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1 Introduction

This document illustrates the use of the texmex package, [7] for performing
extreme value analysis of multivariate data in R, [5]. Broadly speaking, the
analysis proceeds in two steps: generalized Pareto distribution (GPD) mod-
elling of the marginal variables followed by conditional multivariate extreme
value modelling. The first step is covered in more detail in the texmex vignette
texmex1d; here we describe briefly the stages of the univariate modelling and
focus in more detail on the multivariate modelling.

To cite this vignette, refer to Vignette name: texmexMultivariate and use
the package citation:

##

## To cite package 'texmex' in publications use:

##

## Harry Southworth, Janet E. Heffernan and Paul D. Metcalfe

## (2017). texmex: Statistical modelling of extreme values. R

## package version 2.4.

##

## A BibTeX entry for LaTeX users is

##

## @Manual{,

## title = {texmex: Statistical modelling of extreme values},

## author = {Harry Southworth and Janet E. Heffernan and Paul D. Metcalfe},

## year = {2017},

## note = {R package version 2.4},

## }

1.1 Preliminaries

With texmex installed, use the library command to make the package available
to the current session, set the colours used for graphics, and set the random seed
so that results are reproducible on a given machine:
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library(texmex)

#palette(c("black","purple","cyan","orange"))

set.seed(20130618)

1.2 Data

The dataset used in this example analysis is contained in the texmex package.
This vignette reproduces some of the analysis presented in Heffernan and Tawn
(2004) [2], describing the extremal behaviour of daily maxima of hourly means
of five air pollutants. We focus on the winter data from the months November
to February inclusive:

head(winter)

## O3 NO2 NO SO2 PM10

## 1 27 50 112 13 34

## 2 27 51 126 13 29

## 3 15 43 90 21 33

## 4 9 71 470 44 101

## 5 20 51 167 48 30

## 6 8 50 211 16 44

summary(winter,digits=2)

## O3 NO2 NO SO2 PM10

## Min. : 1 Min. : 19 Min. : 10 Min. : 1 Min. : 7

## 1st Qu.:10 1st Qu.: 37 1st Qu.: 64 1st Qu.: 8 1st Qu.: 29

## Median :22 Median : 43 Median :112 Median : 15 Median : 40

## Mean :20 Mean : 44 Mean :135 Mean : 21 Mean : 48

## 3rd Qu.:29 3rd Qu.: 51 3rd Qu.:166 3rd Qu.: 26 3rd Qu.: 60

## Max. :44 Max. :104 Max. :568 Max. :200 Max. :177

The response variables are

O3 Daily maximum ozone in parts per billion.

NO2 Daily maximum NO2 in parts per billion.

NO Daily maximum NO in parts per billion.

SO2 Daily maximum SO2 in parts per billion.

PM10 Daily maximum PM10 in micrograms/metre3.
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2 Exploratory multivariate modelling

Modelling of multivariate extreme values is more complicated than univariate
modelling. An issue that quickly arises is how to define a multivariate extreme
observation. If an observation has to be extreme in all components simultane-
ously, the amount of data to model quickly diminishes to numbers too small to
do anything meaningful with. Moreover, dependencies between variables in the
body of the data do not necessarily tell us anything at all about dependence in
the extremes.

2.1 Exploratory plots

Firstly, we attempt to get a feel for the data by examining the pairwise de-
pendence between variables. A pairwise scatterplot of the data shows some
extremal dependence between the variables, the nature of which varies consid-
erably between the pairs.

GGally::ggpairs(winter)

Next, we plot each of the other variables against NO; a full analysis would
consider all pairs of variables.
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p1 <- ggplot(winter,aes(NO,O3)) + geom_point(colour="darkblue",alpha=0.5)

p2 <- ggplot(winter,aes(NO,NO2)) + geom_point(colour="darkblue",alpha=0.5)

p3 <- ggplot(winter,aes(NO,SO2)) + geom_point(colour="darkblue",alpha=0.5)

p4 <- ggplot(winter,aes(NO,PM10)) + geom_point(colour="darkblue",alpha=0.5)

grid.arrange(p1,p2,p3,p4,ncol=2)

We see that the dependence between these variables differs markedly from
one pair to another. Ozone (O3) appears to be negatively dependent on NO at
high levels, whereas NO2 and PM10 are both clearly positively dependent at
these levels, although the latter less strongly so than the former. Plotting the
other pairs of variables is left as an exercise.

2.2 Exploring pairwise extremal dependence

We can examine pairwise extremal dependence by plotting summary statistics χ
and χ̄ as defined by Coles, Heffernan and Tawn [1]. Here we do so for associations
only between O3 and NO, and between NO2 and NO.

chiO3 <- chi(winter[, c("O3", "NO")])

ggplot(chiO3, main=c("Chi"="Chi: O3 and NO",

"ChiBar"="Chi-bar: O3 and NO"))
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Note that here the second plot is greyed out – this is done because the
confidence interval for the limiting value of χ̄ as the quantile tends to 1 excludes
1. This is evidence of asymptotic independence, in which case the plot of χ is not
relevant – since this shows the level of dependence only within the asymptotic
dependence class.

chiNO2 <- chi(winter[, c("NO2", "NO")])

ggplot(chiNO2, main=c("Chi"="Chi: NO2 and NO",

"ChiBar"="Chi-bar: NO2 and NO"))
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The plots are interpreted as follows:

a. Look at limiting value of χ̄(u) plot as the quantile u tends to 1 . This
gives a diagnostic as to whether the data exhibit asymptotic dependence
(the very largest values of each variable tend to occur in the same obser-
vation). A limiting value of 1 is indicative of asymptotic dependence.

b. If limit in a. is equal to 1 examine plot of χ(u) for a measure of the
strength of dependence within the asymptotic dependence class. The
limiting value of this function as the quantile u → 1 tells us about the
strength of this dependence, with values closer to 1 indicating stronger
dependence.

c. If limit in a. is less than 1 examine plot of χ̄(u) for a measure of the
strength of dependence within the asymptotic independence class. Al-
though at asymptotic levels, the largest values of the variables tend not to
occur in the same observation, at moderately extreme levels, dependence
may still be relatively strong. The limiting value of this function as u → 1
tells us about the strength of this dependence, with positive values closer
to 1 indicating stronger positive dependence and negative values closer
to -1 indicating stronger negative dependence. Values close to 0 indicate
asymptotic near independence.
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The χ̄ for O3 and NO shows that these variables are likely to be asymptoti-
cally independent, with weak negative dependence within this class. We do not
examine the χ plot for this pair (and hence the χ plot is automatically greyed
out). For NO2 and NO, the χ̄ plot rises towards the right, and includes 1 as a
possble limit indicating possible asymptotic dependence. The χ plot indicates
moderate positive dependence within this class.

An alternative approach to examining pairwise extremal dependence is to
examine the multivariate conditional Spearman’s correlation coefficient across
a sliding window of values of the variables, following Schmidt and Schmitt [6].
This is carried out as follows (output not shown):

mcsO3 <- MCS(winter[, c("O3", "NO")])

mcsNO2 <- MCS(winter[, c("NO2", "NO")])

g1 <- ggplot(mcsO3, main="MCS: O3 and NO")

g2 <- ggplot(mcsNO2, main="MCS: NO2 and NO")

gridExtra::grid.arrange(g1,g2,ncol=1)

Confidence intervals can be added to the MCS plots by using bootMCS and
its associated plot method as follows:

bootmcsO3 <- bootMCS(winter[, c("O3", "NO")],trace=1000)

bootmcsNO2 <- bootMCS(winter[, c("NO2", "NO")],trace=1000)

g1 <- ggplot(bootmcsO3, main="MCS: O3 and NO")

g2 <- ggplot(bootmcsNO2, main="MCS: NO2 and NO")

gridExtra::grid.arrange(g1,g2,ncol=1)
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The plots of the multivariate conditional Spearman’s ρ do not have the same
vertical axes, and tell a similar story to the plots of χ and χ̄. The exploratory
summaries of this section suggest that when we come to the conditional multi-
variate extreme value modelling, we should expect to find a negative association
between extreme O3 and extreme NO, and a possibly stronger positive associa-
tion between NO2 and NO. The reader is left to check the other pairs of variables
and to look at the analogous dependence in the summer dataset, which is not
the same.
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3 Conditional multivariate extreme value mod-

elling

The conditional multivariate approach of Heffernan and Tawn proceeds by first
fitting Generalised Pareto distribution (GPD) models to the marginal variables,
then estimating the dependence structure. For more details on the marginal
modelling by using the Generalised Pareto distribution, see the texmex vignette
texmex1d. Like the GPD model for excesses above a threshold, the dependence
component of the Heffernan and Tawn model also conditions on a variable ex-
ceeding a threshold. It then seeks to describe the conditional distribution of the
remaining variables given the threshold excess by the first variable, using a re-
gression type model. Uncertainty in the parameters in the dependence structure
can be characterized via a bootstrap scheme.

3.1 Marginal transformation

The structure of the regression type dependence model is defined not on the
original data scale, but after marginal transformation to standardised margins.
In the original implementation, Heffernan and Tawn used a transformation to
Gumbel margins but subsequent developments (see [3]) in this area show the
structure of the regression model to be greatly simplified if Laplace margins are
used instead. The package texmex implements both and correspondingly we
describe both here. Let X = (X1, . . . , Xd) be a d dimensional random variable
with arbitrary marginal distributions. Let F̂i denote an estimate of the ith
marginal distribution function (i = 1, . . . , d) and let G denote the distribution
function of the standardised marginal distribution, to be determined. The orig-
inal vector variable X is transfromed to Y = (Y1, . . . , Yd), a variable having
standardised marginal distributions by using the probability integral transform

as follows:

Yi = (G−1(F̂i(Xi)), i = 1, . . . , d. (1)

In practice, the F̂i can be the marginal empirical distribution functions of the
data (in which case Equation (1) is also known as the rank transform), or the
semi-parametric model using the empirical distributions below a threshold and
the fitted GPD models for the tails of the distributions above the threshold.

3.1.1 Regression model structure

Let Yi, i ∈ {1, . . . , d}, be the variable on which we are to condition. Then
Y −i denotes the remainder of the vector Y excluding the ith component. The
Heffernan and Tawn approach conditions on Yi being above some high threshold
t, and models the dependence of the remaining Y −i conditional on the observed
value of Yi > t. The form of the regression model for the conditional dependence
structure depends on the precise choice of G in Equation (1).
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Laplace margins G is the Laplace distribution function and Y are marginally
Laplace distributed. Conditional on variable Yi exceeding a high threshold
t, the Heffernan and Tawn model for the remaining variables Y −i takes
the form:

Y −i = α|iYi + (Yi)
β|iZ|i (2)

where Z|i is a vector residual and (d− 1) dimensional parameter vectors

α|i and β|i satisfy (α|i,β|i) ∈ [−1, 1]d−1 × (−∞, 1)d−1. Here, αj|i, the
α|i associated with Yj , (j ∈ {1, . . . , d}, j 6= i), then 0 < αj|i ≤ 1 and
−1 ≤ αj|i < 0 correspond respectively to positive and negative association
between Yj and large values of Yi.

Gumbel margins G is the Gumbel distribution function and Y are marginally
Gumbel distributed. Conditional on variable Yi exceeding a high threshold
t, the Heffernan and Tawn model for the remaining variables Y −i takes
the form:

Y −i = α|iYi + Iα|i=0,β|i<0(c|i − d|i log Yi) + (Yi)
β|iZ|i (3)

where Z|i is a vector residual and (d − 1) dimensional parameter vec-

tors α|i, β|i, c|i and d|i this time satisfy (α|i,β|i, c|i,d|i) ∈ [0, 1]d−1 ×

(−∞, 1)d−1× (∞,∞)d−1× (0, 1)d−1. Here positive association between Yj

and large Yi is described by αj|i, when both αj|i > 0 and βj|i < 0. The
model structure changes in the case of negative dependence in which case
αj|i = 0 and further parameters cj|i and dj|i are required.

The structure of the dependence model is greatly simplified under the use
of Laplace margins, in which case a single model structure suffices to describe
both positive and negative dependence. This makes inference considerably more
straightforward, particularly in the case of weak dependence.

Note that in both Laplace and Gumbel cases, there is no parametric family
of distributions assumed to describe the distribution of model residuals Z|i.
Thus the Heffernan and Tawn conditional dependence model is semi-parametric.
For a complete description of the dependence between conditioning variable Yi

and the remaining variables Y −i, we need both the parametric regression type
model (either (2) or (3)) and the distribution of the model residuals Z|i, the
latter being modelled by the empirical distribution of observed model residuals.
These model residuals are calculated by using transformed data Y and estimates
of model parameters α̂, β̂ (and possibly also ĉ and d̂) in (2) or (3).

3.2 Constraints on parameter space

Recent developments to the Heffernan and Tawn method, [3] address the issue
of validity of the fitted model. This work shows that in order for the fitted
model to be valid, it is necessary impose tighter constraints on the parameters
of the Heffernan and Tawn model than the originl box constraints described
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above. Constraints suggested by Keef et al. enforce the consistency of the fitted
dependence model with the strength of extremal dependence exhibited by the
data.

The effect of these constraints is to limit the shape of the dependence pa-
rameter space so that its boundary is curved. The constraint brings with it
some performance issues for the optimiser used to estimate the dependence pa-
rameters, in particular sensitivity to choice of starting value.

In texmex, this constrained estimation is implemented for Laplace margins
only. It is to be preferred to the use of unconstrained estimation which can result
in invalid, inconsistent inferences and which can lead to misleading predictions
particularly if extrapolation is to be made far into the tail of the modelled
distribution. As such, the package defaults are to use Laplace margins and
to constrain the parameters to give valid fitted models. Diagnostic plots to
visualise this constrained parameter space are provided: see examples below in
Section 4.4, page 16.

4 Conditional multivariate extreme value mod-

elling using texmex

The whole conditional multivariate extreme value modelling algorithm is rather
complicated. Fitted models are arguably most easily interpreted by using them
to predict quantities of interest.

4.1 Model fitting

Now we fit the multivariate model to the winter dataset, conditioning on each
of the five marginal variables in turn. Here, mqu specifies the marginal quantile
which defines the threshold above which the marginal GPD models will be fitted.

mex.O3 <- mex(winter, mqu=.7, penalty="none", which="O3")

mex.NO2 <- mex(winter, mqu=.7, penalty="none", which="NO2")

mex.NO <- mex(winter, mqu=.7, penalty="none", which="NO")

mex.SO2 <- mex(winter, mqu=.7, penalty="none", which="SO2")

mex.PM10 <- mex(winter, mqu=.7, penalty="none", which="PM10")

The function mex is a wrapper for the functions migpd and mexDependence

which carry out the marginal and dependence modelling stages respectively. An
equivalent way of carrying out the above, conditioning on O3 would be to use:

marg <- migpd(winter, mqu=0.7, penalty="none")

mex.O3 <- mexDependence(marg, which = "O3")

This would be a more efficient way to fit the above models, as it does the
GPD estimation only once, whereas this was repeated for each of the different
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conditioning variables in the preceding code chunk. By default, if no depen-
dence threshold is supplied, the threshold for fitting the dependence component
of the model is taken to be equal to that used to fit the GPD model to the tail
of the conditioning variable, and a warning message is given. There is, however,
no reason why the thresholds employed for marginal and dependence modelling
should be the same, and there is no required ordering on the two types of thresh-
old. Different thresholds can be used for marginal and dependence modelling,
by specifying the quantile dqu to be used for the dependence threshold:

mexDependence(marg, which = "O3", dqu=0.8)

4.2 Marginal model diagnostics

We can check the diagnostics for the fitted marginal models in the usual way.
Use of mrlPlot and gpdRangeFit can also be informative at this stage (see
texmex1d vignette for more details of these univariate methods - here output is
suppressed since it is lengthy!).

g <- ggplot(marg)

do.call("grid.arrange", c(g[[1]], list(ncol=2, nrow=2))) # ... etc

do.call("grid.arrange", c(g[[2]], list(ncol=2, nrow=2))) # ... etc

ggplot(gpdRangeFit(winter$O3)) # ... etc

ggplot(mrl(winter$O3)) # ... etc

4.3 Dependence model diagnostics

Plotting model diagnostics for the dependence component of the model is carried
out as follows - first, for the model fitted by conditioning on the O3 variable:

ggplot(mex.O3)
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The plots show (top to bottom): centred and scaled values of the dependence
model residuals across the range of the extreme conditioning variable; absolute
values of these; and the original untransformed data with contours showing
quantiles of the fitted conditional model. If the model fits the data, the top and
centre rows of the plots should show no structure with scatterplot smoothers
being more or less horizontal. In the bottom row, the fitted quantiles should
agree with the shape of the raw data distribution. Take care to note that the
one dimensional conditional distribution of (Xj |Xi) (whose estimated quantiles
at each value of Xi are shown by the contours) is not the same thing as the (two
dimensional) joint distribution of the (Xi, Xj), estimated by the scatterplot of
the data points.

For the models fitted by conditioning on the NO variable, we do:

ggplot(mex.NO)
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Most of the plots support the choice of threshold, however the top plot for
SO2 given NO shows a decrease in location with increase in conditioning NO.

We can investigate further by plotting the dependence structure parameter
estimates across a range of thresholds. Beyond a suitably high threshold, we
should expect the parameters to be constant. To gain some feeling for the
variability in the parameters, we perform 10 (by default) bootstrap samples.
We set trace=11 to suppress printing of progress reports in this document (the
default is to report every ten replicates).

mrf <- mexRangeFit(marg, "NO", trace=11)

ggplot(mrf)
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These plots suggest that there is an issue with the starting values in the NO2
model fit. We try using different starting values. There is an option for using a
previously fitted dependence model as a starting point, see the documentation
for mexDependence.

start <- coef(mex.NO$dependence)[1:2,] # alternative starting value

mrf <- mexRangeFit(marg, "NO", trace=11,start=c(0.1,0.1))

ggplot(mrf)
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This does appear to have resolved the issue about the starting value which
we had identified. We would need to take care in other fitting that the fitted
model for NO2 given NO does not suffer from this issue.

The stability of the parameter estimates in the resulting plot provides some
reassurance that the 70th percentile is a suitable threshold.

4.4 Constrained parameter space

Before carrying on to examine our fitted models or to use them for prediction,
we need to take some care to make sure our parameter estimates do correspond
to the true maximum of the objective functions used for estimation. This is
an issue since the performance of the optimiser can be sensitive to the choice
of starting value. It is up to the user to check that the parameter estimates
have converged to the true maximum likelihood estimates. This is carried out
straightforwardly using simple visual diagnostics.

To reduce the amount of output produced, here we show the procedure only
for NO2 given NO. We use mexDependence to plot the profile-likelihood surface
which is maximised for estimation of the dependence model parameters.

par(mfrow=c(3,4), mar=par("mar")/2)

marg.NO2.NO <- migpd(winter[,c("NO2","NO")],mqu=0.7)
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mex.NO2.NO <- mexDependence(marg.NO2.NO, which = "NO",

dqu=0.7, PlotLikDo=TRUE)

This plot shows the point estimate to lie on the edge of the permissible
parameter space, and we can home in on the region containing this estimate to
check that the surface has been successfully maximised:

par(mfrow=c(1,1))

mex.NO2.NO <- mexDependence(marg.NO2.NO, which = "NO",

dqu=0.7, PlotLikDo=TRUE,

PlotLikRange=list(a=c(0.6,0.8),b=c(0.1,0.3) ))

This plot reassures us that the point estimate does correspond to the max-
imum of the objective function. If this had not been the case, we should have
tried a range of different starting values for the optimisation. More details are
given in the documentation for mexDependence.

It is left as an exercise to produce plots for all of the conditional models
fitted in this section here, for example:

mexDependence(marg,which="O3",dqu=0.7,PlotLikDo=TRUE)
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4.5 Fitted model parameters

Now that we are satisfied with the fit of our model, we can examine the es-
timated model parameters. The parameters in the dependence structure are
not straighforwardly interpretable, though values of a close to 1 (or -1) indicate
strong positive (or negative) extremal dependence.

mex.O3

## mexDependence(x = marg, which = "O3")

##

##

## Marginal models:

##

## Dependence model:

##

## Conditioning on O3 variable.

## Thresholding quantiles for transformed data: dqu = 0.7

## Using laplace margins for dependence estimation.

## Constrained estimation of dependence parameters using v = 10 .

## Log-likelihood = -257.702 -256.6681 -231.7684 -234.0916

##

## Dependence structure parameter estimates:

## NO2 NO SO2 PM10

## a 0.01301 -0.07278 -0.1683 -0.04719

## b 0.02020 0.03038 -0.1418 0.07142

It is clear from the values of the dependence parameters, that SO2 is the
most strongly (negatively) dependent on large values of O3, with the other
variables having only weak extremal dependence on ozone.

mex.NO

## mexDependence(x = marg, which = "NO", dqu = 0.7, start = c(0.1,

## 0.1))

##

##

## Marginal models:

##

## Dependence model:

##

## Conditioning on NO variable.

## Thresholding quantiles for transformed data: dqu = 0.7

## Using laplace margins for dependence estimation.

## Constrained estimation of dependence parameters using v = 10 .

## Log-likelihood = -230.9793 -218.0096 -220.2708 -243.5154

##
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## Dependence structure parameter estimates:

## O3 NO2 SO2 PM10

## a -0.2558 0.6850 0.2851 0.70840

## b -0.2986 0.2335 -0.3101 -0.09802

The values of the estimated dependence parameters show that NO2, SO2
and PM10 all have positive extremal dependence on NO, the strongest being
that of PM10 on NO. Ozone has fairly weak negative dependence on NO.

4.6 Prediction under the fitted model

The dependence between pairs of variables is described by a pair of parameters
(a, b) and also the associated empirical distribution of the residuals Z|i. For this
reason, the interpretation of the fitted models is arguably most straightforward
via prediction of variables given extreme values of the conditioning variable,
which we cover now.

Comparison of the plots of the remaining variables against NO reveals that
the extremal dependence between the variables varies considerably (see plot on
page 4).

We can obtain predictions under the fitted conditional multivariate model
by importance sampling using the predict method. We tell the function to
simulate values of the variables conditional on NO being above its 90th percentile.

set.seed(20130619)

nsim <- 1000

pO3 <- predict(mex.O3, pqu=.9, nsim=nsim)

pNO2 <- predict(mex.NO2, pqu=.9, nsim=nsim)

pNO <- predict(mex.NO, pqu=.9, nsim=nsim)

pSO2 <- predict(mex.SO2, pqu=.9, nsim=nsim)

pPM10 <- predict(mex.PM10, pqu=.9, nsim=nsim)

The resulting conditional distributions are summarised as follows:

summary(pO3)

## predict.mex(object = mex.O3, pqu = 0.9, nsim = nsim)

##

## Conditioned on O3 being above its 90th percentile.

##

##

## Conditional Mean and Quantiles:

##

## O3|O3>Q90 NO2|O3>Q90 NO|O3>Q90 SO2|O3>Q90 PM10|O3>Q90

## mean 36.6 42.7 90.8 12.4 37.6

## 5% 33.8 26.0 18.0 3.0 20.0

## 50% 36.1 43.0 80.0 10.0 31.0
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## 95% 41.2 58.7 187.0 26.7 85.1

##

## Conditional probability of threshold exceedance:

##

## P(O3>28|O3>Q90) P(NO2>49|O3>Q90) P(NO>149|O3>Q90) P(SO2>23|O3>Q90)

## 1 0.279 0.154 0.093

## P(PM10>53|O3>Q90)

## 0.11

The thresholds cited in the final part of the output are by default taken
to be the marginal thresholds used for fitting the GPD models (in this case
these are the 0.7 quantiles of the marginal distributions). However, any value
of threshold can be used for prediction by specifying the argument mth of the
summary function, for example:

summary(pO3,mth=c(39,40,100,10,40))

## predict.mex(object = mex.O3, pqu = 0.9, nsim = nsim)

##

## Conditioned on O3 being above its 90th percentile.

##

##

## Conditional Mean and Quantiles:

##

## O3|O3>Q90 NO2|O3>Q90 NO|O3>Q90 SO2|O3>Q90 PM10|O3>Q90

## mean 36.6 42.7 90.8 12.4 37.6

## 5% 33.8 26.0 18.0 3.0 20.0

## 50% 36.1 43.0 80.0 10.0 31.0

## 95% 41.2 58.7 187.0 26.7 85.1

##

## Conditional probability of threshold exceedance:

##

## P(O3>39|O3>Q90) P(NO2>40|O3>Q90) P(NO>100|O3>Q90) P(SO2>10|O3>Q90)

## 0.177 0.599 0.426 0.469

## P(PM10>40|O3>Q90)

## 0.266

The plot method can be used to visualise the fitted conditional models using
the importance samples as follows:

ggplot(pO3)
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Plots show the original data (grey circles) and data importance sampled
under the fitted model above the threshold for prediction (orange triangles and
blue diamonds). Samples represented by a blue diamond are largest (on the
common quantile scale) in the conditioning variable, orange diamonds are largest
in a different variable. The solid curve in each plot is for reference and joins
equal quantiles of the marginal distributions – perfectly dependent variables
would lie exactly on this line (this line is analogous to the diagnonal line on a
QQ plot, but here since the two marginal distributions are not equal, the curve
is not a straight line). We can compare the above output conditioning on O3
(which has weak or negative dependence) with that obtained when we condition
on NO where the dependence is stronger:

ggplot(pNO)
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The strong extremal dependence of winter PM10 on NO is evident here,
with the sampled data following closely the curve of equal marginal quantiles.
These plots show that the sampled points are a greater mixture of points that
are largest in the conditioning variable and points that are not (there are many
orange diamonds below the solid orange “diagonal” line).

The importance samples generated by the predict method can also be used
to estimate probabilities of arbitrary tail regions falling above the threshold for
the conditioning variable used for importance sampling, or to calculate function-
als of the multidimensional variables. The precise implementation will depend
on the application in question.

4.7 Building samples from multiple conditional models

In some applications, there is a requirement to sample from the whole of the
joint distribution of the multivariate random variable, and not just from the
conditional distribution given that a single component is large. This sampling
approach could be taken for example for evaluating probabilities of events falling
in failure sets located in arbitrary regions of the distribution’s tails. The precise
definition of any failulre regions will depend on the application in question. Here
we show how to construct a large Monte Carlo sample from the whole of the
modelled joint distribution defined by a collection of conditional models fitted
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by conditioning on each of the marginal variables in turn.
This process of collecting conditional models together is assumed to take

place after these models have been fitted individually, including all the necessary
threshold selection procedures that go with such model fitting.

We follow the example given in Heffernan and Tawn (2004) using the Winter
air pollution data again. We assume that the chosen modelling thresholds for
each variable have been chosen at appropriate values given in Table 4 (marginal
thresholds) and page 519 (dependence thresholds) of that paper.

The winter dataset is 5 dimensional, giving 5 conditional dependence models
and 5 fitted GPD models. We must use the same five fitted GPDs for each of
the conditional models we fit to ensure consistency of the resulting combination.
We gather our fitted models into a single R opbject:

mAll <- mexAll(winter,mqu=0.7,dqu=rep(0.7,5))

We can then generate a Monte Carlo sample of the required size from the
collection of fitted models. As in Heffernan and Tawn, we use the model that
conditions on the ith component of the random vector to simulate values in
that part of the sample space for which the ith component is the largest of all
components (measured on a quantile scale). This is carried out as follows:

1. Generate a Monte Carlo sample from the original dataset, by sampling
the required number of observations uniformly with replacement from the
entire dataset;

2. Transform the Monte Carlo sample obtained in step 1. to the Laplace
scale by using the fitted GPDs (here we can see why we must take care to
use the same fitted GPD for all of the conditional model fits);

3. On the Laplace scale, identify which component of each transformed data
point is the largest (since we are working on the common Laplace scale, this
step calculates which component represents the highest marginal quantile);

4. Identify which of our Monte Carlo sample identified in Step 3 additionally
lie above the corresponding conditional dependence model threshold (for
example, for all points whose ith component is the largest component, we
find which of these have ith component above the dependence threshold
used to fit the conditional model given the ith component is above a given
threshold);

5. For each conditioning variable in turn, generate a large independent sam-
ple from the fitted conditional distribution, conditional upon being above
the associated dependence model fitting threshold. This is carried out on
the original scale of the data;

6. On the original scale of the data, for each variable in turn, replace those
values in our Monte Carlo sample from step 1 which are both above their
conditional model threshold and for which the conditioning variable is the
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largest component (identified in Step 4) by a value generated from the
appropriate conditional model (from step 5).

The following plots highlight the selection of points in step 4. Points fulfilling
the requirements of step 4 are shown by blue dots:

The second of these plots shows the NO2 and SO2 values of all Monte Carlo
samples above the conditional dependence threshold, conditioning on NO2. All
of the orange diamonds and blue triangles are large in NO2, but only those
shown by the blue triangles are largest in NO2 (assessed on a common quantile
scale). Clearly the diamonds which lie above the solid blue line are larger in
SO2 than in NO2. Those samples shown by orange diamonds below the solid
blue line are largest in a different variable – neither NO2 nor SO2, but another
variable not shown on the plot.

All the steps required for the simulation are carried out in the texmex func-
tion mexMonteCarlo. Here, we generate 5000 points from the original dataset
(below the dependence thresholds) and the collection of conditional models
above each of the dependence thresholds:

mexMC <- mexMonteCarlo(5000, mAll)

For each margin, the number of points from the original sample from the
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dataset that were replaced by points sampled parametrically from the corre-
sponding conditional tail model is as follows:

mexMC$nR

## O3 NO2 NO SO2 PM10

## 1235 704 603 780 522

This shows that considerably more samples were replaced for points which
had O3 as the most extreme component than for any other margin (O3 has
around twice as many points replaced as any of the other margins). This cor-
responds to the fitted models which describe very weak or negative dependence
between O3 and the remaining variables when O3 is large:

mAll$O3$dependence

## Conditioning on O3 variable.

## Thresholding quantiles for transformed data: dqu = 0.7

## Using laplace margins for dependence estimation.

## Constrained estimation of dependence parameters using v = 10 .

## Log-likelihood = -257.7152 -256.7165 -231.7644 -234.1655

##

## Dependence structure parameter estimates:

## NO2 NO SO2 PM10

## a 0.01444 -0.07238 -0.1678 -0.04756

## b 0.02122 0.03100 -0.1404 0.07132

A consequence of this is that when O3 is large, the other variables are not.
We can plot our large Monte Carlo sample and compare it with the original

dataset which was plotted on page 3 (not shown here).

pairs(mexMC$MCsample)

There are clear limitations in using this approach to try to generate large
samples from the required joint distribution:

1. The first and the most fundamental is that the taken together, the col-
lection of conditional models do not give a consistent or even well defined
joint distribution. This approach is entirey empirical and relies on the
validity of the underlying joint distribution of the data which is used to
estimate conditional models. We hope that these models – being estimated
from the same underlying data – will reflect the underlying joint structure
and therefore give approximately consistent distributions but there is no
guarantee that this works in practice. Recent work by [4] has had some
success in addressing this issue but is not yet implemented in texmex.

2. The importance of appropriate threshold choice is highlighted in this ap-
proach to combining different estimated models. Marginal and dependence
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thresholds should be selected so that the transition from empirical model
(e.g. below the GPD or conditional model threshold) to parametric model
(above the respective thresholds) is smooth. Lack of the required continu-
ity between the components of the resulting semi-parametric models will
be revealed in Monte Carlo samples which have the appearance of fail-
ing to fit together at the joins between the component models, as indeed
would be the case.

4.8 Joint exceedance curve estimation

In the univariate setting, return level curves show the way in which the marginal
distribution of a variable extrapolates. It is useful to report the tail behaviour
in terms of return levels associated with given return periods. Return periods
have a simple interpretation of being the expected waiting time between events
at or above the associated return level, or alternatively, the time interval during
which we would expect to see exactly one exceedance of this level.

In two or more dimensions, there is no such simple curve. When we fix a
return period, say 200 years, then this is equivalent to specifying a probability of
observing the associated event in any one observation. For daily i.i.d. data, this
probability would be 1/(365 × 200). In the univarite setting, we can calculate
the quantile of the fitted distribution with this exceedance probability, and this
is the return level associated with the given return period. For two or more
dimensions however, there are many joint events, involving both/all variables
that occur with any given small probablility. Instead of a single value consituting
our return level, we now need a curve that describes a set of events, all of which
have the probability which was specified by our return period. For a given
exceedance probability p, the joint exceedance curve is the set of points

{(x1,p, . . . , xd,p) : Pr(X1 > x1,p, . . . , Xd > xd,p) = p}.

In texmex, joint exceedance curve estimation is implemented for two-dimensional
subsets of variables. The curve can be estimated in a variety of ways:

from the original data for relatively non-extreme curves only, within the
range of observations seen in the data;

from a single fitted conditional model conditioning on one variable only
being large: curves can therefore be estimated only in that part of the
space in which this estimated model is defined;

from a collection of conditional models each fitted conditional model is
used to estimate that part of the joint exceedance curve in which that
model’s conditioning variable is largest.

We show how to do each of these types of estimation in the following sections,
using the (NO2,NO) variables from the Winter dataset.
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4.8.1 Joint exceedance curve directly from original data

Using the raw data only, we are not able to extrapolate beyond the levels ob-
served in the data, as the following plot shows. The three return level curves
shown correspond to constant joint exceedance probabilities of 0.2, 0.1 and 0.05.
These curves are estimated empirically and so become increasingly badly esti-
mated as we move to higher levels where there is less data.

WinterNO.NO2 <- winter[,3:2]

j1 <- JointExceedanceCurve(WinterNO.NO2,0.2)

j2 <- JointExceedanceCurve(WinterNO.NO2,0.1)

j3 <- JointExceedanceCurve(WinterNO.NO2,0.05)

ggplot(WinterNO.NO2,aes(NO,NO2)) +

geom_point(colour="dark blue",alpha=0.5) +

geom_jointExcCurve(j1,colour="orange") +

geom_jointExcCurve(j2,colour="orange") +

geom_jointExcCurve(j3,colour="orange")
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4.8.2 Joint exceedance curve from fitted conditional model: one con-

ditioning variable only

We can extrapolate further if we use the fitted conditional model, and gener-
ate importance samples from the joint tail region where we want to estimate
our curve. Here we use the model for the conditional behvaiour of NO2 given
extreme NO, from Section 4.4.

It is up to the user to ensure that the threshold used for generating impor-
tance samples (the argument pqu to the function predict in the following) is
chosen suitably for the joint exceedance curve of interest (plot not shown):

p1 <- predict(mex.NO2.NO,nsim=5000,pqu=0.999)

g <- ggplot(p1,plot.=FALSE)

j4 <- JointExceedanceCurve(p1,0.0005,which=c("NO","NO2"))

j5 <- JointExceedanceCurve(p1,0.0002,which=c("NO","NO2"))

j6 <- JointExceedanceCurve(p1,0.0001,which=c("NO","NO2"))

pl <- g[[1]] +

geom_jointExcCurve(j4,aes(NO,NO2),col="purple") +

geom_jointExcCurve(j5,aes(NO,NO2),col="purple") +

geom_jointExcCurve(j6,aes(NO,NO2),col="purple")

pl
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pl

If required, we can combine importance samples from more than one choice
of threshold as follows:

p2 <- predict(mex.NO2.NO,nsim=5000,pqu=0.99)

j7 <- JointExceedanceCurve(p2,0.0005,which=c("NO","NO2"))

j8 <- JointExceedanceCurve(p2,0.0002,which=c("NO","NO2"))

j9 <- JointExceedanceCurve(p2,0.0001,which=c("NO","NO2"))

pl + geom_jointExcCurve(j7,aes(NO,NO2),col="purple") +

geom_jointExcCurve(j8,aes(NO,NO2),col="purple") +

geom_jointExcCurve(j9,aes(NO,NO2),col="purple")
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The calculated joint exceedance curves can be returned explicitly (optionally
the user can specify the values of the first variable at which to report the curve,
by using the argument x in the call to JointExceedanceCurve below):

Curve <- JointExceedanceCurve(p2,0.0005,which=c("NO","NO2"),x=seq(43,96,by=3))

Curve

##

## Estimated curve with constant joint exceedance probability equal to 5e-04

## NO NO2

## 1 43 96.46665

## 2 46 96.46665

## 3 49 96.46665

## 4 52 96.46665

## 5 55 96.46665

## 6 58 96.46665

## 7 61 96.46665

## 8 64 96.46665

## 9 67 96.46665

## 10 70 96.46665

## 11 73 96.46665

## 12 76 96.46665

30



## 13 79 96.46665

## 14 82 96.46665

## 15 85 96.46665

## 16 88 96.46665

## 17 91 96.46665

## 18 94 96.46665

4.8.3 Joint exceedance curve from family of conditional models

If required, we can combine multiple conditional models fitted to each margin as
conditioning variable in turn. The fitting of this set of models was demonstrated
in Section 4.7, and we use the fitted models from that section, held in the object
mAll here for sampling.

p3 <- mexMonteCarlo(nSample=5000,mexList=mAll)

j10 <- JointExceedanceCurve(p3,0.05,which=c("NO","NO2"))

j11 <- JointExceedanceCurve(p3,0.02,which=c("NO","NO2"))

j12 <- JointExceedanceCurve(p3,0.01,which=c("NO","NO2"))

ggplot(as.data.frame(p3$MCsample[,c("NO","NO2")]),aes(NO,NO2)) +

geom_point(col="light blue",alpha=0.5) +

geom_jointExcCurve(j10,aes(NO,NO2),col="orange") +

geom_jointExcCurve(j11,aes(NO,NO2),col="orange") +

geom_jointExcCurve(j12,aes(NO,NO2),col="orange")
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For smaller exceedance probabilities, the size of the sample used to esti-
mate these curves can be made arbitrarily large until the required accuracy is
achieved.

Again, the precise values of points making up these curves are given in the
objects returned by the call to JointExceedanceCurve, for example the object
j10 above gives the coordinates of the joint exceedance curve associated with
an exceedance probability of 0.05. Alternatively, we can calculate the curve at
user specified points x as follows:

JointExceedanceCurve(p3,0.05,which=c("NO","NO2"),x=seq(10,360,by=50))

##

## Estimated curve with constant joint exceedance probability equal to 0.05

## NO NO2

## 1 10 65.08552

## 2 60 65.08559

## 3 110 65.08560

## 4 160 64.66921

## 5 210 63.37411

## 6 260 61.32037

## 7 310 58.52519

## 8 360 36.00000
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4.8.4 Specifying return periods in terms of units of time

Throughout the package texmex the units of return period is the observation.
This is because in some applications, observations may represent time periods
but in others, they may represent individual patients in which case it makes no
sense to talk about time scales. We have aimed to keep the package very general
in its implementation.

However, in some settings it is useful to think about return levels as being as-
sociated with particular temporal return periods (or for joint exceedance curves
to have a given Annual Exceedance Probability (AEP) of e.g. 1 in 10 years). It
is trivial to convert from return periods stated in terms of numbers of obser-
vations (as implemented in the package) to years, by considering the numbers
of observations in a year. For example in the winter air pollution example,
there are 120 observations per winter (winter being defined here as November
– February inclusive). So to calculate the 200 year joint exceedance curve, we
carry out the following calculation:

ReturnPeriodInYears <- 200

NobsPerYear <- 120

ExceedanceProb <- 1/ (ReturnPeriodInYears * NobsPerYear)

ExceedanceProb

## [1] 4.166667e-05

j200 <- JointExceedanceCurve(p1,ExceedanceProb,which=c("NO","NO2"),

x=seq(700,by=50,len=5))

j200

##

## Estimated curve with constant joint exceedance probability equal to 4.166667e-05

## NO NO2

## 1 700 110.00389

## 2 750 109.03533

## 3 800 105.95170

## 4 850 97.28181

## 5 900 76.27774

To plot the data and curve (not shown):

j200 <- JointExceedanceCurve(p1,ExceedanceProb,

which=c("NO","NO2"))

ggplot(WinterNO.NO2,aes(NO,NO2))+

geom_point(colour="light blue",alpha=0.5) +

geom_jointExcCurve(j200,aes(NO,NO2),col="purple") +

labs(title="200 year joint exceedance curve")
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