145 0.423
adj R2 0.137 0.417

* p ≤ 0.05

(b) Two Columns Per Regression Model

Mine Yours
Estimate S.E. Estimate S.E.

(Intercept) 0.983 (0.672) 1.222* (0.546)
Billie -2.713* (0.665) .
x2 . 4.506* (0.531)
N 100 100
RMSE 6.643 5.458
R2 0.145 0.423
adj R2 0.137 0.417

* p ≤ 0.05
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Table 4: My Three Linear Regressions in a Tight Format

A B C
Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.)

(Intercept) 0.983 1.222* 0.818
( 0.672) ( 0.546) ( 0.487)

I Forgot x1 -2.713* . -2.597*
( 0.665) ( 0.482)

He Remembered x2 . 4.506* 4.442*
( 0.531) ( 0.469)

N 100 100 100
RMSE 6.643 5.458 4.812
R2 0.145 0.423 0.556
adj R2 0.137 0.417 0.547

* p ≤ 0.05

Table 5: Three Regressions in the Spread out Format

I Love love love really long titles Hate Long Medium
Estimate S.E. Estimate S.E. Estimate S.E.

(Intercept) 0.983 (0.672) 1.222* (0.546) 0.818 (0.487)
x1 -2.713* (0.665) . -2.597* (0.482)
x2 . 4.506* (0.531) 4.442* (0.469)
N 100 100 100
RMSE 6.643 5.458 4.812
R2 0.145 0.423 0.556
adj R2 0.137 0.417 0.547

* p ≤ 0.05

outreg ( l i s t (m1,m2) , t i g h t=FALSE, modelLabels=c ( ”Mine” , ”Yours ”) , varLabe l s = l i s t ( x1=”B i l l i e ”) )

In addition to using modelLables to provide headings for the 2 models, the other argument that was
used in Table is 3 varLabels. It is often a problem that the variables in the R program are terse, while a
presentation must have a full name. So in Table 3, I’ve demonstrated how to replace the variable name
x1 with the word “Billie”. Any of the predictor variables can be re-named in this way. Another usage of
varLabels is offered in an example with three models in Table 4, which is a result of

outreg ( l i s t (m1,m2,m3) , modelLabels=c ( ”A” , ”B” , ”C”) , varLabe l s = l i s t ( x1=”I Forgot x1 ” , x2=”He
Remembered x2 ”) )

As one can see, outreg gracefully handles the situation in which variables are inserted or removed from a
fitted model.

I have not bothered with some fine points of LATEX table formatting. I also have not worried about
the problem of restricting columns to use the exact same amount of horizontal space. In Table 5, we have
regression output which is, in my opinion, completely acceptable for inclusion in a presentation or conference
paper. Because the model labels are not equal in length, the columns are not equally sized. That is not a
concern for me, at the moment, but I imagine it might be a concern for somebody. Perhaps, at some point,
I may come back and deal with the problem that decimal values within columns should be vertically aligned
(at least as an option). I don’t want to make outreg output dependent on additional LATEX packages.

Another feature of outreg is that it can present the estimates of different kinds of models. It can present
the estimates from R’s lm and glm functions in a single table. Consider Table 6, which resulted from the
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Table 6: Combined OLS and GLM Estimates

OLS:y1 GLM: Categorized y1
Estimate Estimate
(S.E.) (S.E.)

(Intercept) 0.983 0.417*
( 0.672) ( 0.048)

x1 -2.713* -0.114*
( 0.665) ( 0.047)

x2 . 0.129*
( 0.046)

N 100 100
RMSE 6.643
R2 0.145
adj R2 0.137
Deviance 21.525
−2LLR(Modelχ2) 3.115

* p ≤ 0.05

command

outreg ( l i s t (m1, gm1) , modelLabels=c ( ”OLS: y1 ” , ”GLM: Categor ized y1 ”) )

At one time, I was working on a similar presentation for mixed models estimated by lme4, but I stopped
that effort because the lme4 package was changing rapidly and the format of its returned objects was not
stable enough for a finalized presentation format. Eventually, I will include a method to display those mixed
models.

3 plotPlane and plotCurves

The goal of plotPlane and plotCurves is to speed up the process of visualization in regression analysis.
plotPlane offers a 3 dimensional drawing that uses R’s persp function to do the heavy lifting. plotCurves
tries to press that same information into a two dimensional display by drawing curves for several different
values of a moderator variable. Both plotPlane and plotCurves allow nonlinear terms in the regression model
that is being plotted. In that sense, they are more similar to R’s own termplot function than to other similar
tools.

In this section, I create a new dependent variable y5 and then put the fitted model through the plotSlopes
and plotPlane functions.

dat$y5 <− with ( dat , −3*x1 + 0 .5 * l og ( x2∧2) + 1 . 1 *x2 + 2 .2 *x1 * x2 + 3*rnorm (100) )
m5 <− lm ( y5 ∼ l og ( x2*x2 ) + x1 * x2 , data=dat )

As illustrated in Figure 1, plotPlane allows the depiction of a 3 dimensional plane that “sits” in the cloud
of data points. The variables that are not explicitly pictured in the plotPlane figure are set to reference
values. As illustrated in Figure 2, plotCurves is a 2 dimensional depiction of the same information.

4 Plot and Test Simple Slopes

In psychology, methodologists have recommended the analysis of “simple slopes” to depict the effect of several
variables in a 2 dimensional plot. This is most often of interest in the analysis of regression models with
interactive terms. Suppse the fitted model is,

ŷi = b̂0 + b̂1x1i + b̂2x2i + b̂3x1ix2i + x3i.As (1)
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plotPlane (m5, p lotx1=”x1 ” , p lotx2=”x2 ”)
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outreg (m5, t i gh t=FALSE)

Estimate S.E.

(Intercept) -0.002 (0.403)
log(x2 * x2) 0.423* (0.156)
x1 -3.11* (0.338)
x2 0.865* (0.331)
x1:x2 1.872* (0.355)
N 100
RMSE 3.322
R2 0.605
adj R2 0.588

* p ≤ 0.05

Figure 1: plotPlane
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plotCurves (m5, p lotx=”x1 ” , modx=”x2 ”)
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The idea is to consider the effect of x1 on y for several values of x2, keeping x3i set at some reference
value (the mean for numeric variables). As a follow-up, one wants to test whether the plotted effects are
statistically significantly different from zero.

This is only truly interesting when there are interaction effects, of course, but I begin with a simple linear
model. Recall that

m3 <− lm ( y1 ∼ x1 + x2 , data=dat )

Figure 3 illustrates the plotSlopes function for two use cases. The first is

p l o tS l ope s (m3, p lotx=”x1 ” , modx=”x2 ” , xlab=”x1 i s a Continuous Pred i c to r ”)

The plotx argument is variable x1, meaning that x1 will be the horizontal axis, and x2 serves as the moderator
variable. By default, three hypothetical values of x2 are selected (in this case the quantiles 25%, 50%, and
75%). The second example in that figure illustrates user-selected values for the moderator.

p l o tS l ope s (m3, p lotx=”x1 ” , modx=”x2 ” , modxVals=c (−0.2 , 0 .5 , 0 . 9 ) , xlab=”Continuous Pred i c to r ”)

t e s t S l op e s (m3psa )

There were no i n t e r a c t i o n s in the p l o tS l ope s object , so t e s t S l op e s can ' t o f f e r any adv i c e .

That model is linear, so lines are parallel. We need to introduce some interaction effects in order to
exploit the new functions proposed here. Suppose we generate a new dependent variable and fit a regression
with an interaction:

dat$y4 <− with ( dat , −3*x1 + 6*x2 − 0 .17 *x1*x2 + 5*rnorm (100) )
m4 <− lm ( y4 ∼ x1 * x2 , data=dat )

A figure with lines for some values of the moderator x2, along with hypothesis test for those estimates,
is obtained with the following. The “simple slope” lines that model are presented in Figure 4.

m4ps <− p l o tS l ope s (m4, p lotx=”x1 ” , modx=”x2 ” , xlab=”Continuous Pred i c to r ”)

Aiken and West (and later Cohen, Cohen, West, and Aiken) propose using the t test to find out if the
effect of the “plotx” variable is statistically significant for each particular value of “modx,” the moderator
variable. The testSlopes function delivers those t tests. Each of the lines represents a test of the hypothesis
that

H0 : 0 = b̂simple slope = b̂plotx + bplotx·modxmodx (2)

where modx is the numeric value of the moderator variable and plotx is the variable that is plotted on the
horizontal axis in the plotSlopes output.

Following a suggestion of Preacher, Curran, and Bauer (2006), the testSlopes function also tries to
calculate the Johnson-Neyman (1936) interpretation of the same test. It presents 2 diagnostic plots, as

illustrated in Figure 5. Whereas West and Aiken would have us test the hypothesis that b̂simple slope =

b̂plotx + bplotx·modxmodx is different from 0, J-N would have us ask “for which values of the moderator would

the value b̂simple slope be statistically significantly different from zero? The J-N calculation requires the
solution an equation that is quadratic in the value of the moderator variable, modx. The interval of values
of modx associated with a statistically significant effect of plotx on the outcome is determined from the
computation of a T statistic for b̂simple slope. The J-N interval is the set of values of modx for which the
following holds:

t̂ =
b̂simple slope

std.err(b̂simple slope)
=

b̂simple slope√ ̂
V ar(b̂plotx) +modx2

̂
V ar(b̂plotx·modx) + 2modx

̂
Cov(b̂plotx, b̂plotx·modx)

≥ Tα
2 ,df

(3)
I am not entirely convinced that the J-N interpretation is useful, but calculating it was interesting. Never-
theless, the output of testSlopes(m4ps) is displayed in Figure 5.

The plotPlane function offers another visualization of the mutual effect of two predictors in m4. See
Figure 6

At some point in the future, the ability to make plotSlopes and plotPlane work together will be introduced.
So the user will be able to press the plane down into the 2 dimensional slopes plot, or the simple slopes can
be depicted in the 3 dimensional plane. A preliminary rendering of what that might look like is presented
in Figure 7
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m4ps <− p l o tS l ope s (m4, p lotx=”x1 ” , modx=”x2 ” , xlab=”Continuous Pred i c to r ”)
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Figure 4: plotSlopes for an Interactive Model
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t e s t S l op e s (m4ps)

These are the s t r a i gh t− l i n e ”s imple s l op e s ” o f the va r i ab l e x1
f o r the s e l e c t e d moderator v a l u e s .

”x2 ” s l ope Std . Error t value Pr(>| t | )
25% −0.55927099 −2.868036 0 .5075121 −5.651168 1 .629298e−07
50% 0 .03280328 −3.028238 0 .4702790 −6.439237 4 .744487e−09
75% 0 .62764345 −3.189188 0 .5965510 −5.346044 6 .067756e−07
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p100 <− plotPlane (m4, p lotx1=”x1 ” , p lotx2=”x2 ”)
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Figure 6: plotPlane for the Interactive Model
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Figure 7: Making plotSlopes and plotPlane work Together
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5 Standardized, Mean-Centered, and Residual-Centered Regres-
sions

5.1 Standardized regression

Many of us learned to conduct regression analysis with SPSS, which (historically, at least) reported both
the ordinary regression coefficients as well as a column of coefficients obtained from a regression in which
each of the predictors in the design matrix had been “standardized.” That is to say, each variable, for
example x1i, was replaced by an estimated Z − score (x1i − x1)/std.dev.(x1i). A regression fitted with
those standardized variables is said to produce “standardized coefficients.” These standardized coefficients,
dubbed “beta weights” in common parlance, were thought to set different kinds of variables onto a common
metric. While this idea appears to have been in error (see, for example, King 1986), it still is of interest to
many scholars who want to standardize their variables in order to compare them more easily.

The function standardize was included in rockchalk to facilitate lectures about what a researcher ought
not do. standardize performs the complete, mindless standardization of all predictors, no matter whether
they are categorical, interaction terms, or transformed values (such as logs). Each column of the design
matrix is scaled to a new variable with mean 0 and standard deviation 1. The input to standardize should
be a fitted regression model. For example:

m4 <− lm ( y4 ∼ x1 * x2 , data=dat )
m4s <− s tandard i z e (m4)

It does seem odd to me that a person would actually want a standardized regression of that sort, and
the commentary included with the summary method for the standardized regression object probably makes
that clear.

summary(m4s)

Al l v a r i a b l e s in the model matrix and the dependent va r i ab l e
were c en t e r ed . The va r i a b l e s here have the same names as t h e i r
non−centered counterparts , but they are centered , even const ructed
va r i a b l e s l i k e `x1 : x2` and poly ( x1 , 2 ) . We agree , that ' s probably
i l l−adv i s ed , but you asked f o r i t by running s tandard i z e ( ) .

Observe , the summary s t a t i s t i c s o f the v a r i a b l e s in the des ign matr ix .
mean s t d . d e v .

y4 0 1
x1 0 1
x2 0 1
`x1 : x2` 0 1

Cal l :
lm( formula = y4 ∼ x1 + x2 + `x1 : x2 ` , data = stddat )

Res idua l s :
Min 1Q Median 3Q Max

−1.67885 −0.42993 0 .04379 0 .37134 1 .11788

Co e f f i c i e n t s :
Estimate Std . Error t value Pr(>| t | )

( I n t e r c ep t ) −1.329e−17 5 .717e−02 0 .000 1 .000
x1 −3.750e−01 5 .808e−02 −6.456 4 .39e−09 ***

x2 7 .221e−01 5 .879e−02 12 .283 < 2e−16 ***

`x1 : x2` −3.258e−02 5 .931e−02 −0.549 0 .584
−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Res idual standard e r r o r : 0 .5717 on 96 degree s o f freedom
Mult ip le R2 : 0 .6831 , Adjusted R2 : 0 .6732
F− s t a t i s t i c : 68 .97 on 3 and 96 DF, p−value : < 2 .2e−16

5.2 Mean-centering

In contrast with a standardized regression, a mean-centered regression is one in which one or more of the
predictors has been “mean centered” before the design matrix is constructed. The rockchalk package includes
a meanCenter function that can, center some or all of the predictors before the design matrix is constructed.
It can also standardize those variables before the design matrix is constructed.
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Table 7: Comparing Ordinary and Standardized Regression

Not Standardized Standardized
Estimate S.E. Estimate S.E.

(Intercept) -0.705 (0.469) 0 (0.057)
x1 -3.019* (0.468) -0.375* (0.058)
x2 5.658* (0.461) 0.722* (0.059)
x1:x2 -0.271 (0.493) .
‘x1:x2‘ . -0.033 (0.059)
N 100 100
RMSE 4.624 0.572
R2 0.683 0.683
adj R2 0.673 0.673

* p ≤ 0.05

Does a regression model with mean-centered predictors have better statistical properties than a regression
that uses the variables as they are originally presented. Some, most notably Aiken and West (1991) and
Cohen, et al. (2002) argued that the answer is an emphatic “yes.” In retrospect, it appears this advice
was mistaken, especially where the amelioration of multicollinearity is the primary purpose (Echambadi and
Hess (2007)). Nevertheless, the issue is of more than passing interest to many applied researchers, who have
experienced the frustration of having their results “destroyed” by the inclusion of additional terms involving
products of variables that are already in their models.

It is often noted (by researchers and students alike) that the estimates of the ordinary linear regression are
affected in surprising ways by the introduction of nonlinear expressions. Suppose we begin with an ordinary
linear model.

yi = b0 + b1x1i + b2x2i + ei (4)

Then we add, for example, a squared term,

yi = b0 + b1x1i + b2x2i + b3x22i + ei (5)

or an “interaction effect”,

yi = b0 + b1x1i + b2x2i + b3(x1i · x2i) + ei (6)

In both of these cases, practitioners have long been bothered by the fact that the estimate of b1 or b2 in
model (4) might be “statistically significant” (significantly different from 0, that is), but when the last term
is added, the standard errors of the estimates grow larger and “nothing is significant anymore.”

Aiken and West (1991) and Cohen, et. al (2002) contended that the apparent instability of the coefficients
is a reflection of “inessential collinearity” among the predictors, due to the fact that x1 and x2 are in fact
correlated with the new terms, x22 or x1 · x2. Their recommendation is that practitioners ought to mean-
center those predictors, to replace x1 by (x1i − x1) and (x2i − x2). In some cases, it appears as though
the use of mean-centered variables does indeed address the multicollinearity problem, making the t-statistics
look “bigger” and the p values are smaller.

While the superficial evidence for mean-centering seemed compelling, it turns out to be a complete
mirage. Mean-centering does not solve the problem of multicollinearity, it merely changes the point at which
we evaluate it. This point is made most emphatically by Echambadi and Hess (2007), who argue that
mean-centering has no effect (not one “iota” of an effect!) on multicollinearity.

In order to help students and researchers explore this controversy, the rockchalk includes the function
meanCenter. Mean-centering makes it easier to tell, at a glance, the model’s predicted value for the case
that is situated at the mean.
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Table 8: Comparing Ordinary and Mean-Centered Regression

Linear Not Centered Mean Centered
Estimate S.E. Estimate S.E. Estimate S.E.

(Intercept) -534.699* (94.088) 411.048 (369.767) 484.681* (16.383)
x1 10.066* (1.774) -9.38 (7.564) 9.793* (1.764)
x2 10.847* (1.755) -8.429 (7.498) 11.006* (1.743)
x1:x2 . 0.39* (0.147) 0.39* (0.147)
N 400 400 400
RMSE 307.098 304.808 304.808
R2 0.239 0.252 0.252
adj R2 0.235 0.246 0.246

* p ≤ 0.05

For this example, I use a function to generate data called genCorrelatedData. It is included with rockchalk.
The “true model” from which the data is produced is

yi = 2 + 0.1x1i + 0.1x2i + 0.2 · (x1i × x2i) + ei (7)

The usual “course of affairs” would observe the following sequence of events. Three regressions will be
estimated, they are summarized in Table 8. First (the first column), the researcher “explores” a linear
specification,

lm(y ∼ x1 + x2 , data=dat2 )

The coefficients of x1 and x2 appear to be statistically significant, a very gratifying regression indeed.
Second (the second column in Table 8), an interaction term is added to the model. That interaction term,
the product variables x1× x2, is estimated in R with

lm(y ∼ x1 * x2 , data=dat2 )

This specification leads to a model that includes the main effect variables x1 and x2, as well as their product,
which is labeled x1 : x2 in the output. When most of us see that second column for the first time, we think
“Holy Cow! My regression went to hell!” The situation does appear dire. While the coefficients for the
variables x1 and x2 did seem to be substantial in the first model, the introduction of the interactive effect
renders everything statistically insignificant.

Now comes the“magic”of mean centering. If we replace x1 and x2 with their mean centered counterparts,
and then calculate the interaction variable as the product of those two centered variables, we get a “great”
regression, which is presented in the third column of Table 8. Everything appears to be significant, order
has been restored in the land of the more-or-less linear model.

Model−constructed i n t e r a c t i o n s such as ”x1 : x3 ” are bu i l t from centered va r i a b l e s

There is a good argument (actually an invincible argument), that the mean-centering effect is a complete
and total illusion. The first piece of evidence should be that the coefficient of the interactive effect in columns
2 and 3 is identical. The root mean square and R2 estimates are identical. And, if we look into the situation
a little more closely, we find that the models produce identical predicted values! The 3 dimensional plots of
the predicted values of the two models are compared in Figure 8.

The curves in Figure 8 are identical, of course. The only difference is that the one on the left, the
one for the original non-transformed data, has the “y axis” positioned at the front-left edge of the graph,
while the centered one re-positions the y axis into the center of the data. There are two reasons why the
mean-centering “seems to” help multicollinearity, when in fact it has no effect at all. First, an interaction
model is a nonlinear model. The slope of an effect is different at every point in the X1,X2 plane. This, of
course, means that multicollinearity is not a global attribute of the data, but rather it is a local attribute,
so that the effect of multicollinearity is more obvious when the slope is flat than when it is steep. Since the
regression fit measures multicollinearity at the origin, where the y axis is “stuck into the ground,” it only
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Figure 8: Mean Centered and Uncentered Fits Identical
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Figure 9: The Hourglass

makes sense that re-positioning the axis would affect our assessment of collinearity. Second, the standard
error of predicted values is hour-glass shaped–smaller in the center of the data cloud, wider at the edges.
Students of elementary regression have no-doubt seen the confidence interval plot similar to Figure 9. The
“mean centered” regression is a snapshot of the standard errors in the small part of the hourglass, while the
non-centered regression is a snapshot at the outer edge. They are, of course, the exact same model, and the
results differ only superficially.

Included with the rockchalk package, in the examples folder, one can find a file called “residualCenter-
ing.R” that walks through this argument step by step. In addition, I have several lectures for an intermediate
regression class on this issue and they can be found under http://pj.freefaculty.org/guides/stat.

5.3 Residual-centering

The argument against mean-centering is that it makes absolutely no difference. Perhaps the same cannot be
said of mean-centering’s cousin, “residual-centering.”

Residual-centering is another way to deal with the problem that the constructed variable representing
the interaction, “x1 × x2,” will sometimes cause multicollinearity, exaggerating standard errors, making
t-statistics small and p-values big.

We would still like to estimate a model

yi = b0 + b1x1i + b2x2i + b3(x1i × x2i) + ei, (8)
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but we can’t. More accurately, we can estimate it, but we don’t like the results we get. We don’t like the
large standard errors and huge p-values.

So here’s the plan. If we fit the linear model–with no interaction

y = c0 + c1x1 + c2x2 + e2i (9)

we get parameter estimates that we like for the effects of x1 and x2. We will proceed by constraining the
fitted coefficients in the full, interactive model so that the main effects remain the same. That is to say, fit 8,
but force the fit so that the coefficients of x1 and x2 match equation 9. Effectively, we impose the restriction
that b̂1 = ĉ1 and b̂2 = ĉ2.

How can this be done in a convenient, practical way? We need an estimate of the interaction effect that
is orthogonal to (uncorrelated with) both x1 and x2. That’s where residual-centering comes into the picture.
Estimate the following regression, in which the left hand side is the interaction product term:

(x1i × x2i) = d0 + d1x1i + d2x2 + ui (10)

The residuals from that regression are, by definition, orthogonal to both x1 and x2. Let’s use that residual
as a new indicator of the interaction effect. Call it (x1Xx2). Then we fit an equation like (8), but instead of
the actual product term (x1i × x2i), we include the residual from the fitted regression (10).

yi = b0 + b1x1i + b2x2i + b3(x1Xx2) + ei, (11)

In essence, we have taken the interaction (x1i × x2i), and purged it of its parts that are linearly related to
x1i and x2i separately. The “residual centered” regression adds the new variable, (x1Xx2), and it leaves the
effect coefficients for variables x1 and x2 unchanged.

Table 9 compares the parameter estimates of the models with interaction terms. One is the usual,
non-centered, model, and the others are the mean-centered and residual-centered estimates. One peculiar,
important, fact is that the estimate of the interaction coefficient is the same in all three models. They are
not just similar. They are identical. The fact that the usual and mean-centered estimates are the same has,
of course, been noted in Cohen, et al (2002), but the significance was missed. As argued in the previous
section of this essay, the two models have more in common than just that one coefficient. The models–all
three of them– are actually identical.
Model−constructed i n t e r a c t i o n s such as ”x1 : x3 ” are bu i l t from centered va r i a b l e s

Does the identicality of the interaction estimates indicate that the residual-centered regression is also
equivalent to the mean-centered and usual specifications? It appears the answer is, “yes.” Emphatically. In
order to make this perfectly clear, we need to calculate predicted values for a residual-centered regression
model. In rockchalk-1.5.1, a predict method was introduced for that purpose. To calculate a prediction, it is
necessary to specify the values of all of the predictors, and then the fitted models for each of the interactions
is used to calculate residuals that can be used as interaction terms in the final model.

With predicted values in hand, we can demonstrate the fact that the predicted values from all three
methods of estimating interactions are identical. In Figure 10, the three dimensional plots of the three
models are presented together. For a given pair of input values x1i and x2i, all three models offere the same
prediction. From that, one must conclude that the three regression specifications are, despite the superficial
differences among their estimated coefficients, actually the same.

Why do the coefficients differ if the models are actually the same? Recall that we are estimating the
slopes of a curving plane, and so estimates of the marginal effects of x1 and x2 will depend on the point at
which we are calculating the slopes. Mean-centering and residual-centering are simply competing methods
for re-positioning the y axis. The interactive model has a constant mixed partial derivative, so the estimate of
the interaction coefficient is the same in all three models. The similarity of the three plots in Figure 10 was,
in all honesty, a surprise. Intuitively, it seems as though the residual-centered approach is different because
the data that represents the interaction is drawn from the residuals of a preliminary regression. We have
methodically re-calculated the predicted values from the residual centered regression. Through whatever
method one chooses, the results are the same.

In Figure 11, the predicted values of the mean-centered and residual-centered regressions are plotted
against one another. They are perfectly co-incident, as evidenced by the fact that the correlation between
them is 1.0.
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Figure 10: Mean Centered and Uncentered Fits Identical
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Table 9: Comparing Ordinary and Residual-Centered Regression

Linear Not Centered Mean Centered Resid Centered
Estimate Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.) (S.E.)

(Intercept) -2075.743* -144.89 2072.472* -2075.743*
( 89.533) ( 348.944) ( 15.962) ( 86.169)

x1 40.936* 1.561 40.354* 40.936*
( 1.694) ( 7.086) ( 1.633) ( 1.63)

x2 41.812* 3.504 42.275* 41.812*
( 1.636) ( 6.891) ( 1.577) ( 1.575)

x1:x2 . 0.767* 0.767* .
( 0.134) ( 0.134)

x1.X.x2 . . . 0.767*
( 0.134)

N 400 400 400 400
RMSE 304.259 292.825 292.825 292.825
R2 0.85 0.862 0.862 0.862
adj R2 0.849 0.861 0.861 0.861

* p ≤ 0.05
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Figure 11: Predicted Values of Mean and Residual-centered Models
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The conclusion is this. One can code a nonlinear model in various ways, all of which are theoretically
and analytically identical. There are superficial differences in the estimates of the coefficients of the various
specifications, but these differences are understandable in light of the changes in the design matrix. The
connection between the observed values of the predictors and the predicted values remains the same in all
of these specifications.

Consider the following derivation. The ordinary model is

yi = b0 + b1x1i + b2x2i + b3(x1i × x2i) + e1i (12)

The mean-centered model is

yi = c0 + c1(x1i − x1) + c2(x2i − x2) + c3(x1i − x1)× (x2i − x2) + e2i (13)

In order to compare with equation 12, we would re-arrange like so

yi = c0 + c1(x1i)− c1x1 + c2(x2i)− c2x2 + c3(x1ix2i + x1x2− x1x2i − x2x1i) + e2i (14)

yi = c0 + c1(x1i)− c1x1 + c2(x2i)− c2x2 + c3(x1ix2i) + c3x1x2− c3x1x2i − c3x2x1i) + e2i (15)

yi = {c0 − c1x1− c2x2 + c3x1x2}+ {c1 − c3x2}x1i + {c2 − c3x1}x2i + c3(x1ix2i) + e2i (16)

One can then compare the parameter estimates from equations 12 and 16 in order to understand the
observed changes in fitted coefficients after changing from the ordinary to the mean-centered coding. Both
12 and 16 include a single parameter times (x1ix2i), leading one to expect that the estimate b̂3 should be
equal to the estimate of ĉ3 (and they are, as we have found). Less obviously, one can use the fitted coefficients
from either model to deduce the fitted coefficients from the other. The following equalities describe that
relationship.

b̂0 = ĉ0 − ĉ1x1− ĉ2x2 + ĉ3x1x2 (17)

b̂1 = ĉ1 − ĉ3x2 (18)

b̂2 = ĉ2 − ĉ3x1 (19)

b̂3 = ĉ3 (20)

The estimated fit of equation 13 would provide estimated coefficients ĉj , j = 0, ..., 3, which would then be
used to calculate the estimates from the noncentered model.

The residual centered model requires two steps. First, estimate a regression

(x1i × x2i) = d0 + d1x1i + d2x2i + ui (21)

from which the predicted value can be calculated:

̂(x1i × x2i) = d̂0 + d̂1x1i + d̂2x2i (22)

The difference between the observed product, x1i × x2i and the predicted value from that model, ̂x1i × x2i,
is the “residual-centered estimate,” which is used as a predictor in place of (x1i × x2i) in equation 12.

yi = h0 + h1x1i + h2x2i + h3{x1i × x2i − ̂x1i × x2i}+ e3i (23)

Replacing ̂x1i × x2i with d̂0 + d̂1x1i + d̂2x2i

yi = h0 + h1x1i + h2x2i + h3{x1i × x2i − d̂0 − d̂1x1i − d̂2x2i}+ e3i (24)

= h0 + h1x1i + h2x2i + h3{x1i × x2i} − h3d̂0 − h3d̂1x1i − h3d̂2x2i}+ e3i (25)

{h0 − h3d̂0}+ {h1 − h3d̂1}x1i + {h2 − h3d̂2}x2i + h3{x1i × x2i}+ e3i (26)
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As in the previous comparison of models, we can translate coefficient estimates between the ordinary
specification and the residual-centered model. The coefficient estimated for the product term, ĥ3, should be
equal to b̂3 and ĉ3 (and it is!). If we fit the residual centered model, 23, we can re-generate the coefficients
of the other models like so:

b0 = ĉ0 − ĉ1x1− ĉ2x2 + ĉ3x1x2 = h0 − h3d̂0 (27)

b1 = ĉ1 − ĉ3x2 = h1 − h3d̂1 (28)

b2 = ĉ2 − ĉ3x1 = h2 − h3d̂2 (29)

Little, T. D., Bovaird, J. A., and Widaman, K. F. (2006). On the Merits of Orthogonalizing Powered
and Product Terms: Implications for Modeling Interactions Among Latent Variables. Structural Equation
Modeling, 13(4), 497-519.
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