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1 Introduction

This document illustrates the use of the texmex package, [6] for performing
declustering of dependent data, and subsequent extreme value analysis in R, [5].
We use the automatic declustering algorithm of Ferro and Segers (2003), [2].
This involves the estimation of the extremal index of a sequence of excesses above
a threshold, prior to the identification of independent clusters of excesses above
that threshold. Following the identification of such clusters, the Generalised
Pareto Distribution (GPD) tail model may be fitted to independent cluster
maxima.

To cite this vignette, refer to Vignette name: declustering and use the
package citation:

##
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##

## Harry Southworth, Janet E. Heffernan and Paul D. Metcalfe
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##  package version 2.4.

##

## A BibTeX entry for LaTeX users is

##
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#it author = {Harry Southworth and Janet E. Heffernan and Paul D. Metcalfe},
## year = {2017},

#i note = {R package version 2.4},

# )

1.1 Preliminaries

First install the texmex package. Depending on your installation of R, this can
be done using the install.packages command in R, or by downloading the



package from CRAN and installing it from a local archive.
Once texmex is installed, use the library command to make the package
available to the current session.

library (texmex)
palette(c("black","purple","cyan","orange"))
set.seed(20120118)

The final command sets the random seed so that the results in this vignette
may be reproduced exactly.

1.2 texmex

The texmex package for R was written by Harry Southworth and Janet E.
Heffernan. The work was funded by AstraZeneca. This vignette focusses on the
functions in texmex which carry out cluster analysis of serially dependent data.
More detailed information on the remainder of the texmex package is given in
the texmex1d package vignette.

2 Statistical inference for clusters of extreme
values

We summarise here the approach put forward by Ferro and Segers (2003) [2].
The full details are given in the cited paper, but we highlight the main points to
be considered in taking this approach. For clarity, we adopt the same notation
as that used in the original exposition.

We denote by {&, : n = 1,2,...}, a strictly stationary sequence of random
variables with marginal distribution function F, and tail function F. F may
have a finite upper end point or it may be a distribution with an infinite upper
tail. We define M,, as the maximum of the first n > 1 observations of the
process.

We are concerned with the behaviour of excesses of {&, : n =1,2,...} above
thresholds. As with all Extreme Value statistical modelling, the motivation
behind the model comes from the limiting behaviour of extreme values of the
process as we look further and further into the tails. Here, the limiting oper-
ation involves the threshold above which we observe excesses. This threshold
is increased to the upper limit of the support of F and the limiting form of
dependence between excesses gives the form of model that will be adopted for
subsequent statistical analysis.

Dependence in the original sequence of random variables may or may not
persist into the tails of their joint distribution. If the dependence does persist
then the excesses of high thresholds can tend to cluster together in the limit. If
such clustering occurs then the variables within a given cluster cannot be con-
sidered independent. This complicates inference about threshold exceedances



constructed from a sequence which exhibits such extremal dependence. How-
ever, clusters of exceedances can be considered to be independent and a common
approach involves the identification of such clusters, and inference on the char-
acteristics of these clusters, or on independent cluster maxima, see Coles [1]
Chapter 5 for more details.

2.1 The extremal index

The extremal index is a measure of the extent to which threshold exceedances
from the sequence {£, : n =1,2,...} cluster in the limit as the threshold tends
to the upper endpoint of the support of F. Its formal definition is as follows
(see Leadbetter, 1983 [3]). The sequence {&, : n = 1,2,...} has an extremal
index 6 € [0, 1] if for each 7 > 0 there is a sequence {u,, : n = 1,2,...} for which
both:

nF(u,) — 7
and P(M,, <u,) — exp(—67)

as n — o0o. The first condition here ensures that u, increases at an appropriate
rate to find the dependence structure in the process; the second shows that the
growth of process maxima is mitigated by any dependence within the sequence.
Values of < 1 indicate a tendancy of threshold exceedances to cluster together
as the threshold approaches its limit, whereas if # = 1 then threshold excesses
occur in isolation in the limit. The extremal index, when it exists, characterises
the size of clusters of threshold exceedances, having the interpretation as one
over the mean cluster size (see [3]).

2.2 Estimation of the Extremal Index

In the development of their intervals estimator of the extremal index, Ferro
and Segers focus on the times between consecutive threshold exceedances, the
interexceedance times. The estimator is motivated by the observation that in-
terexceedance times can arise in either of two ways:

inter-cluster times consecutive exceedances occur in different but adjacent
clusters;

intra-cluster times consecutive exceedances are adjacent observations occur-
ing in the same cluster.

Inter-cluster times are necessarily larger in distribution than intra-cluster times.
The intervals estimator of Ferro and Segers models the distribution of all ex-
ceedance times as a mixture of inter-cluster and intra-cluster times, and identi-
fies the two components of this mixture distribution as follows.

Let T'(u) be a random variable having the same distribution as the interex-
ceedance times associated with threshold wu:

min{n >1:&,1 > u} given that & > w.



Ferro and Segers show that as the threshold u tends to the upper limit of the
support of F,

F(u)T(u) 3 T, (1)

where = denotes convergence in distribution and the random variable Ty follows
the mixture distribution:

(1—0)eo + Ouyg.

Here €y is the degenerate distribution with point mass at zero, and pg is the
Exponential distribution with mean 1/6. The extremal index has a dual pur-
pose here: 6 is the limiting proportion of non-zero interexceedance times (the
proportion of interexceedance times which are also inter-cluster times); it is also
one over the mean of the non-zero interexceedance times. These properties are
exploited to obtain a moment estimator of the extremal index 6, the intervals
estimator, based on equation (1). In practice, the estimation is carried out by
using a fixed threshold, which is chosen at a suitably high level. We discuss the
choice of this threshold in Section 2.5.

2.3 Cluster identification

The identification of clusters makes use of the characterisation of interexceedance
times as either inter-cluster or intra-cluster. Under the Ferro and Segers model,
the extremal index 0 arises as the proportion of interexceedance times which are
also inter-cluster times. This means that interexceedance times can be easily
categorised in these two groups as a natural consquence of this model. Assum-
ing that we have observed N threshold exceedances, then the |§N] largest in-
terexceedance times are assumed to be approximately independent inter-cluster
times, which separate the remaining exceedance times into intra-cluster times.
In practice, the estimated value of 6 is used to identify the critical cut-off in-
terexceedance time that distinguishes inter- from intra-cluster times.

Once clusters have been identified, the cluster characteristics can be exam-
ined, or the original threshold exceedances can be thinned to give approximately
independent cluster maxima. Inference on these cluster maxima can then be
carried out — such inference is much more straightforward than inference on
the original dependent sequence, although arguably this approach is wasteful of
information as it discards all but the largest observation in each cluster. We
show an example of such an analysis in Section 2.6.

2.4 Estimation uncertainty

The uncertainty in the estimation of # and in the subsequent cluster identifi-
cation is estimated using a bootstrap algorithm. This algorithm maintains the
within-cluster dependence structure, and exploits the independence between
clusters by resampling clusters and inter-cluster times rather than individual
observations from the original dependent sequence. More specifically:



1. resample with replacement from the set of C' — 1 observed inter-cluster
times;

2. resample with replacement from the set of C' observed clusters (obtaining
both intra-cluster exceedance times and the sizes of associated threshold
excesses);

3. interpose the interexceedance times and clusters to obtain a bootstrap
sample of the process of threshold excesses and their times of occurrance;

4. estimate 6 and obtain N for the bootstrap process and decluster using
these values;

5. estimate cluster characteristics or find cluster maxima and carry out in-
ference on these.

The resulting estimates of 6 and any other parameters associated with cluster
characteristics represent a boostrap estimate of the sampling distribution of
these estimators.

The bootstrap procedure described above is that given in Ferro and Segers’
original paper. This is sufficient for estimation of uncertainty of 0 and many
other cluster characteristics such as mean cluster size. However, in the case
where we go on to decluster the original series and fit the GPD model to clus-
ter maxima, the bootstrap procedure as it stands has a particular shortcoming.
Estimates of the GPD parameters (o,&) — the scale and shape parameter re-
spectively — are very sensitive to the largest values in the data. Specifically,
if there are ties among the largest observed data points, then this is taken as
strong evidence of a finite upper end point close to these largest values and
resulting estimates of the shape parameter can be severely biased downwards.
For this reason, the simple non-parametric bootstrap of the threshold excesses
within each cluster is not appropriate for estimating uncertainty of GPD model
parameter estimates. Ties arise frequently in this resampling-with-replacement
approach.

The implementation of the bootstrap in texmex provides a simple alteration
to the non-parametric bootstrap described above in the case where the GPD
parameters are to be estimated from cluster maxima. Prior to carrying out
the bootstrap procedure, the original series is declustered and the GPD model
estimated from the original cluster maxima. Then the bootstrap is carried out
as above but with an addition to step 5 which becomes:

5. find cluster maxima; replace sampled cluster maxima with an independent
sample of the same size from the GPD with estimated model parameters
obtained from the original cluster maxima; carry out inference on these
(i.e. estimate GPD model for these simulated cluster maxima).

Thus the bootstrap procedure in this case is semi-parametric: we sample from
the empirical distribution of interexceedance times and from the fitted paramet-
ric distribution describing the cluster maxima.



2.5 Threshold selection

As mentioned in Section 2.2, the model adopted for inference about the extremal
index and subsequent declustering arises in the limit as the threshold attains
the upper end point of the distribution F'. Whilst this is the case, to carry out
this inference, the threshold must be set at a finite level, balancing opposing
pulls on the value which it takes. The threshold should be high enough that
the underlying distribution is well approximated by its limiting form. It should
preferrably also be sufficiently low that we can use observed threshold excesses
to estimate the model parameters with some precision. There are two diagnostic
tools which we put forward to aid the selection of a suitable threshold, both of
which exploit the properties of the Ferro and Segers model in Equation 1.

2.5.1 Quantile-quantile plot of normalised interexceedance times

The distribution of normalised interexceedance times in Equation 1 is a mix-
ture distribution. Having extimated 0 by using the intervals estimator, we
can check the goodness of fit of this underlying model: 0 estimates the pro-
portion of interexceedance times which correspond to inter-cluster times and
whose normalised values should be well approximated by the Exponential dis-
tribution with mean 1/6. The remaining normalised interexceedance times are
intra-cluster times and should be small relative to the inter-cluster times.

Ferro and Segers propose a quantile-quantile (Q-Q) plot of observed nor-
malised interexceedance times against standard Exponential quantiles to diag-
nose model fit. Its appearance should be slightly different from a standard Q-Q
plot (which shows the data hugging a straight line in the case of good model
fit). In our case, since the underlying limit model is a mixture of degeneracy at
zero and the Exponential distribution, we look instead for a broken stick shape.
The (1 - é) quantile is indicated with a vertical line: above this line we look for
the observed and theoretical quantiles hugging a straight line with gradient 1/ 0
(also marked); below this line we look for a sudden attenuation of the observed
times close to zero. This is demonstrated in Figure 1, which mimics Figure 1(a)
in the original paper.

2.5.2 Threshold stability plot

We exploit another useful property of the extremal index estimator to derive a
further tool for threshold selection. This property is that of threshold stability,
which is used in threshold selection for many other extreme value models. More
details of its use in other models are are given in the texmex1d package vignette.

The threshold stability of the extremal index estimator refers to its invari-
ance to change in threshold above a suitably high threshold. Simply put, once a
threshold is high enough, raising the threshold further should not dramatically
change the estimated value of . As the threshold increases, the sample size
used for estimation will fall so sampling uncertainty will increase, but the esti-
mated values of of 8 should not alter above this anticipated sampling variation.
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Figure 1: Quantile-quantile plot of normalised interexceedance times against
standard exponential quantiles. Vertical line shows the (1 —6) quantile; sloping
line has gradient 1/6. Data are simulated from a max-autoregressive process

with extremal index 6 = 0.2.



Any apparent trend in the estimated 6 with threshold is an indication that the
threshold is too low.

The threshold stability plot examines a range of thresholds for invariance of
6 to change in threshold. At each threshold spanning a range of thresholds,
the extremal index is calculated and a confidence interval estimated by using
the bootstrap described in Section 2.4. These are plotted against threshold.
The plot is used to choose the lowest threshold above which estimates of 6 are
approximately constant.

If the data are to be declustered and GPD models fitted to resulting cluster
maxima, then it can also be useful to plot the estimated GPD parameters against
threshold in an analogous manner. Confidence intervals for the GPD parameters
calculated by using the bootstrap scheme described in Section 2.4 will reflect
uncertainty due to declustering. A suitable threshold for declustering and GPD
estimation will exhibit the threshold stability property for both the extremal
index # and the parameters of the GPD.

2.6 Data analysis in R using texmex

We now demonstrate how to carry out the above analysis in R using the imple-
mentation in the package texmex. Further details of function usage are given in
the package documentation, accessed using help(texmex).

2.7 Daily rainfall series

We work here with the rain data available in the texmex package. This is a
series of daily rainfall observations collected at a location in the the south-west
of England over 1914 — 1962.

To plot the raw rainfall data (not shown):

ggplot(data=data.frame(rain=rain,index=1:length(rain)),
aes(index,rain)) + geom_point(alpha=0.5,col=4)

Extremal index estimation and declustering

We begin by looking at the threshold stability plot for the extremal index and
(by default) also the parameters of the GPD fitted to cluster maxima.

erf <- extremalIndexRangeFit(rain,nboot=20,verbose=FALSE)
p <- ggplot(erf)
gridExtra::grid.arrange(p[[1]1],p[[2]]1,p[[3]],ncol=1)



Extremal Index

0.9- %
E :
M 4022 2003 1046

0.7~ 4 + +
o 06- : 4 t

0.5- *
4
0.4- ¢
0.3- &
o 5 10 15
Threshold
Scale parameter
Eaitens 4022 2003 1046

Shape parameter

0.10 -5 ENGBESES: 4022 2003 1046

0.05-

EIREER R

0 5 10 15
Threshold

We can see from this plot that while the estimated parameters of the GPD are
relatively stable to the choice of threshold used for declustering, the estimates
of the extremal index # are not. Lower thresholds have smaller values of 6
so that clusters above lower thresholds are larger than those occurring above
higher thresholds. Since we are interested in finding the clustering tendancies
of the very highest values, we should choose the value of threshold for which
the estimates of all three parameters are approximately constant. This leads to
a threshold choice of 13mm or above .

We check the goodness of fit of our model for cluster occurrance by using
the Q-Q plot descibed in Section 2.5.1.

ei <- extremalIndex(rain,threshold=13)
gl <- ggplot(ei)
ei <- extremalIndex(rain,threshold=15)
g2 <- ggplot(ei)
ei <- extremalIndex(rain,threshold=17)
g3 <- ggplot(ei)



ei <- extremalIndex(rain,threshold=19)
g4 <- ggplot(ei)
gridExtra::grid.arrange(gl,g2,g3,g4,ncol=2)
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We can be reassured by these plots that a threshold of 13mm gives a good
fit of the model to the rainfall data. For this choice of threshold, the estimate of
the extremal index is about 0.7, so that the average cluster size is 1/0.7 = 1.4.
This is telling us that rainfall tends to be heavy on consecutive days but very
rainy spells tend not to last longer than 1 or 2 days.

We now proceed to decluster the sequence by using the automatic declus-
tering method described in Section 2.3.

ei <- extremallndex(rain, threshold=13)
ei

#i#
## Length of original series 17531
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## Threshold 13
## Number of Threshold Exceedances 1294
## Intervals estimator of Extremal Index 0.7046188

dc <- declust(ei)
dc

## declust.extremallndex(y = ei)

##

## Threshold 13

## Declustering using the intervals method, run length 3
## Identified 817 clusters.

There is a ggplot method for this output, although this is not shown here.
Alternatively the above steps can be carried out in a single call to the func-
tion declust, passing the original data.

dc <- declust(rain, threshold=13)

So of the original series which is of length 17531, there are 1294 exceedances
of the threshold 13mm. However, we have identified serial dependence in the
data, so the threshold excesses are not independent and in fact correspond to
only 817 approximately independent clusters.

Fitting the Generalised Pareto distribution to cluster maxima

We can now go on to estimate the parameters of the Generalised Pareto Distrit-
bution used to describe the conditional distribution of a cluster maximum given
that it exceeds the threshold used for declustering. In texmex we can use the
declustered series directly in a call to the Extreme Value Model fitting routine
evm, using the default family GPD as follows:

rain.gpd <- evm(dc)
rain.gpd

## Call: evm.declustered(y = dc)

## Family: GPD

##

## Model fit by maximum likelihood.
#i

## Convergence: TRUE

## Threshold: 13

## Rate of excess: 0.0466

#it

## Log. 1lik  AIC DIC
## -2692.660 5389.319 NA

11



##

#it

## Coefficients:

#i# Value SE

## phi: 2.31937 0.04524
## xi: -0.02353 0.02871

Here, the rate of excess refers to the rate at which the cluster maxima
occur in the original series. Using this threshold of 13mm there are 817 clusters
so the rate of occurrance is given by:

dc$nCluster

## [1] 817

length(rain)

## [1] 17531

dc$nCluster / length(rain)
## [1] 0.04660316

We now look a the diagnostic plots to check the fit of the GPD:

ggplot(rain.gpd)
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These plots give minor cause for concern: a couple of data points at the top
of the Q-Q plot lie sightly outside the tolerance intervals for this plot. This
slight deviation from model fit is not improved particularly by increasing the
threshold (not shown).

We can compare the parameter estimates of the GPD model fitted to the

cluster maxima with those obtained by fitting the GPD to the original series:

evm(rain,th=13)

#i#t
##
##
##
##t
Ht
#i#t
##

Call: evm(y = rain, th = 13)
Family: GPD
Model fit by maximum likelihood.

Convergence: TRUE
Threshold: 13
Rate of excess: 0.07381
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##

#i# Log. 1lik AIC DIC
#i# -4034.082 8072.164 NA
#i#

##

## Coefficients:

## Value SE

## phi: 2.10088 0.03709

## xi: 0.01682 0.02457

The point estimates are not significantly different although the estimated
standard errors are slightly larger for the model fitted to cluster maxima. The
key difference between the fits is that the independence assumption underlinning
the fitting of both of these models is not met in the case where the GPD is fitted
to all threshold exceedances, whereas the assumption that cluster maxima are
indpendent is satisfied.

The rate of excess in the GPD fitted to the whole series refers to the rate
at which the original series exceeds the threhsold of 13mm. Note that the AIC
values for these two fitted models are not comparable since they are fitted to
different sets of data.

If required, the function gpd may be called by specifying a penalty or prior
information on model parameters, or estimation may be carried out by using
Markov Chain Monte Carlo. For example to simulate from the posterior distri-
bution of the parameters, rather than the default estimation by using (penalised)
maxium likelihood, we can do:

rain.mcmc <- evm(dc,method="simulate")

which returns an object of class evmSim. See documentation for the evm
function for further information.

Estimation of return levels

Return levels can be computed from the GPD fitted to cluster maxima in the
usual way. Note that the return levels computed from the declustered data refer
to the occurrance of cluster maxima, rather than all threshold excesses and need
to be interpreted accordingly.

M <- seq(30,1000)

pl <- ggplot(predict(rain.gpd,M=M,ci.fit=TRUE),
main="Return level plot: cluster max")
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p2 <- ggplot(predict(evm(rain,th=13),M=M,ci.fit=TRUE),
main="Return level plot: original series")



breaks <- ¢(20,50,100,200,500,1000)

grid.arrange(pi[[1]] + scale_x_continuous(trans="log",breaks=breaks),
p2[[1]] + scale_x_continuous(trans="log",breaks=breaks),
ncol=1)
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The return levels calculated for the cluster maxima and the original series
do not differ enormously. Close to the threhsold, excesses of a given level are
rarer under the fitted cluster-max model than under the fitted original series
model. This is is explained by the trivial observation that cluster maxima occur
at a lower rate than do threshold exceedances. Away from the fitting threshold,
the two curves give very similar estimates of return levels. This reflects the
relatively weak dependence in the original series so that clusters are of short
duration and the declustered series is not so different from the original one.

Discussion

The procedure described above, of declustering and then fitting the GPD to
cluster maxima gives a valid statistical model whose underlying assumptions
are met. However, it is interesting to note that in practice, the cluster maxima
may not be of ultimate interest. For example, rainfall information can be helpful
if the assessment of flood damage is the ultimate goal. Here it may be more
informative to analyse complete clusters and obtain an understanding of the
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aggregate rainfall over a rainy spell, rather than to focus on the largest daily
value over that spell. This problem is inherently more difficult and requires a
much more sophisticated solution; it is not attempted here.

A further point that deserves to be made concerns the choice of interex-
ceedance time cut-off which divides those times into intra-cluster (short times)
and inter-cluster times (long times). The above algorithm offers an automatic
procedure for deciding the cut-off time, based on a statistical model whose as-
sumptions can be examined. However in applications where there is a valid
time horizon within which threshold exceedances should be considered to arise
within the same cluster, then this statistical model based approach should not
over-ride the science based argument in the case where the methods suggest
different answers.

In cases where there is a clear a priori argument for selecting a cluster
separation time, then the declustering can be carried out by using the so-called
runs declustering algorithm (see Coles, 2001 [1], Chapter 5). Here we must
specify the run-length r, the minimum number of consecutive values which must
lie below the threshold before a cluster is deemed to be complete. In texmex we
do:

declust(rain,th=13,r=5)

## declust.extremalIndex(y = ei, r = r)

##

## Threshold 13

## Declustering using the runs method, run length 5
## Identified 696 clusters.

Specifying a run length r forces the use of the runs declustering method. In
contrast, when we fail to specify this then the intervals method automaticically
fixes the run length following estimation of the extremal index:

declust (rain,th=13)

## declust.extremalIndex(y = ei, r = r)

##

## Threshold 13

## Declustering using the intervals method, run length 3
## Identified 817 clusters.

2.8 Modelling dependent series with covariates — air pol-
lution data

We now look at the possibility of including covariates in our GPD model for
cluster maxima. This is demonstrated by using the five-dimensional winter air
pollution dataset included in texmex. For more information on this dataset type
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help(winter)

We look at the sulphur dioxide component of this series which exhibits tem-
poral dependence, and following declustering of this series attempt to model the
excesses of a threshold by cluster maxima by using the remaining variables in
the dataset as explanatory variables. The serial dependence in the SO2 data is
apparent from a plot of the data in which the largest values appear clumped
together:

ggplot(data=data.frame(Index = 1:length(winter$S02), S02 = winter$sS02),
aes(Index,S02)) + geom_point(colour="dark blue",alpha=0.5)
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The SO2 variable is declustered whilst retaining the covariate structure of the
data frame which holds the data. First we select a threshold:
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erf <- extremalIndexRangeFit(S02,data=winter,
umin=10,umax=40,verb=FALSE)

g <- ggplot(erf)

grid.arrange(gl[[1]1]1,g([2]],g[[3]1],ncol=1)
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This suggests that we should not use a threshold of below 15. We further
examine threshold choice by using Q-Q plots:

gl <- ggplot(extremalIndex(S02,data=winter,threshold=15))
g2 <- ggplot(extremalIndex(S02,data=winter,threshold=20))
g3 <- ggplot(extremalIndex(S02,data=winter,threshold=25))
g4 <- ggplot(extremalIndex(S02,data=winter,threshold=30))
grid.arrange(gl,g2,g3,g4,ncol=2)
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This suggests that a threshold of around 20 gives the best fit to the data.
We proceed by using this value.

ei <- extremallndex(S02,data=winter,threshold=20)
ei

it

## Length of original series 532

## Threshold 20

## Number of Threshold Exceedances 192

## Intervals estimator of Extremal Index 0.5206914

The extremal index estimate of around 0.5 has the interpretation of cluters

occuring with an average size of two. We can decluster using this estimate of
the extremal index:
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d <- declust(ei)

gegplot(d)
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## declust.extremalIndex(y = ei)

##

## Threshold 20

## Declustering using the intervals method, run length 1
## Identified 77 clusters.

So of the 192 threshold exceedances, only 77 are independent cluster maxima.

Fitting the GPD to the cluster maxima

We can now fit the GPD model to the excesses of cluster maxima above our
threshold of 20. There are no covariates in the GPD model at this stage.
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so2.gpd <- evm(d)

so02.gpd

## Call: evm.declustered(y = d)

## Family: GPD

##

## Model fit by maximum likelihood.
#i#

## Convergence: TRUE

## Threshold: 20

## Rate of excess: 0.1447

##

## Log. lik  AIC DIC

##  -328.5506 661.1012 NA

##

##

## Coefficients:

#it Value SE

## phi: (Intercept) 3.0552 0.1935

##t

xi: (Intercept) 0.2121 0.1583

ggplot(so2.gpd)
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The diagnostic plots show a small kink in the Q-Q plot. We now look into
whether we can improve upon this slight lack of fit by covariate modelling. We
can examine the suitability of the remaining air quality variables as explanatory
variables in linear predictors for the GPD model parameters by using scatter

plots:

pl <- ggplot(data=winter,aes(03,S02)) + geom_point(colour="dark blue",alpha=0.5)
p2 <- ggplot(data=winter,aes(N02,S02)) + geom_point(colour="dark blue",alpha=0.5)
p3 <- ggplot(data=winter,aes(N0O,S02)) + geom_point(colour="dark blue",alpha=0.5)
p4 <- ggplot(data=winter,aes(PM10,S02)) + geom_point(colour="dark blue",alpha=0.5)
grid.arrange(pl,p2,p3,p4,ncol=2)
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Here we are not looking for linear regression type relationship but instead
whether the scatter (scale) or tail behaviour (shape) of the SO2 variable depend
on the candidate explanatory variable. The Ozone variabe looks like a possible
candidate since the largest values of S02 are much more scattered for small
values of Ozone than for large. We will look at the fitted models for each of
the candidate explanatory variables, and examine the AIC (Akaike Information
Criterion) for each in turn. A model that gives a better fit to the data — beyond
that which we would expect to see simply due to the addition of more model
parameters — will have a reduced values of AIC. We favour models with lower
AIC. The absolute value of AIC is not of interest in itself as this is a function of
the exact choice of data used to fit the model. The values of AIC for models fit
to different sets of data (for instance to threshold excesses defined by different
choices of threshold) are not comparable.

Covariate models are fitted to the declustered data object by using the model
formula syntax, specifying the name of the parameter to be modelled with a
covariate and also the name of the column of the original data frame containing
the covariate. For example, to include the covariate NO in the linear predictor
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for the log scale parameter, phi, we do:

evm(d,phi="N0O)

## Call: evm.declustered(y = d, phi = “NO)

## Family: GPD
##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: 20

## Rate of excess: 0.1447
#it

## Log. 1lik  AIC DIC

#i# -328.4744 662.9488 NA
#t

##

## Coefficients:

#it Value

## phi: (Intercept)  3.138860
## phi: NO -0.000399
## xi: (Intercept) 0.197205

SE
0.283911
0.001013
0.160885

The model is estimated by using the treatment contrasts parameterisation,
so that we estimate an intercept for the parameter phi (the value taken by
this parameter for a zero value of the covariate) and also a gradient. Here the
estimated gradient shows a very slight decline in phi for every positive unit
change in NO (although this gradient parameter is not significantly different

from zero).

We can examine the AIC for each of the candidate explanatory variables as

follows:

AIC(evm(d,phi="N0))

#it AIC DIC
## 662.9488 NA

AIC(evm(d,phi="N02))

#it AIC DIC
## 662.8852 NA

AIC(evm(d,phi="03))

#it AIC DIC
## 651.8719 NA
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AIC(evm(d,phi="PM10))

#it AIC DIC
## 662.9997 NA

As suggested by the scatter plots, the Ozone variable has the best model fit,
with by far the lowest AIC value, and a significant improvement over the model
fitted with no covariates. We now examine whether we can obtain any further
improvement in fit by including an additional covariate in the linear predictor
for the shape parameter, xi.

ATIC(evm(d,phi="03,xi="N0))

## AIC DIC
## 651.7845 NA

AIC(evm(d,phi="03,xi="N02))

#it AIC DIC
## 653.2484 NA

ATIC(evm(d,phi="03,xi="03))

H#it AIC DIC
## 653.6356 NA

AIC(evm(d,phi="03,xi="PM10))

#it AIC DIC
## 652.921 NA

So we do not gain further by including any of these variables in an expression
for xi. We reach the same conclusion (working not shown here) if we examine
the inclusion of covariates only in the linear predictor for xi, and not in the
(log) scale parameter.

Finally we look at the model diagnostics for our preferred covariate model:

s02.03.gpd <- evm(d,phi="03)
ggplot(s02.03.gpd)
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So we have managed to get rid of the previous kink in the Q-Q plot (Page 24)
which appeared for the model when fitted with no covariates. We can also plot
the residuals from each of our models against the 03 covariate:

03 <- winter[winter$sS02>d$threshold,"03"] [d$isClusterMax]

pl <- ggplot(data=data.frame(03=03, Residuals = resid(so2.gpd)),
aes(03,Residuals)) +
geom_point (colour="dark blue",alpha=0.5) +
labs(title="No covariate model") + geom_smooth()

p2 <- ggplot(data=data.frame(03=03, Residuals = resid(so2.03.gpd)),
aes(03,Residuals)) +
geom_point (colour="dark blue",alpha=0.5) +
labs(title="03 covariate model") + geom_smooth()
grid.arrange(pl,p2,ncol=1)
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These plots show the covariate model captures the dependence of the no
covariate model residual scatter on the Ozone variable.

Return level estimation

Now that our preferred model for SO2 has model parameters that are specified
as a function of a covariate — 03 — we now have to specify a value of O3 to
calculate a return level for SO2.

For instance, to look at 03 values of 10, 15 and 20 and predicted return levels
for each of these environmental conditions, we can do:

newdata <- data.frame(03=c(10,15,20))

$02.03.rl <- predict(so02.03.gpd,M=seq(100,1000,1len=100),ci.fit=TRUE,
newdata=newdata)

g <- ggplot(so2.03.rl)
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breaks <- ¢(100,200,500,1000)
grid.arrange(gl[[1]] + scale_x_continuous(trans="log",breaks=breaks) +
scale_y_continuous(limits=c(0,350)),
gl[2]] + scale_x_continuous(trans="log",breaks=breaks) +
scale_y_continuous(limits=c(0,350)),
gl[[3]] + scale_x_continuous(trans="log",breaks=breaks) +
scale_y_continuous(limits=c(0,350)) ,ncol=3)
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The unit of time to which the return period now refers is the cluster, since
the GPD model has been fitted to cluster maxima.

Discussion

The interpretation of GPD models fitted with covariates included in the linear
predictors for model parameters requires some delicacy. We put this in context
by recalling the general approach taken within the statistical extreme value
modelling paradigm. All extreme value statistical models are motivated by the
limiting behaviour of random variables as we look at more and more extreme
values of these variables. These limiting arguments provide statisticians with
some theoretical justification for using these models in regions of the sample
space where data are scarce and unreliable for model validation; this is par-
ticularly helpful when we are required to extrapolate from our models, beyond
levels that have been seen in the data for model fitting. We exploit stability
properties of these models that arise as a consequence of the limiting arguments
from which they are born.
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These useful model properties and the interpretation of model parameters
are somewhat muddied when we use covariates in the linear predictors for the
parameters of the extreme value models. As for any regression type model,
the models are conditional on the observed values of the covariate. This is
satisfactory when the covariate can be fixed by design, and it makes sense to
think of holding its value constant while we extrapolate the response variable.
In the context of our winter air pollution example however, the Ozone variable
was not set at a design value, but observed jointly with the other air quality
variables. It is not at all clear from this setting whether it is appropriate to think
about holding the value of Ozone fixed while examining ever higher values of
SO2.

The issue of threshold selection also requires further consideration in the
context of covariate modelling. For our simple example above, we used a con-
stant threshold for the SO2 declustering and subsequent modelling of cluster
maxima. The validity of this modelling practice for non-stationary processes is
rather questionable. Our approach above asserts that the probablity of thresh-
old excess is not affected by the covariate value. This is a very strong assumption
and has been called into doubt in the literature for applications of this type.
A possible solution is to use a variable threhsold, possibly also depending on
the covariate. Further consideration of this issue is given in [4] and references
therein. The current implementation of texmex does not support such sophisti-
cated modelling.
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