
Plotting rpart trees with prp

Stephen Milborrow

March 7, 2011

Contents
1 Introduction 2

2 Overview 3

3 FAQ 6

4 Compatibility with plot.rpart and text.rpart 7

5 Customizing the node labels 8

6 Examples using the color arguments 11

7 Branch widths 15

8 Trimming a tree with the mouse 16

9 The graph layout algorithm 17

10 Acknowledgments 18

An Example

temp < 68

ibh >= 3574

dpg < −9.5

ibt < 226

temp >= 68

ibh < 3574

dpg >= −9.5

ibt >= 226

n=330 100%

n=214 65%

n=108 33%

n=106 32%

n=35 11% n=71 22%

n=116 35%

n=55 17% n=61 18%

ozone
12

ozone
7.4

ozone
5.1

ozone
9.7

ozone
6.5

ozone
11

ozone
20

ozone
16

ozone
23

1

1 Introduction

The prp function plots rpart trees. It automatically scales and adjusts the displayed tree for best fit. It
combines and extends the plot.rpart and text.rpart functions in the rpart package. Figure 1 below
shows some examples.

Section 2 of this document (the Overview) is the most important. The remaining sections may be skipped
or read in any order.

I assume you have already looked at An Introduction to Recursive Partitioning Using the RPART Routines
by Therneau and Atkinson:

Short version 2000 http://mayoresearch.mayo.edu/mayo/research/biostat/upload/rpartmini.pdf

Long version 1997 http://mayoresearch.mayo.edu/mayo/research/biostat/upload/61.pdf

default prp
(type = 0)

sex=mal

age>=9.5

sibsp>=2.5died

died survived

survived

yes no

type = 4, extra = 6

sex=mal

age>=9.5

sibsp>=2.5

fml

<9.5

<2.5

died
0.38

died
0.19

died
0.17

survived
0.53

died
0.05

survived
0.89

survived
0.73

assorted arguments

yes no

1

2

4

5

10 11 3

is sex = male?

is age >= 9.5?

is sibsp >= 2.5?

died
0.17 61%

died
0.05 2%

survived
0.89 2%

survived
0.73 36%

yes no

1

2

4

5

10 11 3

|
sex=b

age>=9.5

sibsp>=2.5
died

7e+02/1e+02

died
2e+01/1

survived
3/2e+01

survived
1e+02/3e+02

plot.rpart for comparison

Figure 1: Some prp examples, with a plot.rpart graph for comparison. The data is the Titanic data with
survival as the response (sibsp is the number of siblings or spouses aboard).

2

2 Overview

This section is an overview of the important arguments to prp. For most users these arguments should suffice
and the many other arguments can be ignored.

Use type to determine the basic plotting style, as shown in Figure 2 below.

Use extra to add more details to the node labels, as shown in Figures 3 and 4 overleaf. Use under=TRUE to
put those details under the boxes.

Use digits, varlen, and faclen to display more significant digits and more characters in names. In partic-
ular, use the special values varlen=0 and faclen=0 to display full variable and factor names.

Use border.col and split.border.col to add or remove boxes around the labels.

You may also want to look at fallen.leaves (put the leaves at the bottom), branch (control the angle of
the branch lines), and uniform (vertically space the nodes uniformly or proportionally to the fit).

type = 0
(default)

sex=male

age>=9.5

sibsp>=2.5died

died survived

survived

yes no

type = 1
label all nodes

(like text.rpart all=TRUE)

sex=male

age>=9.5

sibsp>=2.5

died

died

died

survived

died survived

survived

yes no

type = 2
split labels below node labels

sex=male

age>=9.5

sibsp>=2.5

died

died

died survived

died survived

survived

yes no

type = 3
left and right split labels

sex=male

age>=9.5

sibsp>=2.5

female

<9.5

<2.5

died

died survived

survived

type = 4
like type=3 but with interior labels

(like text.rpart fancy=TRUE)

sex=male

age>=9.5

sibsp>=2.5

female

<9.5

<2.5

died

died

died survived

died survived

survived

Figure 2: The type argument.

3

extra = 0
default

Girth<16

Girth>=16

30

23 56

extra = 1
nbr of obs

Girth<16

Girth>=16

n=31

n=24 n=7

30

23 56

extra = 100
percentage of obs

Girth<16

Girth>=16

100%

77% 23%

30

23 56

extra = 101
nbr and percentage

of obs

Girth<16

Girth>=16

n=31 100%

n=24 77% n=7 23%

30

23 56

Figure 3: The extra argument with an anova model. Percentages are included by adding 100 to extra.

extra = 0
default

sex=male

female

died

died survived

extra = 1
nbr of obs per class

sex=male

female

809 500

682 161 127 339

died

died survived

extra = 2
class rate

sex=male

female

809 / 1309

682 / 843 339 / 466

died

died survived

extra = 3
misclass rate

sex=male

female

500 / 1309

161 / 843 127 / 466

died

died survived

extra = 4
prob per class

(sum across a node is)

sex=male

female

.62 .38

.81 .19 .27 .73

died

died survived

extra = 5
prob per class,

fitted class not displayed

sex=male

female

.62 .38

.81 .19 .27 .73

extra = 6
prob of 2nd class

(useful for binary responses)

sex=male

female

0.38

0.19 0.73

died

died survived

extra = 7
prob of 2nd class,

fitted class not displayed

sex=male

female

0.38

0.19 0.73

extra = 8
prob of fitted class

sex=male

female

0.62

0.81 0.73

died

died survived

extra = 9
overall prob

(sum over all leaves is 1)

sex=male

female

.62 .38

.52 .12 .10 .26

died

died survived

extra = 100
percent of obs

sex=male

female

100%

64% 36%

died

died survived

extra = 106
prob of 2nd class and

percent of obs

sex=male

female

0.38 100%

0.19 64% 0.73 36%

died

died survived

Figure 4: The extra argument with a class model. This figure also illustrates under=TRUE which puts the
extra data under the box.

4

The character size will be adjusted automatically unless cex is explicitly set. Use tweak to adjust the
automatically calculated size, something like tweak=0.8 or tweak=1.2.

It helps to remember that the display has four constituents: the node labels, the split labels, the branch lines,
and the optional node numbers. Each of these constituents has a complete set of col etc. arguments. Thus
we have, for example, col (the color of the node label text), split.col (the split text), branch.col (the
branch lines), and nn.col (the optional node numbers).

Standard graphics parameters such as col can be passed in as ... arguments. So where the help page refers
to the col argument, what is meant is the col argument passed in as a ... argument, and if it is not passed
in, the value of par("col"). Such parameters typically affect only the node labels (not the split labels or
other constituents of the display).

5

3 FAQ

3.1 The text is too small with the default arguments. Can I make it bigger?

Use the tweak argument to make the text larger, e.g. tweak=1.2. This may cause overlapping labels.
However, there is a little elbow room because of the whitespace between the labels

Or use an explicit value for cex, experimenting until the displayed graph looks right.

Alternatively, you can reduce the whitespace around the text, allowing prp to (automatically) use a larger
type size. Do this by reducing the gap between boxes and the box space around the text (try gap=0 and/or
space=0).

3.2 The graph is too cluttered. Can I reduce the clutter?

Use the tweak argument to make the text smaller, e.g. tweak=.8.

Or use an explicit value for cex, experimenting until the displayed graph looks right.

Also consider using compress=FALSE and ycompress=FALSE, so prp does not shift nodes around to make
space. Figure 15 on page 17 illustrates the effect of compress and ycompress.

3.3 I always use the same arguments to prp. Can I reduce the amount of typing?

There is a standard R recipe for this kind of thing. Create a wrapper function with the defaults you want:

p <- function(x, type=4, extra=100, under=TRUE, leaf.round=0, ...)

{

prp(x=x, type=type, extra=extra, under=under, leaf.round=leaf.round, ...)

}

Calling p(tree) will draw the tree using your defaults, which can be overridden when necessary. You can
pass any additional arguments to prp via your function’s ... argument.

The next step is to put the above code into your .Rprofile file so the function is always available. Locating
that file is the hardest part of the exercise. Under Windows 7, you can use

C:\Users\username\Documents\.Rprofile.

Enter ?.Rprofile at the R prompt for the gnarly details.

6

4 Compatibility with plot.rpart and text.rpart

Here’s how to get prp to behave like plot.rpart.

• Instead of all=TRUE, use type=1 (type supersedes all and fancy, and provides more options).

• Instead of fancy=TRUE, use type=4.

• Instead of use.n=TRUE, use extra=1 (extra supersedes use.n and provides more options).

• The post function may be approximated with:

postscript(file="tree.ps", horizontal=TRUE)

prp(tree, type=4, extra=1, clip.right.labs=FALSE, leaf.round=0)

dev.off()

• Instead of pretty=0, use faclen=0 (faclen supersedes pretty).

• Instead of fwidth and fheight, use round and leaf.round to change the roundness of the node boxes,
and space and yspace to change the box space around the label. But those arguments are not really
equivalent. For square leaf-boxes use leaf.round=0.

• Instead of margin, use Margin (the name was changed to prevent partial matching with mar).

• plot.rparts’s default value for uniform is FALSE; prp’s is TRUE (because with uniform=FALSE and
extra>0 the plot often requires too small a text size).

• plot.rparts’s default value for branch is 1; prp’s is 0.2 (because after applying compress and
ycompress that arguably looks better).

• xpd=TRUE is often necessary with plot.rpart but is no longer needed with prp.

Ideally prp’s arguments should be totally compatible with plot.rpart. I hope you will agree that the above
discrepancies are in some sense necessary.

7

sex=mal

age>=9.5

sibsp>=2.5fraction
0.17

fraction
0.05

fraction
0.89

fraction
0.73

yes no

Figure 5: Adding a con-
stant prefix “fraction”
to the node labels using
prefix="fraction".

5 Customizing the node labels

In this section we look at ways of customizing the data displayed at each node.

To start off, consider using the extra argument to display additional information. See Figures 3 and 4 and
the prp help page for details.

To simply display a constant string at each leaf use the prefix argument (Figure 5):

data(ptitanic)

tree <- rpart(survived~., data=ptitanic, cp=.02)

prp(tree, extra=7, prefix="fraction\n")

We will use this model as a running example. In the data the response survived is a factor and thus by
default rpart builds a class tree. The cp argument is used to keep the tree small for simplicity, and extra=7

is used to display the fitted probability of survival but not the fitted class.

An aside: By default rpart will treat a logical response as an integer and build an anova model, which
is usually inappropriate for a binary response. So if your response is logical, first convert it to a factor so
rpart builds a class model:

my.data$response <- factor(my.data$response, labels=c("No", "Yes"))

Or explicitly use method="class" when invoking rpart, although that may be easy to forget.

The prefix argument can be a vector, allowing us to display node-specific text in much the same way that
node-specific colors are displayed in Section 6.

If we need something more flexible we can define a labeling function to generate the node text. The usual
rpart way of doing that is to associate a function with the rpart object (functions$text). However, prp
does not call that function unless method="user". (This change was necessary for the extra argument.) So
here we look at a different approach which is in fact often easier. We pass our labeling function to prp using
the node.fun argument. The example below displays the deviance at each node (Figure 6):

node.fun1 <- function(x, labs, digits, varlen)

{

paste("dev", x$frame$dev)

}

prp(tree, node.fun=node.fun1)

8

sex=mal

age>=9.5

sibsp>=2.5dev 136

dev 1 dev 3

dev 127

yes no

Figure 6: Printing text at the nodes with
node.fun.

sex=mal

age>=9.5

sibsp>=2.5
died
0.17

dev 136

died
0.05
dev 1

survived
0.89
dev 3

survived
0.73

dev 127

yes no

Figure 7: Adding extra text to the node
labels with node.fun.

sex=mal

age>=9.5

sibsp>=2.5
dev 136

dev 1 dev 3

dev 127

died
0.17

died
0.05

survived
0.89

survived
0.73

yes no

Figure 8: Same as Figure 7, but with dou-
ble newlines \n\n in the labels to move
text below the boxes.

or, more concisely:

prp(tree, node.fun=function(x, labs, digits, varlen) paste("dev", x$frame$dev))

The labeling function should return a vector of label strings, with labels corresponding to rows in x$frame.
The function must have all the arguments shown in the examples, even if it does not use them. Apart

9

from labs, these arguments are copies of those passed to prp. The labs argument is a vector of the labels
generated by prp in the usual manner. This argument is useful if we want to include those labels but add
text of our own. As an example, we modify the function above to include the text prp usually prints at the
node (Figure 7):

node.fun2 <- function(x, labs, digits, varlen)

{

paste(labs, "\ndev", x$frame$dev)

}

prp(tree, extra=6, node.fun=node.fun2)

Text after a double newline in the labels is drawn below the box. So to put the deviances below the box,
change \n to \n\n (Figure 8):

node.fun3 <- function(x, labs, digits, varlen)

{

paste(labs, "\n\ndev", x$frame$dev)

}

prp(tree, extra=6, node.fun=node.fun3)

In a similar manner, we can also generate custom split labels by setting the split.fun argument to a
function. However, it is easier to use split.prefix and related arguments, when those suffice for the needs
at hand. The bottom left plot of Figure 1 is an example. We can generate labels of the form "is pclass

2nd or 3rd?" using split.prefix="is ", split.suffix="?", eq=" ", facsep=" or ".

We used a class model in the above examples, but the same approach can of course be used with other
rpart methods.

10

6 Examples using the color arguments

Arguments like col and lty are recycled and can be vectors, indexed on the row number in the tree’s frame.
Thus the call prp(tree, split.col = c("red", "blue")) would allocate red to the node in first row of
frame, blue to the second row, red to the third row, and so on. But that is not very useful, because splits
and leaves appear in “random” order in frame, as can be seen in the example below. Note the node numbers
along the left margin (we could plot those node numbers with nn=TRUE and their row indices with ni=TRUE):

> tree$frame

var n wt dev yval complexity ncompete nsurrogate yval2.1 yval2.2 yval2.3 yval2.4 yval2.5

1 sex 1309 1309 500 1 0.424 4 1 1.000 809.000 500.000 0.618 0.382

2 age 843 843 161 1 0.021 3 1 1.000 682.000 161.000 0.809 0.191

4 <leaf> 796 796 136 1 0.000 0 0 1.000 660.000 136.000 0.829 0.171

5 sibsp 47 47 22 2 0.021 3 2 2.000 22.000 25.000 0.468 0.532

10 <leaf> 20 20 1 1 0.020 0 0 1.000 19.000 1.000 0.950 0.050

11 <leaf> 27 27 3 2 0.020 0 0 2.000 3.000 24.000 0.111 0.889

3 <leaf> 466 466 127 2 0.015 0 0 2.000 127.000 339.000 0.273 0.727

Here’s something more useful (Figure 9). We use the fitted value at a node (the yval field in frame) to
determine the color of the node:

data(ptitanic)

tree <- rpart(survived~., data=ptitanic, cp=.02)

prp(tree, extra=6,

box.col=c("pink", "palegreen3")[tree$frame$yval])

sex=mal

age>=9.5

sibsp>=2.5died
0.17

died
0.05

survived
0.89

survived
0.73

yes no

Figure 9: Using
the fitted value
and the box.col

argument to de-
termine the color
of the boxes.

11

Figure 10: Using the color arguments
to indicate a nodes’s complexity. Nodes
with a complexity greater than a certain
value (0.021) are grayed out.

The following code creates a series of images — a movie — which shows how the tree is pruned on node
complexity:

complexities <- sort(unique(tree$frame$complexity)) # a vector of complexity values

for(complexity in complexities) {

cols <- ifelse(tree$frame$complexity >= complexity, 1, "darkgray")

prp(tree, col=cols, branch.col=cols, split.col=cols)

Sys.sleep(1) # wait one second

}

Figure 10 shows one of the plots produced by above code. (Screen flashing while the code is running is caused
by prp’s dummy calls to plot, which are necessary to figure out the graph layout for the final plot. There
seems to be no way to avoid the flashing when plotting to the screen.)

12

sex=mal

age>=9.5

sibsp>=2.5died

died survived

survived

yes no

1

2

4 5

10 11

3

Figure 11: A node and all its
ancestors highlighted.

The following code highlights a node and all its ancestors (Figure 11):

return the given node and all its ancestors (a vector of node numbers)

path.to.root <- function(node)

{

if(node == 1) # root?

node

else # recurse, %/% 2 gives the parent of node

c(node, path.to.root(node %/% 2))

}

node <- 11 # 11 is our chosen node, arbitrary for this example

nodes <- as.numeric(row.names(tree$frame))

cols <- ifelse(nodes %in% path.to.root(node), "red", "darkgray")

prp(tree, nn=TRUE, col=cols, branch.col=cols, split.col=cols, nn.col=cols)

13

Here are some code fragments demonstrating additional techniques for manipulating rpart models. It is
worthwhile coming to grips with frame — look at print(tree$frame) and print.default(tree). Some-
times we with work with node numbers and sometimes it is necessary to work with row numbers in frame:

nodes <- as.numeric(row.names(tree$frame)) # node numbers in the order they appear in frame

node %/% 2 # parent of node

c(node * 2, node * 2 + 1) # left and right child of node

inode <- match(node, nodes) # row index of node in frame

is.leaf <- tree$frame$var == "<leaf>" # logical vec, indexed on row in frame

nodes[is.leaf] # the leaf node numbers

is.left <- nodes %% 2 == 0 # logical vec, indexed on row in frame

ifelse(is.left, nodes+1, nodes-1) # siblings

get.children <- function(node) # node and all its children

if(is.leaf[match(node, nodes)]) {

node

} else

c(node,

get.children(2 * node), # left child

get.children(2 * node + 1)) # right child

14

7 Branch widths

It can be informative to have branch widths proportional to the number of observations. In the example on
the right side of Figure 12, the small number of observations at the bottom split is immediately obvious. We
can also estimate the relative number of males and females from the widths at the root split.

The right side of the figure was generated with:

prp(tree, branch.type=5, yesno=FALSE, faclen=0)

Note the branch.type argument. Other values of branch.type can be used to get widths proportional to
the node’s deviance, complexity, and so on. See the prp help page for details.

But be aware that the human eye is not good at estimating widths of branches at an angle. In Figure 13 the
left branch has the same width as the right branch, although one could be forgiven for thinking otherwise.
Width here should be measured horizontally, but the eye refuses to do that. The illusion is triggered by
the different slopes in this extreme example (whereas in a plotted tree the left and right branches at a split
usually have similar slopes).

sex=male

age>=9.5

sibsp>=2.5
61%

2% 2%

36%

died

died survived

survived

sex=male

age>=9.5

sibsp>=2.5died

died survived

survived

Figure 12: left The percentage of observations in a node.
right That information represented by the width of the branches.

Figure 13: Misleading branch widths. The two “branches” have the same width.

15

8 Trimming a tree with the mouse

Set snip=TRUE to display a tree and interactively trim it with the mouse.

If you click on a split it will be marked as deleted. If you click on an already-deleted split it will be undeleted
(if its parent is not deleted). Information on the node is printed as you click.

When you have finished trimming, click on the QUIT button or right click, and prp will return the trimmed
tree (in the obj field). Example (Figure 14):

data(ptitanic)

tree <- rpart(survived~., data=ptitanic, cp=.012)

new.tree <- prp(tree, snip=TRUE)$obj # interactively trim the tree

prp(new.tree) # display the new tree

You might like to prefix the above code with par(mfrow=c(1,2)) to display the original and trimmed trees
side by side.

Figure 14: Interactively trimming a
tree with snip=TRUE.

16

9 The graph layout algorithm

For the curious, this section is an overview of the algorithm used to lay out the graph. The current im-
plementation is not perfect but suffices for most trees. The more-or-less standard approach for positioning
labels, simulated annealing, is not used because an objective function cannot (easily) be calculated efficiently.
A central issue is a chicken-and-egg problem: we need the cex to determine the best positions for the labels
but we need the positions to determine the cex.

Initially, prp calculates the tentative positions of the nodes. If compress=TRUE (the default), it slides nodes
horizontally into available space where possible. It uses the same code as plot.rpart to do all this, with
a little extension for fallen.leaves. Figure 15 shows the same tree plotted with different settings of the
compress and ycompress arguments (we will get to ycompress in a moment). In the middle plot see how
age>=16 has been shifted left, for example.

If cex=NULL (meaning calculate a suitable cex automatically, the default), prp then calculates the cex needed
to display the labels and their boxes with at least gap and ygap between the boxes. (Whether the boxes are
invisible or not is immaterial to the graph layout algorithm.) This is accomplished with a binary search for
the appropriate cex. A search is necessary because:

(a) It is virtually impossible to calculate the required scale analytically taking into account the many pa-
rameters such as adj, yshift, and space. For example, sometimes a smaller cex causes more overlapping
as boxes shift around with the scale change.

(b) Font sizes are discrete, so the font size we get may not be the font size we ask for. This is especially a
problem with a small cex where there is a large relative jump between the type size and the next smaller
size.

Note that prp will only decrease the cex; it never increases the cex above 1 (but that can be changed with
max.auto.cex).

If the initial cex is less than 0.7 (actually ycompress.cex), prp then tries to make additional space as follows
(assuming ycompress=TRUE, the default). If type=0, 1, or 2, it shifts alternate nodes vertically, looking for

compress=FALSE
ycompress=FALSE

sex=mal

age>=9.5

sibsp>=2.5

pclass=3rd

sibsp>=2.5

age>=16

parch>=3.5

age>=28

age<22

died

died survived died

died

died

died survived

survived

survived

yes no

calculated cex:
0.44

compress=TRUE (default)
ycompress=FALSE

sex=mal

age>=9.5

sibsp>=2.5

pclass=3rd

sibsp>=2.5

age>=16

parch>=3.5

age>=28

age<22

died

died survived died

died

died

died survived

survived

survived

yes no

calculated cex:
0.69

compress=TRUE (default)
ycompress=TRUE (default)

sex=mal

age>=9.5

sibsp>=2.5

pclass=3rd

sibsp>=2.5

age>=16

parch>=3.5

age>=28

age<22

died

died

survived

died

died

died

died

survived

survived

survived

yes no

calculated cex:
0.82

Figure 15: The compress and ycompress arguments

17

xcompact=FALSE
ycompact=FALSE

sex=male

died
0.19

survived
0.73

yes no

default:
xcompact=TRUE
ycompact=TRUE

sex=male

died
0.19

survived
0.73

yes no

Figure 16: Small trees are compacted by default, as shown on the right.

the shift in shift.amounts that allows the biggest type size. If type=3 or 4 it tries alternating the leaves if
fallen.leaves=TRUE.

The shift is retained only if makes possible a type size gain of at least 10% (actually accept.cex). The
shifted tree is not as “tidy” as the original tree, but the larger text is usually worth the untidiness (but not
always). Compare the middle and right plots in Figure 15.

Finally, for small trees where there is too much white space, prp compacts the tree horizontally and/or
vertically by changing xlim and ylim (Figure 16). This can be disabled with the xcompact and ycompact

arguments.

Arguably the most serious limitation of the current implementation is its inability to display results on test
data (on the tree derived from the training data).

10 Acknowledgments

I have leaned heavily on the code in plot.rpart and text.rpart. Those functions were written by Terry
Therneau and Beth Atkinson, and were ported to R by Brian Ripley. The functions were descended from
Linda Clark and Daryl Pregibon’s S-Plus tree package. But please note that the prp code was written
independently and I take responsibility for the excessive number of arguments, etc. I’d also like to thank
Beth Atkinson for her feedback.

18

