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1 Introduction

This document illustrates the use of the texmex package for performing extreme
value analysis of some environmental data in R, [4]. This package vignette fo-
cusses on univariate extreme value modelling of threshold excesses using the
generalized Pareto distribution (GPD), and of data arising as maxima, us-
ing the generalized extreme value (GEV) distribuion. The separate vignette
texmexMultivariate examines multivariate extreme value modelling using a
conditional threshold based approach. For extreme value modelling of tem-
porally dependent Peaks over Threshold data by using declustering, see the
package vignette declustering.

To cite this vignette, refer to Vignette name: texmex1d and use the package
citation:

##

## To cite package 'texmex' in publications use:

##

## Harry Southworth, Janet E. Heffernan and Paul D. Metcalfe

## (2017). texmex: Statistical modelling of extreme values. R

## package version 2.4.

##

## A BibTeX entry for LaTeX users is

##

## @Manual{,

## title = {texmex: Statistical modelling of extreme values},

## author = {Harry Southworth and Janet E. Heffernan and Paul D. Metcalfe},

## year = {2017},

## note = {R package version 2.4},

## }

Extreme value statistical models are unusual among statistical models in
that they are often required for extrapolation beyond levels observed in the
data. As statisticians, we are told that extrapolation from statistical models
is perilous: our models can only be trusted in regions where we have sufficient
data to calibrate and check goodness of model fit. Extreme value modelling
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has responded to a demand for extrapolation beyond this safe region. Since
we can no longer rely on data as a check on our models’ suitability, extreme
value statisticians turn to mathematical arguments to bolster their confidence
in their extrapolation. These arguments provide a justification for the use of a
particular type of model to describe tail behaviour of random variables.

This is not a tutorial in Extreme Value Theory, for which we refer the reader
to [1], which describes a range of methods for modelling the statistical properties
of sample maxima, threshold excesses, extremes of dependent series and other
aspects of tail behaviour.

1.1 Preliminaries

With texmex installed, use the library command to make the package available
to the current session, set the colours used for graphics, and set the random seed
so that results are reproducible on a given machine:

library(texmex)

library(gridExtra)

palette(c("black","purple","cyan","orange"))

set.seed(20130618)

The gridExtra package is used for laying out plots produced by ggplot2.

1.2 Data

The datasets used in this example analysis are contained in the texmex package.
We give a detailed exposition of the fitting of the GPD without covariates to a
daily rainfall dataset, rain, which appears in Coles (2001), [1]. We show how
to extend the modelling framework to include covariates using the winter air
pollution data from Heffernan and Tawn (2004), [3]. The modelling approach
for fitting GEV models that we take within texmex is very similar to that for
fitting the GPD, so we conclude with a brief demonstration of this by using the
annual maxima sea-level dataset, portpirie, again from Coles [1]. More details
of these datasets are given in their help files.

1.2.1 Rainfall data

head(rain)

## [1] 0.0 2.3 1.3 6.9 4.6 0.0

summary(rain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.000 0.000 0.500 3.476 4.300 86.600

length(rain)

## [1] 17531
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To plot the data (not shown here):

d1 <- ggplot(data=data.frame(rain=rain,index=1:length(rain)),

aes(index,rain)) +

geom_point(alpha=0.5,col=4)

d1

1.2.2 Winter air pollution data

head(winter)

## O3 NO2 NO SO2 PM10

## 1 27 50 112 13 34

## 2 27 51 126 13 29

## 3 15 43 90 21 33

## 4 9 71 470 44 101

## 5 20 51 167 48 30

## 6 8 50 211 16 44

summary(winter,digits=3)

## O3 NO2 NO SO2

## Min. : 1.0 Min. : 19.0 Min. : 10 Min. : 1

## 1st Qu.:10.0 1st Qu.: 36.8 1st Qu.: 64 1st Qu.: 8

## Median :22.0 Median : 43.0 Median :112 Median : 15

## Mean :20.1 Mean : 44.2 Mean :135 Mean : 21

## 3rd Qu.:29.0 3rd Qu.: 51.0 3rd Qu.:166 3rd Qu.: 26

## Max. :44.0 Max. :104.0 Max. :568 Max. :200

## PM10

## Min. : 7.0

## 1st Qu.: 29.0

## Median : 40.0

## Mean : 48.4

## 3rd Qu.: 60.0

## Max. :177.0

dim(winter)

## [1] 532 5

We focus on the two variables Nitrogen Dioxide, NO2 and ozone O3 in the
examples of covariate modelling that follow. A scatter plot of these two variables
suggests a negative association:
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d2 <- ggplot(winter,aes(O3,NO2)) + geom_point(alpha=0.5,col=4)

d2

1.2.3 Portpirie data

head(portpirie)

## Year SeaLevel

## 1 1923 4.03

## 2 1924 3.83

## 3 1925 3.65

## 4 1926 3.88

## 5 1927 4.01

## 6 1928 4.08

summary(portpirie)
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## Year SeaLevel

## Min. :1923 Min. :3.570

## 1st Qu.:1939 1st Qu.:3.830

## Median :1955 Median :3.960

## Mean :1955 Mean :3.981

## 3rd Qu.:1971 3rd Qu.:4.110

## Max. :1987 Max. :4.690

dim(portpirie)

## [1] 65 2

d3 <- ggplot(portpirie,aes(Year,SeaLevel)) + geom_point(col=4)

d3
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2 Generalized Pareto distribution models

We now proceed to fit, evaluate, choose between, and ultimately make predic-
tions from generalized Pareto distribution (GPD) models.

2.1 Extreme value modelling and asymptotic motivation

for the GPD

In this section, we show how to fit the generalised Pareto Distribution, GPD(σ, ξ) [2]
to data points in excess of suitably chosen thresholds. The GPD has distribution
function

F>u(x) = 1−

{

1 + ξ

(

x− u

σ

)}

−1/ξ

for x > u, (1)

where u is the threshold for fitting and σ > 0 and ξ ∈ IR are the scale and shape
parameters respectively. This is the conditional distributon of observations given
that the observations exceed the fitting threshold u. The range of possible values
taken by realisations from the GPD depends on the parameter values, with the
distribution having a finite upper end point (short tailed) if the shape parameter
is negative (u < x ≤ u−σ/ξ if ξ < 0) and an infinite tail otherwise (u < x < ∞
if ξ ≥ 0). When ξ = 0, the GPD corresponds exactly to the Exponential
distribution.

Extreme value theory tells us that under appropriate normalisation of the
threshold excesses, as the threshold u tends to the distributional upper endpoint,
the limiting distribution of the excesses must fall in the generalised Pareto family
of distributions (given certain conditions concerning non-degeneracy of the limit
distribution and smoothness of the distribution of the original variable). So
whatever the original distribution of the measurements, provided we choose an
appropriately high threshold, the distribution of values exceeding that threshold
should be well approximated by a GPD. Diagnostic tools to aid the choice of
suitable threshold are standard, and are described shortly – see also [1].

2.2 Parameterization

The usual parameterization of the GPD (as in Equation (1)) is in terms of its
scale paramter σ and shape parameter ξ. There are, however, good reasons for
reparameterizing in terms of φ = log σ:

• Experience has demonstrated that the numerical algorithms used for op-
timizing the log-likelihood tend to converge more reliably when working
with φ;

• When including covariates in the model we are faced with the constraint
that σ > 0 and working with a linear predictor specified in terms of
φ = log σ guarantees this constraint;
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• When placing prior distributions on parameters, it is convenient to work
with Gaussian distributions and φ is more likely to be close to Gaussian
than is σ.

As such, some of the functions in texmex work with φ, not σ. In the case when
inference is required for σ rather than φ, the point estimates can simply be
exponentiated if maximum likelihood estimation is used. If a prior distribution is
used, the point estimates are not invariant to transformation, so any transformed
values should only be considered to be approximate.

2.3 Threshold selection

GPD modelling proceeds by selecting a threshold above which the data appear
to be well modelled. Standard tools for threshold selection that appear in the
literature (see for example [1]) include the mean residual life (MRL) plot, and
plots of parameters estimated using a range of thresholds, threshold stability

plots.
For a suitably chosen threshold, the mean residual life plot should be linear

and the parameter estimates in threshold stability plots constant above the
chosen threshold (both of these requirements are assessed by taking account of
sampling variability). The sign of the gradient in the linear part of the MRL
plot corresponds to the sign of the shape parameter and hence indicates the
shape of the tail – negative slope shows a short tailed distribution, a horizontal
line (zero gradient) shows an exponential type tail and a positive slope suggests
a heavy tailed distribution.

We illustrate the use of these diagnostics now for the rain data:

grfRain <- gpdRangeFit(rain,umax=35)

mrlRain <- mrl(rain)

g1 <- ggplot(grfRain)

g2 <- ggplot(mrlRain)

grid.arrange(g1[[1]] + ggtitle("Stability plot, scale parameter"),

g1[[2]] + ggtitle("Stability plot, shape parameter"),

g2 + ggtitle("MRL plot"),ncol=2)
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The threshold stability plots (top) show both (log-)scale and shape param-
eter estimates to be stable for thresholds of around 20 and above.

The Mean Residual Life plot (bottom) has a linear form from values of
around ten, the gradient being positive (up to a threshold of around 60 above
which there are only a small handful of points). This indicates a heavy tail and
positive shape parameter.

Note that this form of MRL plot is typical, with the very highest thresholds
giving very erratic estimates with apparently narrow confidence bands. This
commonly observed feature is due to the estimates for very high thresholds
being based on a very small number of points - the very largest points in the
data set. These are by construction close to the sample maximum and therefore
MRL plots often have a sudden negative slope for very high values of threshold,
which can be spurious as in this case.

For our example, a threshold around 20 therefore appears to be sensible.
However, we will need to do some additional diagnostics to check this. We
proceed by selecting the 97th percentile as being the candidate threshold.
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quantile(rain,0.97)

## 97%

## 20.6

The theory underpinning the GPD tells us that (if the underlying distribu-
tion satisfies our conditions) there exists a threshold above which the GPD fits
the data, but the theory does not specify that the threshold necessarily must
be high. Indeed, if the data are realisations from an Exponential distribution
– which is a member of the GPD class, with shape parameter ξ = 0 – then
a threshold equal to the minimum data point would be appropriate. In many
cases of course, the threshold will be towards the top end of the observed data
range, the motivation for the GPD as a tail model being asymptotic as the
threshold goes to infinity. If sample sizes are too small, it may be the case that
a suitable threshold cannot be chosen from within the range of the data with
any degree of confidence.

2.4 GPD fitting in texmex

The generalised Pareto model for threshold excesses can be fit by using the
texmex function evm, Extreme Value Model, which has a default family=gpd

argument. We must specify the threshold to be used for fitting:
For the rain data:

rain.fit <- evm(rain,th=20)

rain.fit

## Call: evm(y = rain, th = 20)

## Family: GPD

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: 20

## Rate of excess: 0.03251

##

## Log. lik AIC DIC

## -1740.834 3485.667 NA

##

##

## Coefficients:

## Value SE

## phi: 1.92214 0.06348

## xi: 0.13224 0.04802
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The estimated shape parameter shows us that with this threshold, the fitted
GPD has a heavy tail, as ξ̂ > 0. This is in line with our expectations following
inspection of the MRL plot.

We examine diagnostics plots to see whether these support our initial choice
of threshold:

ggplot(rain.fit)

The shaded regions in the P-P and Q-Q plots indicate pointwise 95% tol-
erance intervals, based on 1000 simulated datasets. The shaded region in the
return level plot shows 95% pointwise confidence intervals, based on a normal
approximation.

The fit shown in these plots is good, with data and model agreeing well over
the range of threshold exceedances. We can see how a lower threshold (perhaps
that suggested by the MRL plot but not the threshold stability plot) gives an
estimated slightly less heavy tail and a poorer fit:
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ggplot(evm(rain,th=10))

2.5 Maximum penalized likelihood estimation

With small sample sizes, the GPD log-likelihood function often becomes flat
and the optimiser can fail to converge. One way to overcome this is to penalize
the likelihood by some function of the parameters. Experience suggests that the
main problems may be overcome by putting fairly modest penalties on ξ.

Thus, rather than maximize the log-likelihood l(φ, ξ|X) we maximize

l(φ, ξ)− λξ2 (2)

for some λ.
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2.5.1 Choice of λ

If we exponentiate (2), the result can be written as

L(φ, ξ|X)e−ξ2/2θ2

(3)

in which θ =
√

1

2λ . The rightmost term in (3) is proportional to a Gaussian

distribution centred at 0. Thus, maximum penalized likelihood estimation has
a Bayesian interpretation and corresponds to maximum a posteriori estimation.

For the GPD, ξ = −1 corresponds to the distribution being uniform, ξ = 0
corresponds to it being exponential, and ξ = 1 corresponds to it being so heavy-
tailed that its expectation is infinite. For many applications, values of ξ = −1
and ξ = 1 may be implausible, and we would expect values of ξ to be fairly
close to 0. This implies a prior distribution that is Gaussian, centred at zero,
with standard deviation θ = 1

2
.

Since convergence issues are generally associated with ξ, we can choose a
diffuse prior for φ, say φ ∼ N(0, 104).

In general, we attempt to use MLE or penalized MLE with diffuse priors for
both φ and ξ. Prior distribution ξ ∼ N(0, 1

4
) independently of a diffuse prior

on φ can be used when convergence issues arise:

pp <- list(c(0, 0), diag(c(10^4, .25)))

rain.pen <- evm(rain, qu=.97, priorParameters = pp, prior="gaussian")

in which priorParameters is a list containing the mean (0, 0)T and covari-
ance matrix of the prior Gaussian distribution.

2.6 Covariate modelling

We can fit GPD models with covariates in φ, in ξ, in neither, or in both. We
use the winter air pollution dataset to illustrate this model fitting, with NO2
as the response and O3 as the explanatory variable. Plots of this data in Sec-
tion 1.2.2 suggested a negative association between these variables. A threshold
corresponding to the 70% quantile of the NO2 variable was chosen using the
diagnostic techniques in the previous section (output not shown here). As a
starting point we fit the GPD with no covariates:

airpoll <- evm(NO2, data=winter, qu=.7, penalty="none", family=gpd)

airpoll

## Call: evm(y = NO2, data = winter, family = gpd, qu = 0.7, penalty = "none")

## Family: GPD

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE
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## Threshold: 49

## Rate of excess: 0.2763

##

## Log. lik AIC DIC

## -470.9206 945.8413 NA

##

##

## Coefficients:

## Value SE

## phi: (Intercept) 2.23157 0.11010

## xi: (Intercept) -0.02790 0.07297

ggplot(airpoll)

The plots show no systematic departure of the data from the model at this
choice of threshold, so we proceed to fit various models with covariates:
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airpoll1 <- update(airpoll, phi= ~O3, xi= ~O3)

airpoll2 <- update(airpoll, phi= ~O3)

airpoll3 <- update(airpoll, xi= ~O3)

The default model diagnostic plots for the model are different when there
are covariates included in the model. Here we look at diagnostics for the model
with O3 included in the linear predictors for both φ and ξ:

ggplot(airpoll1)

Since there is a covariate in the model the probability and quantile plots are
constructed using the model residuals, which are exponential under the fitted
model. We also have a plot of the residuals against the fitted parameters for any
parameter that is modelled using a covariate (in this case the scale parameter
φ and shape parameter ξ). A well fitting model should have homogeneity of
residuals across different values of the fitted parameter. These diagnostic plots
give no cause for concern. There are no return level or histogram/density plots
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produced since the estimates of these quantities depend on the precise values
taken by the covariates in the model.

AIC(airpoll)

## AIC DIC

## 945.8413 NA

AIC(airpoll1)

## AIC DIC

## 932.6114 NA

AIC(airpoll2)

## AIC DIC

## 930.7401 NA

AIC(airpoll3)

## AIC DIC

## 937.6038 NA

AIC is lowest for airpoll2 which has O3 as a covariate affecting the scale
parameter of the GPD, but not the shape parameter. Since airpoll2 has the
lowest AIC we prefer that model.

We now examine more detailed model diagnostics for our preferred model,
airpoll2:

g3 <- ggplot(airpoll2,plot.=FALSE)

g4 <- ggplot(predict(airpoll2,type="lp",ci.fit=TRUE))[[1]] +

ggtitle("Fitted (log)scale parameter")
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grid.arrange(g3[[1]],g3[[2]],g3[[3]],g4,ncol=2)
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summary(airpoll2)

## Call: evm(y = NO2, data = winter, family = gpd, qu = 0.7, penalty = "none",

## phi = ~O3)

##

## Family: GPD

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: 49

## Rate of excess: 0.276

##

## Log lik. Penalized log lik. AIC DIC

## -462.3701 -462.3701 930.7401 NA

##
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##

## Coefficients:

## Value SE t

## phi: (Intercept) 2.79794 0.16151 17.32411

## phi: O3 -0.02869 0.00646 -4.44422

## xi: (Intercept) -0.12542 0.06637 -1.88968

##

## 1000 simulated data sets compared against observed data QQ-plot.

## Quantile of the observed MSE: 0.397

## 21 observations (14.286%) outside the 95% simulated envelope.

The summary command reveals an alarming number of points to lie outside
of the 95% tolerance interval constructed for the Q-Q plot; the corresponding
plot shows these points to be among those lying closest to the fitting threshold.
This suggests that we should re-visit the whole model selection procedure again
at a higher threshold (details not shown here). We eventually settle on the
following model, fit at a threshold corresponding to the 90% quantile:

airpoll4 <- update(airpoll2,qu=0.9)

g5 <- ggplot(airpoll4,plot.=FALSE)

g6 <- ggplot(predict(airpoll4,type="lp",ci.fit=TRUE))[[1]] +

ggtitle("Fitted (log)scale parameter")
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grid.arrange(g5[[1]],g5[[2]],g5[[3]],g6,ncol=2)
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summary(airpoll4)

## Call: evm(y = NO2, data = winter, family = gpd, qu = 0.9, penalty = "none",

## phi = ~O3)

##

## Family: GPD

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: 58

## Rate of excess: 0.0996

##

## Log lik. Penalized log lik. AIC DIC

## -166.49 -166.49 338.9801 NA

##
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##

## Coefficients:

## Value SE t

## phi: (Intercept) 2.4028 0.2886 8.3248

## phi: O3 -0.0212 0.0140 -1.5196

## xi: (Intercept) 0.0150 0.1547 0.0968

##

## 1000 simulated data sets compared against observed data QQ-plot.

## Quantile of the observed MSE: 0.007

## 1 observations (1.887%) outside the 95% simulated envelope.

The fit of this model is adequate, having apparently captured the depen-
dence of the scale parameter on O3. The final plot shows the nature of this
relationship, with larger values of O3 giving lower values of φ. This concurs with
the observed negative relationship between the variables shown in the original
scatter plot, Section 1.2.2.

2.7 GPD parameter uncertainty

We examine briefly here Information Matrix summaries and Bootstrap estimates
of GPD parameter uncertainty, before going on to use a Bayesian simulation
based approach to estimation of our GPD model parameters and associated
uncertainty.

2.7.1 Information matrix based approaches

When the GPD model is fit by using the default maximum likelihood estimation,
an estimate of the covariance matrix of model parameters is returned. The
default procedure for estimating this covariance matrix is cov="observed" in
which case the observed information matrix is used, as given in Appendix A of
Davison and Smith [2]. The only other option is cov = "numeric" in which
case a numerical approximation of the Hessian is used (see the help for optim).
In some cases, particularly with small samples, the numerical approximation
can be quite different from the closed form (cov="observed") result, and the
value derived from the observed information should be preferred.

For our fitted model, we compare the two approaches and find that the
alternative methods give almost identical estimates of the Information matrix:

airpoll2$cov

## [,1] [,2] [,3]

## [1,] 0.026083966 -7.906210e-04 -5.609481e-03

## [2,] -0.000790621 4.167378e-05 2.497265e-05

## [3,] -0.005609481 2.497265e-05 4.405064e-03
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update(airpoll2,cov="numeric")$cov

## [,1] [,2] [,3]

## [1,] 0.0260203685 -7.882263e-04 -0.0055858130

## [2,] -0.0007882263 4.159649e-05 0.0000237917

## [3,] -0.0055858130 2.379170e-05 0.0044028665

For small samples, the underlying log-likelihood may be far from quadratic,
and the resulting estimates of standard errors derived using either of these
methods are liable to approximate poorly the true standard errors.

2.7.2 Parametric Bootstrap approach

An alternative approach to uncertainty estimation is to use a parametric boot-
strap – which does capture the asymmetry of the log-likelihood surface around
the maximum likelihood estimates. This is carried out for our fitted model in
texmex as follows:

boot <- evmBoot(airpoll2, trace=1001)

summary(boot)

## evmBoot(o = airpoll2, trace = 1001)

## phi: (Intercept) phi: O3 xi: (Intercept)

## Original 2.79793633 -2.868978e-02 -0.12541904

## Bootstrap mean 2.82362552 -2.872183e-02 -0.15978692

## Bias 0.02568919 -3.204594e-05 -0.03436788

## SD 0.16885953 6.734555e-03 0.08524910

## Bootstrap median 2.82474542 -2.861078e-02 -0.15801242

##

## Correlation:

## phi: (Intercept) phi: O3 xi: (Intercept)

## phi: (Intercept) 1.0000000 -0.7173563 -0.5448254

## phi: O3 -0.7173563 1.0000000 -0.0162357

## xi: (Intercept) -0.5448254 -0.0162357 1.0000000

We can compare these reported standard deviations with the correponding
estimates derived from the Observed Information matrix estimate – these are
close although not identical, with the largest disagreement occurring for the
shape parameter. This is typical behaviour of the GPD model.

sqrt(diag(airpoll2$cov))

## [1] 0.161505314 0.006455523 0.066370657

We can also compare the bootstrap based estimate of the parameter corre-
lation matrix with that derived from the Observed Information matrix:
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cov2cor(airpoll2$cov)

## [,1] [,2] [,3]

## [1,] 1.0000000 -0.75831579 -0.52331083

## [2,] -0.7583158 1.00000000 0.05828503

## [3,] -0.5233108 0.05828503 1.00000000

cov2cor(summary(boot)$covariance)

## phi: (Intercept) phi: O3 xi: (Intercept)

## phi: (Intercept) 1.0000000 -0.7173563 -0.5448254

## phi: O3 -0.7173563 1.0000000 -0.0162357

## xi: (Intercept) -0.5448254 -0.0162357 1.0000000

Estimates of this correlation matrix are similar although not identical, as
anticipated.

Focussing on the covariance matrix of the parameter estimates is misleading
and does not let us explore the asymmetric nature of the uncertainty about the
parameter estimates. This can often be better seen in the bootstrap based confi-
dence intervals for the model parameters shown in the following plots, although
the asymmetry is not pronounced in this example:

O3 <- data.frame(O3=seq(10,60,len=6))

g7 <- ggplot(predict(boot, newdata=O3,type="lp",

ci.fit=TRUE))[[1]] +

ggtitle("Bootstrap")
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g8 <- ggplot(predict(airpoll2,newdata=O3,type="lp",

ci.fit=TRUE))[[1]] +

ggtitle("Obs Info")
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grid.arrange(g7,g8,ncol=2)
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2.8 Bayesian estimation

A further alternative approach to uncertainty estimation which accurately re-
flects the asymmetric nature of the uncertainty is offered by Bayesian simula-
tion based methods. In texmex we can simulate from the posterior distributions
of the parameters by using the evm function again, this time using method =

"simulate" to tell the function to simulate from the joint posterior distribution
of the parameters.

airpollSim <- evm(NO2, data=winter, qu=.7,

phi=~O3, method="simulate",

verbose=FALSE)

Equivalently, the Bayesian estimation based on MCMC can also be instigated
by the use of the function update on the previously chosen model. The method
of estimation is changed from "optimize" – under which estimation is carried

26



out using (penalized) maximum likelihood – to "simulate" – under which a
Metropolis algorithm is used to simulate from the joint posterior distribution
of the parameters. For our preferred model, airpoll2, this is implemented as
follows:

airpollSim <- update(airpoll2,method="simulate",penalty="gaussian",

verbose=FALSE)

ggplot(airpollSim)

airpollSim

## evm(y = NO2, data = winter, family = gpd, qu = 0.7, penalty = "gaussian",

## phi = ~O3, method = "simulate", verbose = FALSE)

## Family: GPD

## Acceptance rate: 0.326

##
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## MAP estimates:

## phi: (Intercept) phi: O3 xi: (Intercept)

## 2.79793633 -0.02868978 -0.12541904

##

## Posterior means:

## phi: (Intercept) phi: O3 xi: (Intercept)

## 2.78350820 -0.02868166 -0.09429751

The plots of the Markov chains ought to look like “fat hairy caterpillars”
if the algorithm has converged on its target distribution. Also, the cumulative
means of the chains should converge, the acceptance rate should not be too
high or too low, and the autocorrelation functions should rapidly decay to zero.
We conclude from the plots that there is no evidence against convergence of
our Markov chains, although we should probably thin our output further to
obtain a chain that is closer to independent (the default is to thin to every 4
observations). Here we retain the burn-in value of 500 but now discard all but
every 20th observation, resulting in an autocorrelation function which decays
more rapidly to zero. This results in the retention of 2000 values after discarding
the burn-in and applying the thinning. (Note that the observations are not
discarded destructively and we can use the thinAndBurn function repeatedly to
examine the impact of using different values of burn and thin.)

airpollSim <- thinAndBurn(airpollSim, burn=500, thin = 20)

dim(airpollSim$param)

## [1] 2000 3

summary(airpollSim)

## Family: GPD

##

## Posterior summary:

## Posterior mean SD

## phi: (Intercept) 2.78405639 0.164032655

## phi: O3 -0.02867559 0.006635325

## xi: (Intercept) -0.09519650 0.070281819

We can use the predict method to obtain the linear predictors for the model
parameters for each unique combination of any covariates that may be in the
model.

O3 <- data.frame(O3=seq(20,50,by=10))

predict(airpollSim,newdata=O3,type="lp")

## Linear predictors:

## phi xi O3
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## 1 2.21 -0.0952 20

## 2 1.92 -0.0952 30

## 3 1.64 -0.0952 40

## 4 1.35 -0.0952 50

predict(airpollSim,newdata=O3,M=1000)

## M = 1000 predicted return level: 89.3 79.4 72 66.5 20 30 40 50

To see linear predictors for the original dataset, simply omit the newdata

argument (output not shown):

predict(airpollSim,type="lp")

predict(airpollSim,M=1000)

Setting the argument all = TRUE returns the linear predictors for all of the
simulated parameter values in the (thinned) chains:

airpollParams <- predict(airpollSim, newdata=O3, type="lp", all=TRUE)

The returned object contains a list called link with one item for each unique
value of the covariate(s). The following shows the first five simulated values of
(φ, ξ) for covariate O3 = 20:

airpollParams$obj$link[[1]][1:5,]

## phi xi O3

## [1,] 2.104536 -0.01687750 20

## [2,] 2.076850 -0.08350914 20

## [3,] 2.142871 -0.12757985 20

## [4,] 2.221431 -0.05058120 20

## [5,] 2.216039 -0.18159395 20

2.9 Predicted return levels

The general definition of an m-observation return level for the GPD is:

xm = u+
σ

ξ
{(mp)ξ − 1}. (4)

Here p is the probability of exceeding the GPD fitting threshold u and m is a
large value, so that xm is termed the m-observation return level and represents
the maximum value of x expected to be seen in m observations.

The effect of the O3 variable on the fitted GPD is seen clearly when we look
at return levels and associated plots for different levels of this variable:
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O3 <- data.frame(O3=seq(20,50,by=10))

pred <- predict(airpoll2,newdata=O3,M=5:1000,ci.fit=TRUE)

pred$obj[c(1,496,996)]

## $M.5

## RL 2.5% 97.5% O3

## 1 51.92864 51.31966 52.53763 20

## 2 51.19821 50.64622 51.75019 30

## 3 50.64995 50.09070 51.20920 40

## 4 50.23843 49.68634 50.79052 50

##

## $M.500

## RL 2.5% 97.5% O3

## 1 82.98659 70.90954 95.06364 20

## 2 74.50994 64.54292 84.47696 30

## 3 68.14747 59.35096 76.94398 40

## 4 63.37187 55.48075 71.26299 50

##

## $M.1000

## RL 2.5% 97.5% O3

## 1 86.29465 71.95139 100.63791 20

## 2 76.99293 65.27717 88.70869 30

## 3 70.01117 59.83792 80.18442 40

## 4 64.77074 55.77008 73.77141 50

pred$call

## predict.evmOpt(object = airpoll2, M = 5:1000, newdata = O3, ci.fit = TRUE)

g9 <- ggplot(pred)
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xAxis <- scale_x_continuous(breaks=c(5,20,50,200,500,1000),trans="log")

yAxis <- scale_y_continuous(limits=c(50,105))

grid.arrange(g9[[1]] + xAxis + yAxis,

g9[[2]] + xAxis + yAxis,

g9[[3]] + xAxis + yAxis,

g9[[4]] + xAxis + yAxis,ncol=2)
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The Return period is in units of numbers of observations, in this case, number
of winter days. Return level is in the same units as NO2 variable to which the
GPD model has been fit.

This plot shows how the different values of scale parameter affect the size of
return levels associated with different return periods but not the shape of this
function. The shape parameter ξ is common to each of the four models used for
prediction here – this is emphasised if we allow the axes for plotting to differ
for the four levels of O3:

grid.arrange(g9[[1]],g9[[2]],g9[[3]],g9[[4]],ncol=2)

32



We can see that the underlying shapes of the four curves are identical, the
main differences emphasised here is the greater uncertainty associated with the
highest value of O3 examined here, which is beyond the range observed in the
dataset.

The default method for estimating these confidence intervals is to use the
Information Matrix and quadratic approximation, however this can lead to poor
estimates as this approach gives symmetric intervals centered on the point es-
timates. If we are to extrapolate far beyond the range of the data, then it can
be preferable to recognise the inherent reduction in certainty that occurs as we
move away from the data where the information dwells. This is better reflected
in the asymmetric confidence/credible intervals obtained by using either the
bootstrap or Bayesian simuation based approach:

O3 <- data.frame(O3=c(20,50))

M <- seq(5,1000,len=40)

g11 <- ggplot(predict(airpoll2,newdata=O3,M=M,ci.fit=TRUE),main="Obs Info")
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g12 <- ggplot(predict(boot,newdata=O3,M=M,ci.fit=TRUE),main="Bootstrap")
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g13 <- ggplot(predict(airpollSim,newdata=O3,M=M,ci.fit=TRUE),main="Simulated")
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grid.arrange(g11[[1]] + xAxis+yAxis,g11[[2]] + xAxis+yAxis,

g12[[1]] + xAxis+yAxis,g12[[2]] + xAxis+yAxis,

g13[[1]] + xAxis+yAxis,g13[[2]] + xAxis+yAxis,ncol=2)
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The asymmetry in the bootstrap based confidence intervals and the Bayesian
simulation based credible intervals for high return levels at large values of the
covariate is marked here.

3 Generalized Extreme Value models

Whereas GPD models have an asymptotic motivation as models for threshold
exceedances, the Generalised Extreme Value (GEV) distribution is derived as
the limiting distribution for observations arising as maxima of IID observations.

We introduce the GEV distribution now, but refer to Coles [1] for more
details of this family of distributions, and how it arises.
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3.1 Extreme value modelling and asymptotic motivation

for the GEV

In this section, we show how to fit the generalised Extreme Value Distribution,
GEV(µ, σ, ξ) to data points arising as sample maxima. The GEV has distribu-
tion function

G(x) = exp

[

−

{

1 + ξ

(

x− µ

σ

)}

−1/ξ
]

, (5)

for x satisfying 1 + ξ(x− u)/σ > 0. The location parameter µ satisfies −∞ <
µ < ∞, scale parameter σ > 0 and shape parameter ξ satisfies −∞ < ξ < ∞.
The range of possible values taken by realisations from the GEV depends on the
parameter values, with the distribution having a finite upper end point (short
tailed) if the shape parameter is negative (x ≤ µ− σ/ξ if ξ < 0) and an infinite
tail otherwise (x < ∞ if ξ ≥ 0). When ξ = 0, the GEV corresponds exactly to
the Gumbel distribution.

Extreme value theory tells us that under appropriate normalisation of the
sample maxima, as the underlying sample size from which maxima are taken
tends to infinity, the limiting distribution of the sample maxima must fall in
the Generalised Extreme Value family of distributions (given certain conditions
concerning non-degeneracy of the limit distribution and smoothness of the dis-
tribution of the original variable).

3.2 Parameterization

As for the GPD (Section 2.2), the usual parameterization of the GEV (equa-
tion (5)) is in terms of its location, scale and shape parameters µ, σ and ξ
respectively. For the same reasons as those given for the GPD in Section 2.2,
we choose to reparameterize in terms of φ = log σ. Comments made in this sec-
tion regarding this parameterization in the context of the GPD apply equally
to the GEV.

3.3 GEV fitting in texmex

We use the annual maxima sea-level observations in the dataset portpirie to
illustrate the fitting of the GEV in texmex. The function evm (Extreme Value
Model) is called, this time with the argument family=gev, which fits the GEV
model rather than the default family, GPD. Diagnostic plots are constructed in
the usual way:

port <- evm(SeaLevel,data=portpirie,family=gev)

ggplot(port)
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port

## Call: evm(y = SeaLevel, data = portpirie, family = gev)

## Family: GEV

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

##

## Log. lik AIC DIC

## 4.339058 -2.678116 NA

##

##

## Coefficients:

## Value SE

## mu: (Intercept) 3.87473 0.02793
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## phi: (Intercept) -1.61930 0.10225

## xi: (Intercept) -0.05014 0.09824

The fit of the GEV to the portpirie sea-level annual maxima appears to be
good.

There is no analogue of threshold choice for the GPD (by using MRL plots
and threshold stability plots), and as such there are fewer diagnostics to support
the fitting of the GEV distribution. Where poor fit is observed, it may be due
to having taken maxima of an insufficient number of observations (for example,
if the data are annual maxima then it may be that one year of data is not a large
enough sample size from which to draw maxima). Sometimes, but not always,
it is possible to go back to the original data from which the maxima have been
constructed and take maxima of a larger number of observations. This usually
results in a smaller number of observed maxima so there is an obvious trade-off
between bias and variance here.

Covariates may be included in the GEV models in the same manner as
illulstrated in Section 2.6 for the GPD. As an exercise, we try fitting Year as a
covariate to the portpirie sea level observations:

port1 <- update(port,mu=~Year)

port2 <- update(port,phi=~Year)

port3 <- update(port,xi=~I((Year-1955)/1955),start=c(coef(port),0.001))

ggplot(port3)
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An examination of the AIC for each of these fitted models (AIC(port) etc.)
reveals there to be no evidence of an effect of Year on any of the GEV model
parameters.

3.4 Variants on basic GEV model fitting

The various different model estimation strategies outlined for the GDP model
above can be applied equally to the estimation of GEV models. We can use
MCMC to estimate the GEV model parameters, just as for the GPD in Sec-
tion 2.8:

evm(SeaLevel,data=portpirie,family=gev,method="simulate")

Output may be processed and examined in the same manner as for the GPD
model, and we refer to the details of Section 2.8 for outline examples in this
area.
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Informative priors or penalties may be applied to model parameters as fol-
lows:

pp <- list(c(0, 0, 0), diag(c(10^4, 10^4, .25)))

update(port, priorParameters = pp, prior="gaussian")

## Call: evm(y = SeaLevel, data = portpirie, family = gev, priorParameters = pp,

## prior = "gaussian")

## Family: GEV

##

## Model fit by penalized maximum likelihood.

##

## Convergence: TRUE

##

## Log lik. Penalized log lik. AIC DIC

## 4.338405 4.327974 -2.676810 NA

##

##

## Coefficients:

## Value SE

## mu: (Intercept) 3.87434 0.02776

## phi: (Intercept) -1.62061 0.10152

## xi: (Intercept) -0.04655 0.09535

This was illustrated in more detail for the GPD model in Section 2.5.
Currently, there is no implementation in texmex of the Observed Informa-

tion Matrix estimator of the covariance matrix of parameter estimates, instead
estimates of this matrix are obtained using a numerical approximation to the
Hessian matrix.

Uncertainty estimation via the parametric bootstrap is carried out for our
fitted model in texmex in the same manner as for the GPD, as follows:

boot <- evmBoot(port, trace=1001)

summary(boot)

## evmBoot(o = port, trace = 1001)

## mu: (Intercept) phi: (Intercept) xi: (Intercept)

## Original 3.874731480 -1.61930145 -0.050140222

## Bootstrap mean 3.876999652 -1.63931996 -0.058141008

## Bias 0.002268172 -0.02001851 -0.008000786

## SD 0.028515750 0.10421467 0.101579785

## Bootstrap median 3.876644662 -1.63508650 -0.056109204

##

## Correlation:

## mu: (Intercept) phi: (Intercept) xi: (Intercept)

## mu: (Intercept) 1.0000000 0.3126678 -0.4247957
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## phi: (Intercept) 0.3126678 1.0000000 -0.3721579

## xi: (Intercept) -0.4247957 -0.3721579 1.0000000

ggplot(boot)

This plot shows the bootstrap distributions of the model parameter esti-
mates, for the GEV fitted to the portpirie dataset.

3.5 Return level estimation

Quantiles of the fitted GEV distribution can be estimated by using the estimated
model parameters in the following equation:

xp =

{

µ− σ
ξ [1− {− log(1− p)}−ξ, for ξ 6= 0;

µ− σ log{− log(1− p)}, for ξ = 0.
(6)

Here p is the probability satisfying G(xp) = 1 − p (where G(x) is defined in
equation (5)). This has the interpretation of xp being the return level associated
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with return period 1/p. For example, for annual maxima data, it is the level
which is expected to be exceeded on average once every 1/p years.

In texmex, return levels are estimated for the GEV as we showed for the
GPD:

portRL <- predict(port,M=seq(50,1000,by=50),ci.fit=TRUE)

g14 <- ggplot(portRL)

g14[[1]] + scale_x_continuous(trans="log",breaks=c(50,100,200,500,1000))
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portRL$obj[c(1,10,20)]

## $M.50

## RL 2.5% 97.5%

## mu 4.576567 4.34373 4.809405

##

## $M.500

## RL 2.5% 97.5%

## mu 4.932018 4.393014 5.471022

##

## $M.1000

## RL 2.5% 97.5%

## mu 5.030884 4.376568 5.6852
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