
sequoia

Jisca Huisman
jisca.huisman@gmail.com

February 13, 2017

Sequoia provides a method to reconstruct multi-generational pedigrees based on SNP
data, as described in [1]. The bulk of the algorithm is written in Fortran, to minimise
computation times. An example R script is shown, followed by detailed description of
each step.

Background

Data on hundreds of SNPs provides detailed information on the relationships between
individuals, but with such large amounts of data pedigree reconstruction using MCMC
or other approaches with many thousands of iterations are extremely time consum-
ing. Instead, Sequoia is a conservative hill-climbing algorithm, asymptoting to a high-
likelihood pedigree in a handful of iterations. Explicit consideration of the likelihoods
of alternative configurations between pairs or groups of individuals before making an
assignment reduces the number of false positives compared to methods relying on the
likelihood ratio parent-offspring/unrelated (LLR(PO/U)) only [4].

Contents

1 Input 2
1.1 Life history data . 2
1.2 Genotype data . 3

2 Running Sequoia 4
2.0 Input parameters . 5
2.1 Check for duplicates . 7
2.2 Age difference based prior . 7
2.3 Parentage assignment . 9
2.4 Sibship clustering & the rest . 10

3 Output check 12
3.1 Comparison with previous pedigree . 12
3.2 Estimating confidence probabilities . 15
3.3 Comparison pedigree-based and genomic relatedness 16

1

Example

An example pedigree and associated life history data are provided with the package,
which can be used to try out the steps detailed in this vignette. This pedigree consists
of 5 generations with interconnected half-sib clusters (Pedigree II in [1]).

> install.packages("sequoia") # only required first time

> setwd("E:/Sequoia/test") # set the working directory

> library(sequoia) # load the package

> #

> # get the example pedigree and life history data

> data(Ped_HSg5, LH_HSg5)

> tail(Ped_HSg5)

> #

> # simulate genotype data for 200 SNPs

> Geno <- SimGeno(Ped = Ped_HSg5, nSnp = 200)

> #

> # run sequoia - duplicate check & parentage assignment only

> ParOUT <- sequoia(GenoM = Geno,

+ LifeHistData = LH_HSg5,

+ MaxSibIter = 0)

> #

> # run sequoia - sibship clustering & grandparent assignment

> SeqOUT <- sequoia(GenoM = Geno,

+ SeqList = ParOUT,

+ MaxSibIter = 5)

> #

> # compare the assigned real and dummy parents to the true pedigree

> PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqOUT$Pedigree)

> #

> # save results

> save(SeqOUT, file="Sequoia_output_date.RData")

> write.table(SeqOUT$Pedigree, file="Pedigree_date.txt",

+ sep="\t", row.names=FALSE, quote=FALSE)

>

1 Input

1.1 Life history data

The life history data (LifeHistData) should be provided as a dataframe with three
columns:

� ID: up to 30 characters long, no spaces

2

� Sex: 1 = female, 2 = male, other numbers = unknown

� Year of birth (or hatching). In species with more than one generation per year,
a finer time scale than year of birth ought to be used, ensuring that parents are
never born within the same time unit as their putative offspring.

Ideally this basic life history information is provided for all genotyped individuals, but
this is not strictly necessary. This dataframe may include many more individuals than
the genotype data, or in a different order.

1.2 Genotype data

The SNP data should be coded with one line per individual, and one column per SNP,
with each SNP is coded as 0, 1, 2 copies of the reference allele, or missing (-9). This
matrix can be provided as GenoM, with individual IDs as the rownames. Alternatively
a text file GenoFile can be specified with one column for IDs followed by one column
per SNP, and no header row. Then, the genotype data is never loaded into R, as this
can take up a lot of memory for very large datasets. The necessary file format can for
example be obtained using PLINK [3] in combination with sequoia’s GenoConvert, as
described below. GenoConvert can also convert Colony input files.

1.2.1 Real data - Selection of SNP markers

Using tens of thousands of SNP markers for pedigree reconstruction is unnecessary, will
slow down computation, and may even hamper inferences by their non-independence.
Rather, a subset of SNPs in low linkage disequilibrium (LD) with each other, and
with high minor allele frequencies (MAF > 0.3), ought to be selected first if more
than a few hundred SNPs are available. The calculations assume independence of
markers, and While low (background) levels of LD are unlikely to interfere with pedigree
reconstruction, high levels may give spurious results. Markers with a high MAF provide
the most information, as although rare allele provide strong evidence when they are
inherited, this does not balance out the rarity of such events.

Creating a subset of SNPs can be done conveniently using PLINK (https://www.
cog-genomics.org/plink2), using for example the command

plink --file mydata --maf 0.4 --indep 50 5 2

which will create a list of SNPs with a minor allele frequency of at least 0.4, and which
in a window of 50 SNPs, sliding by 5 SNPs per step, have a VIF of maximum 2. VIF,
or variance inflation factor, is 1/(1 − r2). It is advised to ‘tweak’ the parameter values
until a set with a few hundred SNPs (300-700) is created. For further details, see
https://www.cog-genomics.org/plink2/ld#indep.

The resulting list (‘plink.prune.in’) can be used to create the genotype file used as
input for Sequoia, with SNPs codes as 0, 1, 2, or NA, with the command

3

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2/ld#indep

plink --file mydata --extract plink.prune.in --recodeA --out

inputfile_for_sequoia

in command prompt, which is on a windows machine equivalent to

> system("cmd", input = "plink --file mydata --extract plink.prune.in

+ --recodeA --out inputfile_for_sequoia")

in R. This will create a file with the extension .RAW, which can be converted to the
required input format using

> GenoM <- GenoConvert(InFile = "inputfile_for_sequoia.raw",

+ OutFile = NA)

This function can also convert from files in two-columns-per-SNP format, as used by
e.g. Colony.

1.2.2 Simulating SNP data

When SNP data is not (yet) available, but an approximate pedigree is, it is possible
to test sequoia on a simulated dataset. This may be useful to for example explore
the number of markers required to reliably infer a pedigree of that particular structure.
Alternatively, this can be used to estimated the pedigree-wide error rate of an inferred
pedigree.

The function SimGeno() lets the user specify the average proportion of missing
genotypes per individual (MisHQ), the genotyping error rate (ErHQ), and the fraction
of known parents (in the supposed ‘true’ pedigree) which have not been genotyped
(ParMis). Moreover, the data can be made to contain a fraction of low-quality samples
(PropLQ, with associated MisLQ and ErLQ), to assess whether inclusion of samples which
did not pass stringent quality control would improve or hamper pedigree reconstruction.

2 Running Sequoia

Under the hood, sequoia consists of four sub-programs:

1. Duplicates: Check for duplicate entries in the genotype and life history data

2. Agepriors: Initiation or calculation of age-difference based priors

3. Parentage: Parentage assignment (assign genotyped parents to genotyped focal
individuals)

4

4. Sibships: Clustering of half- and full-siblings, grandparent-assignment to single-
tons and sibships, and identification of avuncular relationships between sibships
(jointly referred to as ‘Sibships’ for brevity)

which all return their output to a single list, with the elements as listed in Table 2.

2.0 Input parameters

The parameter values that can be changed are as follows:

DummyPrefix The prefixes for dummy individuals (parents assigned to sibship clus-
ters) can be altered to avoid confusion with IDs of real individuals.

Err The genotyping error rate assumed, typically probably around 1E-4 to 1E-3. The
error model is given in Table 1; other error structures could easily be implemented but
are currently not user-settable.

Table 1: Default probabilities used of observing genotype X, conditional on actual genotype x.

X
x 0 1 2
0 1-ε ε 0
1 ε/2 1-ε ε/2
2 0 ε 1-ε

GenoFile The name of the genotype file. When not in the current working directory
(getwd()), provide the full path (with forward slashes).

GenoM The genotype matrix. Can be read in from a genotype file in the prescribed
format using

> GenoM <- as.matrix(read.table("SimGeno.txt", row.names=1))

LifeHistData The dataframe with IDs, Sex and Birth or hatching year, in that order.
The column names are ignored. It is possible to read this in directly from a text file:

> ParOUT <- sequoia(GenoM = GenoM,

+ LifeHistData = read.table("LifeHistFile.txt",

+ header=TRUE),

+ MaxSibIter=0)

5

MaxMismatch The maximum number of loci at which candidate parent and off-
spring are allowed to be opposite homozygotes, used to filter out highly unlikely pairs.
Note that the actual upper limit used is MaxOH = MaxMismatch + ceiling(Err * nSnp).

MaxSibIter The number of iterations of sibship clustering. As this is by far the most
time consuming step, and may take several hours for large datasets, it would be wise to
first run with MaxSibIter=0 so that only the much faster parentage assignment is per-
formed, and inspect the output. If the total likelihood asymptotes before MaxSibIter

is reached, the algorithm is terminated and the results returned.

MaxSibshipSize Maximum number of offspring for a single individual. A generous
safety margin is advised of at least twice the biologically plausible maximum.

Tassign Threshold log10-likelihood ratio (LLR) required for acceptance of proposed
relationship, relative to next most likely relationship. Must be zero or positive, with
higher values resulting in more conservative assignments.

Tfilter Threshold LLR between a proposed relationship versus unrelated, to select
candidate relatives. For the filtering step, the LLR is calculated without conditioning on
currently assigned parents (Λ∗

R/U in [1]), to speed up computation. Tfilter is typically
a negative value, and more negative values may decrease non-assignment (preventing
filtering out of true relatives), but will increase computational time.

Complexity When it is known that the dataset contains only monogamous matings,
the assignment rate can be improved by using the option Complexity="mono". <under
development . . .>

2.0.1 Re-use of previous output

The parameter values used as arguments when calling sequoia will be returned in the
list element Specs. These settings can be re-used in a subsequent run using

> load("Sequoia_output_date.RData") # if it was saved to disk

> SeqOUT2 <- sequoia(SeqList = list(Specs = SeqOUT1$Specs))

which will then not use any of the other parameter values provided, except MaxSibIter.
One may change the values in Specs, ensuring to not alter the names of the components.

It is also possible to re-use the entire output list,

> SeqOUT2 <- sequoia(SeqList = SeqOUT1)

6

Table 2: Output from Sequoia, returned within a named list.
Output Description
AgePriors Age-difference based prior probabilities
DummyIDs Details per half-sib cluster
DupGenoID Duplicated IDs in genotype data
DupGenotype (near) Duplicated genotypes
DupLifeHistID Duplicated IDs in life history data
LifeHist sex and birth year data
MaybeParent Non-assigned likely PO pairs
MaybeRel Non-assigned likely relatives
NoLH IDs in genotype data not present in life history data
Pedigree Pedigree
PedigreePar Scaffold pedigree
Specs Parameter values
TotLikParents Total likelihood during parentage
TotLikSib Total likelihood during sib clustering

which will use AgePriors in SeqOUT1, as well as PedigreePar (and thus parentage
assignment will not be run).

2.1 Check for duplicates

The data may contain positive controls, as well as other intentional and unintentional
duplicated samples. Sequoia quickly searches the data for identical genotypes and IDs,
which ought to be removed prior to parentage assignment. It allows a few mismatches
between the genotypes (MaxMismatch), with or without the same individual ID. Note
that when the number of SNPs is limited, very inbred individuals may be nearly indis-
tinguishable from their parent(s); such individuals should not be excluded.

This function additionally searches the life history data for duplicated entries, and
will also return a vector of individuals included in the genotype data, but not in the
life history data (NoLH). The latter is merely a service to the user; individuals without
life history information can often be successfully included in the pedigree.

2.2 Age difference based prior

The list element AgePriors contains 8 columns, and as many rows as the birth year
range detected in the life history data. It initially only indicates whether a given
relationship is biologically possible (1) or not (0) for a given age difference between
individuals. The first row is for individuals born in the same year, the second row for
individuals born one year apart, etc. The columns are labelled for various relation-
ship categories, with M = mother, P = father, MS = maternal sibling, PS = paternal
sibling, MGM = maternal grandmother, PGF = paternal grandfather, MGF = ma-
ternal grandfather and paternal grandmother, and AU = avuncular (niece/nephew –

7

aunt/uncle).

For example, the first value in the column ‘MS’ can be interpreted as ‘if I were to
pick two individuals born in the same year, and two individuals from my sample at
random, how much more likely are the first pair to be maternal siblings, compared to
the second pair?’ Values below 1 indicate less likely, and values above 1 more likely.
For MS, PS and AU absolute age differences are used (with overlapping generations,
nephews may be older than their aunts), while parents and grandparents are necessarily
older than their (grand-)offspring (categories M, P, MGM, PGF and MGF).

These age-difference based priors are by default automatically updated after parent-
age assignment, based on the empirical distribution of age differences between individ-
uals and their assigned fathers and mothers. This update is prevented when SeqList

is provided and contains an element ‘AgePriors’.

Table 3: Behaviour when ‘AgePriors’ and/or ‘PedigreePar’ are provided in ‘SeqList’. –: not
provided / not run, AP1 = simple age prior, AP2 = parents-based age prior

in SeqList Use . . .
AgePriors PedigreePar Parentage Sibships

– – AP1 AP2
AP∗ – AP∗ AP2

– Y – AP2
AP∗ Y – AP∗

As with the parameter specifications, feel free to alter the values to match the
biological characteristics of the species. The number of rows may be increased (but
not decreased below the age range amongst the genotyped individuals according to the
provided life history data), in which case Specs["nAgeClasses"] should be updated to
match the new number of rows. For example, for a species with strictly non-overlapping
generations, one may wish to alter the AgePriors to

MS PS MGM PGF MGF UA M P
1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

and express the ‘birth years’ in the life history data as generation numbers. This
can be done as follows

> AP <- as.matrix(SeqOUT$AgePriors)

> AP[AP>0] <- 0

> AP[1,c("MS", "PS")] <- 1

> AP[2,c("M", "P", "UA")] <- 1

> AP[3,c("MGM", "PGF", "MGF")] <- 1

> SeqOUT2 <- sequoia(SeqList=list(Specs=SeqOUT$Specs, AgePriors=AP),

+ MaxSibIter = 0)

8

Note that any identified parent-offspring pairs which are not a single generation
apart will be flagged (see ‘Non-assigned parent-offspring pairs’ below).

2.3 Parentage assignment

Parentage assignment is quick, and for example takes less than a minute for an empirical
dataset with 2,500 genotyped individuals on a laptop with an intel i7 2.3 GHz CPU
and 8GB RAM.

2.3.1 PedigreePar

This scaffold pedigree contains columns with

� IDs of the individual, its assigned dam (mother) and sire (father);

� The log10 likelihood ratio (LLR) of the dam, sire and the parent pair; this is
the ratio between the likelihood of the assigned parent being the parent, versus
the most likely alternative type of relative to the focal individual. The alterna-
tive relationships considered are full sibling (FS), half sibling (HS), grandparent
(GG), full avuncular (FA), half avuncular / great-grandparental / cousin (HA),
or unrelated (U).

� The number of loci at which the offspring and the assigned dam or sire are opposite
homozygotes;

� The row number in the genotype matrix of the offspring, dam and sire; used for
subsequent sibship clustering.

The parental LLRs are calculated after the likelihood has reached an asymptote, and
are conditional on all other links in the reconstructed pedigree. They are calculated by
removing the parent(s), and re-calculating the likelihoods of the various relationships
between the focal individual and the parent. The pair LLR is relative to the most
likely assignment of a single parent (or no parent). Note that the reported LLR differs
from for example Cervus [2], which instead returns the natural log of the ratio between
the probability that the assigned parent is the parent, versus that the next most likely
candidate is the parent.

Some parents may have a very small or even negative single-parent LLR, but the LLR
of the parent pair should ideally always be positive. For full sibling pairs and dummy-
parents of dummy-individuals this is not always the case, due to some approximations
used when calculating the parental LLR (which are not used during the assignment
steps). It is however probably worthwhile to compare assignments with low or negative
LLRs with a previous pedigree or the genomic relatedness, as described at the end of
this document.

9

If some of the LLRs are very large negative or positive numbers, please send a bug
report to jisca.huisman@gmail.com with a short description of your dataset.

2.3.2 MaybeParent

Sometimes probable or definite parent-offspring pairs are identified which could not be
assigned as such in the pedigree. This includes both cases where the pair is more likely
to be parent-offspring than unrelated (LLR Rx U > Tfilter), but where it cannot be
excluded that they are otherwise related (LLR R1 R2 < Tassign), indicated by FS (full
siblings), FA (full avuncular), XX (unclear) etc. in the column ”TopRel” (most likely
relationship). ‘2nd’ indicates that the pair are most likely to be second degree relatives,
but that it is impossible to distinguish between HS, GG and FA (which would require
at least 1 parent assigned to each individual, see [1]). For these cases, LLR R1 R2 gives
the LLR between being 2nd degree relatives versus the most likely of PO, FS, HA or
U.

If PO (parent-offspring) had the highest likelihood, they were non-assigned either
because it was not possible to tell which of the two was the parent and which was the
offspring, due to either or both individuals having an unknown birth year (coded as
AgeDif = 999), or because it was not possible to tell whether the candidate parent was
the mother or the father (Sex2 = 3). These situations can be remedied by providing
estimated birth years or guessed genders in the life history data for the individuals
involved, and re-running sequoia.

2.3.3 TotLikParents

A vector with the initial total likelihood of the data, assuming a random draw from
a random mating population at Hardy-Weinberg equilibrium, followed by the total
likelihood at the end of each iteration.

2.4 Sibship clustering & the rest

Sibship clustering, amongst those individuals which have not been assigned two geno-
typed parents, is performed when MaxSibIter> 0. Sibship clustering may take from a
few seconds to a few hours, depending on the number of individuals without a parent,
the number of sibships that is being clustered, and their degree of interconnection. Cal-
culation of the parental likelihoods and the check for non-assigned potential relatives
(during ‘Creating output ...’) may take considerable time too.

The total likelihood typically asymptotes within five to ten iterations, even for com-
plex pedigrees. When an asymptote is reached before MaxSibIter, a final iteration
with stronger dependence on the age prior is ran, (dummy)parental likelihoods are cal-
culated, and the algorithm is terminated. Whether or not the asymptote has been
(nearly) reached can be seen from TotLikSib.

10

jisca.huisman@gmail.com

2.4.1 Pedigree

The main output of the sibship clustering is returned in ‘Pedigree’, which is highly
similar to ‘PedigreePar’ (see earlier). It contains all assigned real parents, as well as the
dummy parents assigned during sibship clustering. Note that dummy individuals are
also assigned as the ‘in-between’ individual of identified grandparent — grand-offspring
pairs. Dummy individuals are appended at the bottom of this pedigree with their
assigned parents, i.e. the sibship’s assigned grandparents.

2.4.2 DummyIDs

To each cluster of half-siblings a “dummy” parent is assigned, denoted by increasing
numbers, by default with prefix ‘F’ for females and ‘M’ for males. In ‘DummyIDs’, for
each dummy individual its assigned parents are listed (as in the Pedigree), as well as
its sex, its estimated birth year (based on the birth years of its offspring and parents;
point estimate, upper and lower bound of 95% confidence interval are provided), the
number of assigned offspring, and the IDs of its assigned offspring.

2.4.3 MaybeRel

This dataframe contains for example half-siblings where it could not be determined
whether they are maternal or paternal half-siblings (currently no half-sibships of un-
known maternal/paternal type are created). ‘LLR Rx U’ gives the maximum of LLR(PO/U),
LLR(FS/U), LLR(HS/U); note that LLR(HS/U) = LLR(GG/U) = LLR(FA/U), as
these are calculated not conditional on any assigned parents (see [1] for details). ‘Relx’
denotes whether this maximum was for PO, FS, or HS.

2.4.4 TotLikRel

As ‘TotLikParents’, for sibship clustering. One can do a visual check if the asymptote
has been (nearly) reached within ‘MaxSibIter’ using

> TLL <- c(SeqOUT$TotLikParents, NA, SeqOUT$TotLikSib)

> xv <- c(paste0("p", 1:length(SeqOUT$TotLikParents)-1), " ",

+ paste0("s", 1:length(SeqOUT$TotLikSib)-1))

> plot(TLL, type="b", xaxt="n", xlab="Round")

> axis(1, at=1:length(TLL), labels=xv)

11

3 Output check

3.1 Comparison with previous pedigree

Often times, a (part) pedigree is already available to which one wants to compare the
results, for example consisting of maternal links, deduced from observations in the field.
The function PedCompare() performs such comparisons, and takes as arguments the
‘true’ pedigree and the inferred pedigree:

> compareOUT <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqOUT$Pedigree)

The first element of the output list consists of two 7x5 matrices, one for dams and
one for sires. The columns are defined as follows, where by default Pedigree 1 is the
older pedigree, and Pedigree 2 the newly reconstructed pedigree:

� Total: The total number of individuals with a parent assigned in either or both
pedigrees. When Pedigree 1 is the true pedigree (in case of simulated data), this
is the maximum number of matches.

� Match: The same parent is assigned in both pedigrees (non-missing). For dummy
parents, it is considered a match if the inferred sibship containing the most off-
spring of a non-genotyped parent, consists for more than half of its offspring.

� Mismatch: Different parents assigned in the two pedigrees. When a sibship ac-
cording to Pedigree 1 is split over two sibships in Pedigree 2, the smaller fraction
is included in the count here.

� P1only: Parent present in Pedigree 1 but not assigned in 2; includes non-assignable
parents such as non-genotyped parents with a single offspring and lacking geno-
typed grandparents.

� P2only: Parent assigned in Pedigree 2 but not present 1; if pedigree 1 is the true
pedigree, these are false positives.

The rows indicate the various categories, subdivided into:

GG Genotyped individual, assigned a genotyped parent in either pedigree

GD Genotyped individual, assigned a dummy parent, or at least 1 genotyped sibling
or a genotyped grandparent in Pedigree 1)

GT Genotyped individual, total

DG Dummy individual, assigned a genotyped parent (i.e., grandparent of the sibship
in Pedigree 2)

DD Dummy individual, assigned a dummy parent (i.e., avuncular relationship between
sibships in Pedigree 2)

12

DT Dummy total

TT Total total, includes all genotyped individuals, plus non-genotyped individuals in
Pedigree 1, plus non-replaced dummy individuals (see below) in Pedigree 2

Potential dummy individuals according to Pedigree 1 are all non-genotyped individ-
uals who have at least two genotyped offspring, or who have one genotyped offspring
and a genotyped parent (i.e. who are ‘inbetween’ a grandparent–grandoffspring pair).
Note that not all of these will be truly identifiable with Sequoia, for example when the
true grandparent is a founder, and cannot be distinguished from full avuncular.

The second list element, ‘MergedPed’, is a side-by-side comparison of the two pedi-
grees, plus three columns (id.real, dam.real, sire.real) where dummy IDs in Pedigree 2
are replaced by the most likely non-genotyped individual from Pedigree 1.

This merged pedigree is collapsed in the third element, ‘ConsensusPed’, here with
Sequoia assignments (assumed Pedigree 2) taking priority over the ‘old’ pedigree (Pedi-
gree 1), and dummy parents being replaced where known (suffix ‘.r’). The columns
‘dam.cat’ and ‘sire.cat’ indicate with a 2-letter code whether the focal individual and
the assigned parent were genotyped (G), a dummy individual in Pedigree 2 (D), a
dummy individual replaced by a best-match non-genotyped individual from Pedigree 1
(R) or ungenotyped (U).

Example In the example included in the helpfile (?sequoia), pedigree reconstruction
using the example genotype data included in the package (Simulated from the first 2
generations in Ped HSg5.txt) results in two mismatches:

> data(SimGeno_example, LH_HSg5, Ped_HSg5)

> SeqOUTX <- sequoia(GenoM = SimGeno_example, LifeHistData = LH_HSg5)

> #

> # compare

> compare <- PedCompare(Ped1 = Ped_HSg5,

+ Ped2 = SeqOUTX$Pedigree)

> compare$Counts

> # , , dam

> # Total Match Mismatch P1only P2only

> # GG 130 127 2 1 0

> # GD 54 52 2 0 0

> # GT 182 179 2 1 0

> # DG 0 0 0 0 0

> # DD 0 0 0 0 0

> # DT 0 0 0 0 0

> # TT 960 179 2 779 0

> # ...

where the entries for DR, DD and DT are 0 because none of the dummy parents
could have had a parent assigned - there are only 2 generations in this dataset.

We can investigate these mismatches further:

13

> with(compare$MergedPed,

+ compare$MergedPed[which(dam.1!=dam.2 & dam.1!=dam.r),])

> # id dam.1 sire.1 dam.2 sire.2 id.r dam.r sire.r

> # b01137 a00001 b00009 F0007 b00009 b01137 nomatch <NA>

> # a01139 a00001 b00009 F0007 b00009 a01139 nomatch <NA>

> #

> compare$MergedPed[which(compare$MergedPed$dam.2=="F0007"),]

> # --> only a01139 and b01137 are in this half-sibship

> compare$MergedPed[which(compare$MergedPed$dam.1=="a00001"),]

> # --> a01139 and b01137 are the only ones not assigned to a00001

> #

> SeqOUTX$MaybeParent

> # ID1 ID2 Sex1 Sex2 AgeDif Relx LLR_Rx_U TopRel LLR_R1_R2 OH

> # (...)

> # 10 a01063 b00013 1 2 1 PO 10.63 FS 1.37 1

> # 3 a01139 a00001 1 1 1 PO 7.32 2nd 4.79 2 <--

> # 8 b01168 b00002 2 2 1 PO 4.05 2nd 1.23 2

> # 2 b01137 a00001 2 1 1 PO 8.90 2nd 0.91 1 <--

> # 6 b01165 b00002 2 2 1 PO 4.14 2nd 0.45 2

> # 1 a01142 a00018 1 1 1 PO 9.89 2nd 0.17 2

It seems that a00001 was more likely to be a parent than unrelated to both b01137
and a01139 (‘LLR Rx U’ > 0), but due to genotyping errors (the number of opposing
homozygous loci is 1 with b01137 and 2 with a01139) and Mendelian sampling, they
were even more likely to be 2nd degree relatives (‘TopRel’).

Additionally, we see on the second line of SeqOUTX$MaybeParent that during the
parentage assignment step, a01063 and b00013 were more likely to be full siblings (FS)
than parent-offspring (which they in fact are), and would even pass the threshold Tassign
(= 1). However, a correct assignment is made in the final pedigree:

> SeqOUTX$Pedigree[SeqOUTX$Pedigree$id=="a01063",]

> # id dam sire LLRdam LLRsire LLRpair

> # 90 a01063 F0001 b00013 3.88 2.47 6.05

due to the use of age prior information (all siblings occur within the same cohort,
while b00013 and a01063 are in different cohorts) and/or clustering of a01063 with its
maternal siblings (assignment of dummy mother F0001).

Colony To compare Colony output with an existing pedigree, use:

> BestConfig <- read.table("Colony/file/file.BestConfig",

+ header=T, sep="", comment.char="")

> PedCompare(PedFile1 = "ExistingPedigree.txt",

+ Ped2 = BestConfig)

14

3.2 Estimating confidence probabilities

The provided likelihood ratio between the assigned parent being the parent versus
otherwise related to the focal individual, does not necessarily indicate how likely the
assignment is correct. Due to random Mendelian sampling and genotyping errors, true
full siblings may have a higher likelihood to be parent-offspring than full siblings, for
example.

Pedigree-wide confidence probabilities can be estimated by

� simulating genotype data according to the reconstructed (or an existing) pedigree,
imposing realistic levels of missingness and genotyping errors;

� reconstructing a pedigree from these simulated data;

� counting the number of mismatches between the ‘true’ pedigree, used as input for
the simulated data, and this reconstructed pedigree.

When repeated at least 10–20 times, the mean error count divided by the total number
of pedigree links provides an estimate of one minus the the confidence probability. Note
that this can be rather time consuming, and will give an anti-conservative estimate as
the simulations assume all SNPs are completely independent.

An example script:

> data(LH_HSg5, Ped_HSg5)

> ARER <- array(dim=c(10,7,2))

> for (x in 1:10) {

+ cat(x, "\t", format(Sys.time(), "%H:%M:%S"), "\n")

+ GM <- SimGeno(Ped = Ped_HSg5, nSnp = 100)

+ SimOUT <- sequoia(GenoM = GM, LifeHistData = LH_HSg5, quiet=TRUE)

+ CountX <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SimOUT$Pedigree)$Counts

+ ARER[x,,1] <- rowMeans(CountX[, "Match",] / CountX[, "Total",])

+ ARER[x,,2] <- rowMeans((CountX[, "Mismatch",] +

+ CountX[, "P2only",]) / CountX[, "Total",])

+ }

> dimnames(ARER) <- list(c(1:10), dimnames(CountX)[[1]], c("AR", "ER"))

> #

> # average assignment rate (AR) & error rate (ER) per category:

> round(apply(ARER, c(2:3), mean), 4)

To add confidence probability to the pedigree based on real data

> ConfProb <- 1 - round(colMeans(ARER[, , "ER"]),3)

> #

> PedC <- PedCompare(Ped1 = Ped_HSg5,

+ Ped2 = SeqOUT$Pedigree)$ConsensusPed

15

> PedC$dam.prob <- ConfProb[as.character(PedC$dam.cat)]

> PedC$sire.prob <- ConfProb[as.character(PedC$sire.cat)]

> #

> # or, when assuming that replacement of dummies by IDs of

> # non-genotyped individuals is free from error,

> PedC$dam.prob <- with(PedC,

+ ifelse(dam.cat=="GG",

+ ConfProb["GG"],

+ ifelse(dam.cat %in% c("GD", "GR"),

+ ConfProb["GD"],

+ ifelse(dam.cat %in% c("DG", "RG"),

+ ConfProb["DG"],

+ ifelse(dam.cat %in% c("DD", "DR",

+ "RD", "RR"),

+ ConfProb["DD"],

+ NA)))))

3.3 Comparison pedigree-based and genomic relatedness

In absence of a previous pedigree, or when it is not obvious whether the previous or
newly inferred pedigree is correct, one can compare the pairwise relatedness estimated
from the pedigrees to a measure of genomic relatedness, estimated directly from the
SNP data. The latter will vary around the pedigree-based relatedness even for a perfect
pedigree due to Mendelian variance, but outliers suggest pedigree errors.

Genomic relatedness can be estimated for example using GCTA, http://cnsgenomics.
com/software/gcta/estimate_grm.html, ideally using as all available markers (i.e.,
potentially many more than used for pedigree reconstruction). Pedigree relatedness can
be calculated for example using the R package pedantics. As the number of pairs p
becomes very large even for moderate numbers of individuals n (p = n × (n − 1)/2),
additional packages are required to assist with merging (data.table) and plotting
(hexbinplot). For example:

> Rel.snp <- read.table("GT.grm.gz")

> Rel.id <- read.table("GT.grm.id", stringsAsFactors=FALSE)

> Rel.snp[,1] <- as.character(factor(Rel.snp[,1], labels=Rel.id[,2]))

> Rel.snp[,2] <- as.character(factor(Rel.snp[,2], labels=Rel.id[,2]))

> names(Rel.snp) <- c("IID2", "IID1", "SNPS", "R.SNP")

> Rel.snp <- Rel.snp[Rel.snp$IID1 != Rel.snp$IID2,]

> #

> library(pedantics)

> PedStats <- pedigreeStats(SeqOUT$Pedigree[,1:3], graphicalReport=FALSE,

+ includeA=TRUE)

> Rel.ped <- as.data.frame.table(PedStats$Amatrix)

> names(Rel.ped) <- c("IID1", "IID2", "R.seq")

> #

> library(data.table)

> Rel.snp <- data.table(Rel.snp, key=c("IID1", "IID2"))

16

http://cnsgenomics.com/software/gcta/estimate_grm.html
http://cnsgenomics.com/software/gcta/estimate_grm.html

> Rel.ped <- data.table(Rel.ped, key=c("IID1", "IID2"))

> Rel.gt <- merge(Rel.snp[,c(1,2,4)], Rel.ped, all.x=TRUE)

> Rel.gt <- as.data.frame(Rel.gt)

> rm(PedStats, Rel.snp, Rel.ped)

> #

> round(cor(Rel.gt[, 3:4], use="pairwise.complete"),4)

> #

> library(hexbin)

> ColF <- function(n) rev(rainbow(n, start=0, end=4/6,

+ s=seq(.9,.6,length.out=n),v=.8))

> hexbinplot(Rel.gt$R.SNP~Rel.gt$R.ped, xbins=100, aspect=1, maxcnt=10^6.5,

+ trans=log10,inv=function(x) 10^x, colorcut=seq(0,1,length=14),

+ xlab="Pedigree relatedness", ylab="Genomic relatedness",

+ xlim=c(-.1,.9), ylim=c(-.1, .9), colramp=ColF, colorkey = TRUE)

References

[1] J Huisman. Pedigree reconstruction using snp data: parentage assignment, sibship clustering, and
beyond. Molecular Ecology Resources, under review.

[2] T C Marshall, J B K E Slate, L E B Kruuk, and J M Pemberton. Statistical confidence for
likelihood-based paternity inference in natural populations. Molecular ecology, 7(5):639–655, 1998.

[3] S Purcell, B Neale, K Todd-Brown, L Thomas, M A R Ferreira, D Bender, J Maller, P Sklar, PIW
De Bakker, MJ Daly, et al. PLINK: a tool set for whole-genome association and population-based
linkage analyses. The American Journal of Human Genetics, 81(3):559–575, 2007.

[4] E A Thompson and T R Meagher. Parental and sib likelihoods in genealogy reconstruction.
Biometrics, pages 585–600, 1987.

17

	Input
	Life history data
	Genotype data

	Running Sequoia
	Input parameters
	Check for duplicates
	Age difference based prior
	Parentage assignment
	Sibship clustering & the rest

	Output check
	Comparison with previous pedigree
	Estimating confidence probabilities
	Comparison pedigree-based and genomic relatedness

