Spatio-temporal objects to proxy a
PostgreSQL table

ifgi
Institute for Geoinformatics
4

University of Miinster n rth

exploring horizons

Edzer Pebesma

February 17, 2013

Abstract
This vignette describes and implements a class that proxies data sets
in a PostgreSQL database with classes in the spacetime package. This
might allow access to data sets too large to fit into R memory.

Contents

1 Introduction 1
2 Setting up a database 2
3 A proxy class 3
4 Selection based on time period and/or region 3
5 Closing the database connection 4
6 Limitations and alternatives 4

1 Introduction

Massive data are difficult to analyze with R, because R objects reside in memory.
Spatio-temporal data easily become massive, either because the spatial domain
contains a lot of information (satellite imagery), or many time steps are available
(high resolution sensor data), or both. This vignette shows how data residing
in a data base can be read into R using spatial or temporal selection.

In case the commands are not evaluated because CRAN packages cannot
access an external data base, a document with evaluated commands is found
here.

This vignette was run using the following libraries:

> library(RPostgreSQL)

> library(spacetime)

mailto:edzer.pebesma@uni-muenster.de
http://ifgi.uni-muenster.de/~epebe_01/stpg.pdf

2 Setting up a database

We will first set the characteristics of the database!

> dbname = "postgis"
> user = "edzer"
> password = ""

Next, we will create a driver and connect to the database:

> drv <- dbDriver ("PostgreSQL")
> con <- dbConnect (drv, dbname=dbname, user=user, password=password)

It should be noted that these first two commands are specific to PostgreSQL;
from here on, commands are generic and should work for any database connector
that uses the interface of package DBI.

We now remove a set of tables (if present) so they can be created later on:

> dbRemoveTable(con, "rural_attr")
> dbRemoveTable(con, "rural_space")
> dbRemoveTable(con, "rural_time")
> dbRemoveTable(con, "space_select")

Now we will create the table with spatial features (observation locations).
For this, we need the rgdal function writeOGR, which by default creates an
index on the geometry:

data(air)
rural = as(rural, "STSDF")
p = rural@sp
sp = SpatialPointsDataFrame (p, data.frame(geom_id=1:1length(p)))
library(rgdal)
OGRstring = paste("PG:dbname=", dbname, " user=", user,
" password=", password, sep = "")
writeOGR(sp, OGRstring, "rural_space", driver = "PostgreSQL")

vV + V.V VVVYyV

Second, we will write the table with times to the database, and create an
index to time:

> df = data.frame(time = index(rural@time), time_id = 1:nrow(rural@time))
> dbWriteTable(con, "rural_time", df)

> idx = "create index time_idx on rural_time (time);"

> dbSendQuery(con, idx)

Finally, we will write the full attribute data table to PosgreSQL, along with
its indexes to the spatial and temporal tables:

idx = rural@index

names (rural@data) = "pm10" # lower case

df = cbind(data.frame(geom_id = idx[,1], time_id = idx[,2]), rural@data)
dbWriteTable(con, "rural_attr", df)

vV VvV Vv Vv

11t is assumed that the database is spatially enabled, i.e. it understands how simple features
are stored. The standard for this from the open geospatial consortium is described here.

http://www.opengeospatial.org/standards/sfs

3 A proxy class

The following class has as components a spatial and temporal data structure,
but no spatio-temporal attributes (they are assumed to be the most memory-
hungry). The other slots refer to the according tables in the PostGIS database,
the name(s) of the attributes in the attribute table, and the database connection.

> setClass("ST_PG", representation("ST",
+ space_table = '"character",

+ time_table = "character",

+ attr_table = '"character",

+ attr = "character",

+ con = "PostgreS@LConnection"))

Next, we will create an instance of the new class:

> rural_proxy = new("ST_PG",

+ ST(rural@sp, rural@time),

+ space_table = '"rural_space",
+ time_table = "rural_time",
+ attr_table = "rural_attr",
+ attr = "pm10",

+ con = con)

4 Selection based on time period and/or region

The following two helper functions create a character string with an SQL com-
mand that for a temporal or spatial selection:

.8q1Time = function(x, j) {
stopifnot (is.character(j))
t = .parseIS08601(j)
t1 = paste("'", t$first.time, "'", sep = "")
t2 = paste("'", t$last.time, "'", sep = "")

what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep =", ")
paste ("SELECT", what, "FROM", x@attr_table, "AS a JOIN", x@time_table,
"AS b USING (time_id) WHERE b.time >= ", t1, "AND b.time <=", t2,";")
}
.SqlSpace = function(x, i) {
stopifnot(is(i, "Spatial'))
writeOGR(i, OGRstring, "space_select", driver = "PostgreSQL")
what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")
paste("SELECT", what, "FROM", x@attr_table,
"AS a JOIN (SELECT p.wkb_geometry, p.geom_id FROM",
x@space_table, " AS p, space_select AS q",
"WHERE ST_Intersects(p.wkb_geometry, q.wkb_geometry))",
"AS b USING (geom_id);")

+ + + 4+ +++ 4+ +V+HE++F+F+++V

}

The following selection method selects a time period only, as defined by the
methods in package xts. A time period is defined as a valid ISO8601 string,
e.g. 2005-05 is the full month of May for 2005.

setMethod("[", "ST_PG", function(x, i, j, ... , drop = TRUE) {
stopifnot (missing (i) != missing(j)) # either of them present
if (missing(j))

sql = .SqlSpace(x,i)

>

+

+

+

+ else
+ sql = .SqlTime(x,j)

+ print(sql)

+ df = dbGetQuery(x@con, sql)

+ STSDF (x@sp, x@time, df[x@attr], as.matrix(df[c("geom_id", "time_id")]))

+ })
[1] n [ll

pm10_20050101 = rural_proxyl[, "2005-01-01"]
summary (pm10_20050101)

summary (rurall, "2005-01-01"])

pmlO_NRW = rural_proxy[DE_NUTS1[10,],]
summary (pm10_NRW)

summary (rural [DE_NUTS1[10,]7,])

vV V. V.V VYV

Clearly, the temporal and spatial components are not subsetted, so do not reflect
the actual selection made; the attribute data however do; the following selection
step “cleans” the unused features/times:

> dim(pm10_NRW)
> pm10_NRW = pm10_NRW[T,]
> dim(pm10_NRW)

Comparing sizes, we see that the selected object is smaller:

> object.size(rural)
> object.size(pm10_20050101)
> object.size (pm10_NRW)

5 Closing the database connection

The following commands close the database connection and release the driver
resources:

> dbDisconnect (con)
> dbUnloadDriver (drv)

6 Limitations and alternatives

The example code in this vignette is meant as an example and is not meant
as a full-fledged database access mechanism for spatio-temporal data bases. In
particular, the selection here can do only one of spatial locations (entered as
features) or time periods. If database access is only based on time, a spatially
enabled database (such as PostGIS) would not be needed.

For massive databases, data would typically not be loaded into the database
from R first, but from somewhere else.

An alternative to access from R large, possibly massive spatio-temporal data
bases for the case where the data base is accessible through a sensor observation
service (SOS) is provided by the R package sosdR, which is also on CRAN.

http://cran.r-project.org/web/packages/sos4R/index.html

	Introduction
	Setting up a database
	A proxy class
	Selection based on time period and/or region
	Closing the database connection
	Limitations and alternatives

