es()
is a part of smooth package. It allows constructing Exponential Smoothing (also known as ETS), selecting the most appropriate one among 30 possible ones, including exogenous variables and many more.
In this vignette we will use data from Mcomp
package, so it is advised to install it. We also use some of the functions of the greybox
package.
Let’s load the necessary packages:
You may note that Mcomp
depends on forecast
package and if you load both forecast
and smooth
, then you will have a message that forecast()
function is masked from the environment. There is nothing to be worried about - smooth
uses this function for consistency purposes and has exactly the same original forecast()
as in the forecast
package. The inclusion of this function in smooth
was done only in order not to include forecast
in dependencies of the package.
The simplest call of this function is:
## Forming the pool of models based on... ANN, ANA, AAN, Estimation progress: 100%... Done!
## Time elapsed: 0.74 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1452
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 0.1653
## Error standard deviation: 0.4129
## Sample size: 97
## Number of estimated parameters: 3
## Number of degrees of freedom: 94
## Information criteria:
## AIC AICc BIC BICc
## 1645.978 1646.236 1653.702 1654.292
##
## Forecast errors:
## MPE: 26.3%; sCE: -1919.1%; Bias: 86.9%; MAPE: 39.8%
## MASE: 2.944; sMAE: 120.1%; sMSE: 242.7%; rMAE: 1.258; rRMSE: 1.367
In this case function uses branch and bound algorithm to form a pool of models to check and after that constructs a model with the lowest information criterion. As we can see, it also produces an output with brief information about the model, which contains:
holdout=TRUE
).The function has also produced a graph with actual values, fitted values and point forecasts.
If we need prediction interval, then we run:
## Forming the pool of models based on... ANN, ANA, AAN, Estimation progress: 100%... Done!
## Time elapsed: 0.47 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1452
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 0.1653
## Error standard deviation: 0.4129
## Sample size: 97
## Number of estimated parameters: 3
## Number of degrees of freedom: 94
## Information criteria:
## AIC AICc BIC BICc
## 1645.978 1646.236 1653.702 1654.292
##
## 95% parametric prediction interval was constructed
## 72% of values are in the prediction interval
## Forecast errors:
## MPE: 26.3%; sCE: -1919.1%; Bias: 86.9%; MAPE: 39.8%
## MASE: 2.944; sMAE: 120.1%; sMSE: 242.7%; rMAE: 1.258; rRMSE: 1.367
Due to multiplicative nature of error term in the model, the interval are asymmetric. This is the expected behaviour. The other thing to note is that the output now also provides the theoretical width of prediction interval and its actual coverage.
If we save the model (and let’s say we want it to work silently):
we can then reuse it for different purposes:
## Time elapsed: 0.05 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1452
## Initial values were provided by user.
##
## Loss function type: MSE; Loss function value: 0.1838
## Error standard deviation: 0.4306
## Sample size: 115
## Number of estimated parameters: 1
## Number of provided parameters: 2
## Number of degrees of freedom: 114
## Information criteria:
## AIC AICc BIC BICc
## 1994.861 1994.897 1997.606 1997.690
##
## 93% nonparametric prediction interval was constructed
We can also extract the type of model in order to reuse it later:
## [1] "MNN"
This handy function, by the way, also works with ets() from forecast package.
If we need actual values from the model, we can use actuals()
method from greybox
package:
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 1983 2158.1 1086.4 1154.7 1125.6 920.0 2188.6 829.2 1353.1 947.2 1816.8
## 1984 1783.3 1713.1 3479.7 2429.4 3074.3 3427.4 2783.7 1968.7 2045.6 1471.3
## 1985 1821.0 2409.8 3485.8 3289.2 3048.3 2914.1 2173.9 3018.4 2200.1 6844.3
## 1986 3238.9 3252.2 3278.8 1766.8 3572.8 3467.6 7464.7 2748.4 5126.7 2870.8
## 1987 3220.7 3586.0 3249.5 3222.5 2488.5 3332.4 2036.1 1968.2 2967.2 3151.6
## 1988 3894.1 4625.5 3291.7 3065.6 2316.5 2453.4 4582.8 2291.2 3555.5 1785.0
## 1989 2102.9 2307.7 6242.1 6170.5 1863.5 6318.9 3992.8 3435.1 1585.8 2106.8
## 1990 6168.0 7247.4 3579.7 6365.2 4658.9 6911.8 2143.7 5973.9 4017.2 4473.0
## 1991 8749.1
## Nov Dec
## 1983 1624.5 868.5
## 1984 2763.7 2328.4
## 1985 4160.4 1548.8
## 1986 2170.2 4326.8
## 1987 1610.5 3985.0
## 1988 2020.0 2026.8
## 1989 1892.1 4310.6
## 1990 3591.9 4676.5
## 1991
We can then use persistence or initials only from the model to construct the other one:
## Time elapsed: 0.02 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1509
## Initial values were provided by user.
##
## Loss function type: MSE; Loss function value: 0.1838
## Error standard deviation: 0.4324
## Sample size: 115
## Number of estimated parameters: 2
## Number of provided parameters: 1
## Number of degrees of freedom: 113
## Information criteria:
## AIC AICc BIC BICc
## 1996.845 1996.952 2002.334 2002.589
## Time elapsed: 0.02 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1452
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 0.1838
## Error standard deviation: 0.4325
## Sample size: 115
## Number of estimated parameters: 2
## Number of provided parameters: 1
## Number of degrees of freedom: 113
## Information criteria:
## AIC AICc BIC BICc
## 1996.861 1996.968 2002.351 2002.605
or provide some arbitrary values:
## Time elapsed: 0.02 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1498
## Initial values were provided by user.
##
## Loss function type: MSE; Loss function value: 0.184
## Error standard deviation: 0.4328
## Sample size: 115
## Number of estimated parameters: 2
## Number of provided parameters: 1
## Number of degrees of freedom: 113
## Information criteria:
## AIC AICc BIC BICc
## 1997.028 1997.136 2002.518 2002.773
Using some other parameters may lead to completely different model and forecasts:
## Time elapsed: 0.51 seconds
## Model estimated: ETS(ANN)
## Persistence vector g:
## alpha
## 0.0798
## Initial values were optimised.
##
## Loss function type: aTMSE; Loss function value: 39565651.9
## Error standard deviation: 1466.912
## Sample size: 97
## Number of estimated parameters: 3
## Number of degrees of freedom: 94
## Information criteria:
## AIC AICc BIC BICc
## 1974.076 1974.736 1985.865 1986.455
##
## 95% parametric prediction interval was constructed
## 44% of values are in the prediction interval
## Forecast errors:
## MPE: 33.4%; sCE: -2196.8%; Bias: 90.4%; MAPE: 43.4%
## MASE: 3.235; sMAE: 132%; sMSE: 278%; rMAE: 1.382; rRMSE: 1.463
You can play around with all the available parameters to see what’s their effect on final model.
In order to combine forecasts we need to use “C” letter:
## Estimation progress: 10%20%30%40%50%60%70%80%90%100%... Done!
## Time elapsed: 0.85 seconds
## Model estimated: ETS(CCN)
## Initial values were optimised.
##
## Loss function type: MSE
## Error standard deviation: 1404.465
## Sample size: 97
## Information criteria:
## (combined values)
## AIC AICc BIC BICc
## 1646.545 1646.941 1654.794 1655.304
##
## Forecast errors:
## MPE: 27.4%; sCE: -1963.2%; Bias: 88.2%; MAPE: 40.4%
## MASE: 2.992; sMAE: 122.1%; sMSE: 248.5%; rMAE: 1.278; rRMSE: 1.383
Model selection from a specified pool and forecasts combination are called using respectively:
## Estimation progress: 17%33%50%67%83%100%... Done!
## Time elapsed: 0.9 seconds
## Model estimated: ETS(ANN)
## Persistence vector g:
## alpha
## 0.1582
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 2007704.5316
## Error standard deviation: 1439.368
## Sample size: 97
## Number of estimated parameters: 3
## Number of degrees of freedom: 94
## Information criteria:
## AIC AICc BIC BICc
## 1688.987 1689.245 1696.711 1697.301
##
## Forecast errors:
## MPE: 25.3%; sCE: -1880.4%; Bias: 86%; MAPE: 39.4%
## MASE: 2.909; sMAE: 118.7%; sMSE: 238.1%; rMAE: 1.243; rRMSE: 1.354
## Estimation progress: 17%33%50%67%83%100%... Done!
## Time elapsed: 0.91 seconds
## Model estimated: ETS(CCC)
## Initial values were optimised.
##
## Loss function type: MSE
## Error standard deviation: 1386.675
## Sample size: 97
## Information criteria:
## (combined values)
## AIC AICc BIC BICc
## 1689.864 1690.147 1696.984 1697.488
##
## Forecast errors:
## MPE: 17.1%; sCE: -1568.3%; Bias: 77.7%; MAPE: 37.3%
## MASE: 2.658; sMAE: 108.4%; sMSE: 206.7%; rMAE: 1.135; rRMSE: 1.261
Now let’s introduce some artificial exogenous variables:
and fit a model with all the exogenous first:
## Time elapsed: 0.77 seconds
## Model estimated: ETSX(MNN)
## Persistence vector g:
## alpha
## 0.1513
## Initial values were optimised.
## Xreg coefficients were estimated in a normal style
##
## Loss function type: MSE; Loss function value: 0.1627
## Error standard deviation: 0.4142
## Sample size: 97
## Number of estimated parameters: 5
## Number of degrees of freedom: 92
## Information criteria:
## AIC AICc BIC BICc
## 1648.466 1649.126 1661.340 1662.848
##
## Forecast errors:
## MPE: 24.6%; sCE: -1830.2%; Bias: 87.7%; MAPE: 37.5%
## MASE: 2.806; sMAE: 114.5%; sMSE: 229.3%; rMAE: 1.199; rRMSE: 1.329
or construct a model with selected exogenous (based on IC):
## Time elapsed: 0.86 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha
## 0.1452
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 0.1653
## Error standard deviation: 0.4129
## Sample size: 97
## Number of estimated parameters: 3
## Number of degrees of freedom: 94
## Information criteria:
## AIC AICc BIC BICc
## 1645.978 1646.236 1653.702 1654.292
##
## Forecast errors:
## MPE: 26.3%; sCE: -1919.1%; Bias: 86.9%; MAPE: 39.8%
## MASE: 2.944; sMAE: 120.1%; sMSE: 242.7%; rMAE: 1.258; rRMSE: 1.367
or the one with the updated xreg:
If we want to check if lagged x can be used for forecasting purposes, we can use xregExpander()
function from greybox
package:
## Time elapsed: 2.37 seconds
## Model estimated: ETSX(MNN)
## Persistence vector g:
## alpha
## 0.1631
## Initial values were optimised.
## Xreg coefficients were estimated in a normal style
##
## Loss function type: MSE; Loss function value: 0.1503
## Error standard deviation: 0.3981
## Sample size: 97
## Number of estimated parameters: 5
## Number of degrees of freedom: 92
## Information criteria:
## AIC AICc BIC BICc
## 1640.800 1641.459 1653.674 1655.182
##
## Forecast errors:
## MPE: 32.6%; sCE: -2179.5%; Bias: 88.6%; MAPE: 47.6%
## MASE: 3.34; sMAE: 136.2%; sMSE: 278.2%; rMAE: 1.427; rRMSE: 1.463
If we are confused about the type of estimated model, the function formula()
will help us:
## [1] "y[t] = l[t-1] * exp(a1[t-1] * x1[t] + a2[t-1] * x2[t]) * e[t]"
A feature available since 2.1.0 is fitting ets()
model and then using its parameters in es()
:
The point forecasts in the majority of cases should the same, but the prediction interval may be different (especially if error term is multiplicative):
## Point Forecast Lo 95 Hi 95
## Aug 1992 8523.456 853.30277 16193.61
## Sep 1992 8563.040 719.69262 16406.39
## Oct 1992 8602.625 587.42532 16617.82
## Nov 1992 8642.209 456.39433 16828.02
## Dec 1992 8681.794 326.50223 17037.09
## Jan 1993 8721.379 197.65965 17245.10
## Feb 1993 8760.963 69.78442 17452.14
## Mar 1993 8800.548 -57.19924 17658.29
## Apr 1993 8840.132 -183.36139 17863.63
## May 1993 8879.717 -308.76695 18068.20
## Jun 1993 8919.302 -433.47621 18272.08
## Jul 1993 8958.886 -557.54529 18475.32
## Aug 1993 8998.471 -681.02653 18677.97
## Sep 1993 9038.055 -803.96882 18880.08
## Oct 1993 9077.640 -926.41794 19081.70
## Nov 1993 9117.225 -1048.41679 19282.87
## Dec 1993 9156.809 -1170.00570 19483.62
## Jan 1994 9196.394 -1291.22258 19684.01
## Point forecast Lower bound (2.5%) Upper bound (97.5%)
## Aug 1992 9356.547 3656.622 19758.06
## Sep 1992 9555.018 3676.112 20513.33
## Oct 1992 9754.266 3683.531 21289.15
## Nov 1992 9997.258 3716.873 21918.83
## Dec 1992 10182.653 3745.584 22725.81
## Jan 1993 10424.844 3744.541 23538.70
## Feb 1993 10636.134 3771.820 24291.03
## Mar 1993 10853.528 3781.218 24977.16
## Apr 1993 11106.987 3800.749 25942.25
## May 1993 11314.864 3856.315 26721.16
## Jun 1993 11549.665 3845.971 27344.02
## Jul 1993 11796.798 3902.921 28256.20
## Aug 1993 12031.551 3930.341 29169.79
## Sep 1993 12303.828 3958.669 30086.22
## Oct 1993 12533.552 3949.355 30789.65
## Nov 1993 12797.929 4002.338 31753.99
## Dec 1993 13048.083 4001.769 32769.07
## Jan 1994 13294.543 4030.985 33437.34
Finally, if you work with M or M3 data, and need to test a function on a specific time series, you can use the following simplified call:
## Forming the pool of models based on... ANN, ANA, AAN, Estimation progress: 40%50%60%70%80%90%100%... Done!
## Time elapsed: 2.99 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha beta
## 0.1165 0.0000
## Initial values were optimised.
##
## Loss function type: MSE; Loss function value: 0.1811
## Error standard deviation: 0.4331
## Sample size: 115
## Number of estimated parameters: 4
## Number of provided parameters: 1
## Number of degrees of freedom: 111
## Information criteria:
## AIC AICc BIC BICc
## 1999.144 1999.508 2010.124 2010.986
##
## 95% parametric prediction interval was constructed
## 50% of values are in the prediction interval
## Forecast errors:
## MPE: -188.1%; sCE: 2505.3%; Bias: -99.2%; MAPE: 188.2%
## MASE: 3.398; sMAE: 139.3%; sMSE: 243.9%; rMAE: 2.827; rRMSE: 2.306
This command has taken the data, split it into in-sample and holdout and produced the forecast of appropriate length to the holdout.