Refer to the Rmd source code to see how to adapt this template to your project.
spec <- list()
spec[1:6] <- rpf.grm(factors=2)
## Warning in `[<-`(`*tmp*`, 1:6, value = <S4 object of class
## structure("rpf.mdim.grm", package = "rpf")>): implicit list embedding of S4
## objects is deprecated
gen.param <- sapply(spec, rpf.rparam)
colnames(gen.param) <- paste("i", 1:ncol(gen.param), sep="")
gen.param[2,] <- c(0,0,.5,.5,1,1)
resp <- rpf.sample(1000, spec, gen.param)
# hide latent factor that we don't know about
tspec <- list()
tspec[1:length(spec)] <- rpf.grm(factors=1)
## Warning in `[<-`(`*tmp*`, 1:length(spec), value = <S4 object of class
## structure("rpf.mdim.grm", package = "rpf")>): implicit list embedding of S4
## objects is deprecated
grp <- list(spec=tspec, param=gen.param[-2,], mean=c(0), cov=diag(1), data=resp)
ChenThissen1997(grp)
## Chen & Thissen (1997) local dependence test
## Magnitudes larger than abs(log(.01))=4.6 are significant at the p=.01 level
## A positive (negative) sign indicates more (less) observed correlation than expected
##
## i1 i2 i3 i4 i5
## i2 -2.10 NA NA NA NA
## i3 -1.55 5.72 NA NA NA
## i4 0.73 2.16 1.18 NA NA
## i5 3.52 -3.52 -3.95 8.30 NA
## i6 -2.63 -2.95 2.55 2.57 10.34
(got <- SitemFit(grp))
## Orlando & Thissen (2000) sum-score based item fit test
## Magnitudes larger than abs(log(.01))=4.6 are significant at the p=.01 level
##
## i1 : n = 1000, S-X2( 6) = 8.16, log(p) = -1.48
## i2 : n = 1000, S-X2( 5) = 3.75, log(p) = -0.53
## i3 : n = 1000, S-X2( 5) = 7.49, log(p) = -1.68
## i4 : n = 1000, S-X2( 5) = 8.37, log(p) = -1.99
## i5 : n = 1000, S-X2( 5) = 8.93, log(p) = -2.19
## i6 : n = 1000, S-X2( 5) = 6.62, log(p) = -1.38
Who can resist plotting these tables?
(got <- sumScoreEAP(grp))
## p a1 se1 cov1
## 0 0.2432813736 -0.8246164 0.7939078 0.6302896
## 1 0.3121130054 -0.2520234 0.7606841 0.5786403
## 2 0.2425500048 0.2979951 0.7220992 0.5214273
## 3 0.1360939474 0.8100926 0.6973712 0.4863266
## 4 0.0521438571 1.3369559 0.6911625 0.4777055
## 5 0.0129049906 1.9318215 0.6693015 0.4479645
## 6 0.0009128211 2.3027514 0.6643960 0.4414220
data(science)
spec <- list()
spec[1:25] <- rpf.nrm(outcomes=3, T.c = lower.tri(diag(2),TRUE) * -1)
## Warning in `[<-`(`*tmp*`, 1:25, value = <S4 object of class
## structure("rpf.mdim.nrm", package = "rpf")>): implicit list embedding of S4
## objects is deprecated
param <- rbind(a=1, alf1=1, alf2=0,
gam1=sfif$MEASURE + sfsf[sfsf$CATEGORY==1,"Rasch.Andrich.threshold.MEASURE"],
gam2=sfif$MEASURE + sfsf[sfsf$CATEGORY==2,"Rasch.Andrich.threshold.MEASURE"])
colnames(param) <- sfif$NAME
iorder <- match(sfif$NAME, colnames(sfpf))
responses <- sfpf[,iorder]
rownames(responses) <- sfpf$NAME
rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact=TRUE)
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact =
## TRUE): Excluding item GO TO MUSEUM because outcomes != 3
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact
## = TRUE): Excluding response ROSSNER, LAWRENCE F. because it is a minimum or
## maximum
## n infit infit.z outfit outfit.z
## 1 74 0.7334760 -1.93854363 0.6662677 -1.84016154
## 2 74 0.7557765 -1.49109930 0.5601381 -1.43788307
## 3 74 0.6562136 -2.62314065 0.6235471 -2.50977057
## 4 74 0.9885977 -0.02982227 0.9833379 -0.05803811
## 5 74 2.2854600 5.28398081 3.9687036 6.98045705
## 6 74 0.8806001 -0.79728007 0.8212982 -1.02012688
## 7 74 0.9694889 -0.16907311 1.0049137 0.08462788
## 8 74 1.1684407 1.13263699 1.2320360 1.40767658
## 9 74 1.1125813 0.82684751 1.1337003 0.75931289
## 10 74 0.7756357 -1.09399342 0.5617036 -1.14659113
## 11 74 0.7286889 -1.83371616 0.5881417 -1.68055554
## 12 74 0.8493121 -0.62542291 0.7008119 -0.43349100
## 13 74 0.8730059 -0.86823601 0.8058509 -1.13628429
## 14 74 0.7502023 -1.67364559 0.6057915 -1.69066099
## 15 74 1.0934249 0.65700883 1.0512049 0.36542993
## 16 74 0.6632654 -2.59174746 0.6005216 -2.35711937
## 17 74 1.2325992 0.58992208 1.1912748 0.50748517
## 18 74 0.9690502 0.02438538 1.0925458 0.35481861
## 19 74 1.3529043 2.12137594 1.7997411 3.71876933
## 20 74 0.7334508 -1.59075191 0.5470207 -1.51023199
## 21 74 0.8040046 -1.40104331 0.7127619 -1.48373014
## 22 74 2.3647156 5.80477994 4.6517042 8.53849619
## 23 74 0.7907684 -1.42062168 0.6910078 -1.22075027
## 24 74 0.7830659 -1.61643142 0.7215023 -1.66985954
## name
## 1 WATCH BIRDS
## 2 READ BOOKS ON ANIMALS
## 3 READ BOOKS ON PLANTS
## 4 WATCH GRASS CHANGE
## 5 FIND BOTTLES AND CANS
## 6 LOOK UP STRANGE ANIMAL OR PLANT
## 7 WATCH ANIMAL MOVE
## 8 LOOK IN SIDEWALK CRACKS
## 9 LEARN WEED NAMES
## 10 LISTEN TO BIRD SING
## 11 FIND WHERE ANIMAL LIVES
## 12 GROW GARDEN
## 13 LOOK AT PICTURES OF PLANTS
## 14 READ ANIMAL STORIES
## 15 MAKE A MAP
## 16 WATCH WHAT ANIMALS EAT
## 17 GO ON PICNIC
## 18 GO TO ZOO
## 19 WATCH BUGS
## 20 WATCH BIRD MAKE NEST
## 21 FIND OUT WHAT ANIMALS EAT
## 22 WATCH A RAT
## 23 FIND OUT WHAT FLOWERS LIVE ON
## 24 TALK W FRIENDS ABOUT PLANTS
head(rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact=TRUE))
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact =
## TRUE): Excluding item GO TO MUSEUM because outcomes != 3
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact
## = TRUE): Excluding response ROSSNER, LAWRENCE F. because it is a minimum or
## maximum
## n infit infit.z outfit outfit.z name
## 1 24 0.9693598 -0.01898239 0.8675200 -0.2174955 ROSSNER, MARC DANIEL
## 2 24 0.4687608 -2.24283176 0.4341095 -1.3589919 ROSSNER, TOBY G.
## 3 24 0.7377522 -0.97658469 0.6784338 -0.8996851 ROSSNER, MICHAEL T.
## 4 24 0.7940946 -0.75849430 1.3987520 1.1557079 ROSSNER, REBECCA A.
## 5 24 1.6391409 2.12339795 2.5979105 3.4653767 ROSSNER, TR CAT
## 6 24 1.8561200 1.94796584 1.2288375 0.5464035 WRIGHT, BENJAMIN