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1 Introduction

Version 2 of the the texmex [4] package for R [3] introduced the ability to
add new families of extreme value distributions to the package and itself added
the Generalized Extreme Value (GEV) distribution, previous releases having
supported modelling only with the Generalized Pareto Distribution (GPD). We
here describe the implementation of a new extreme value family, the Extended
Generalized Pareto Distribution 3 (EGP3) described by Papastathopoulos and
Tawn [2].

The EGP3 family introduces a new parameter, κ > 0. For the purposes of
numerical stability and avoiding negative values, when modelling data we work
with λ = log κ.

Papastathopoulos and Tawn [2] work more with their EGP1 and 2 models
than with EGP3, but state that there are few differences in results between the
3 versions. The EGP3 model has the advantage of closed form derivatives for
approximating the standard errors of return levels, which is one reason why it
is preferred here. Section 3 contains some technical details.

1.1 Acknowledgements

This work was partly funded by AstraZeneca. I’m also grateful to Yiannis
Papastathopoulos and Paul Metcalfe for various comments and corrections.

1.2 Software

R version 3.4.2 (2017-09-28) [3] will be used for all analyses. A summary of the
R session appears in the Appendix, in the interests of reproducibility.

2 Using the EGP3 distribution for extreme value

modelling

The additional parameter, κ in the EGP models is allowed to vary over the pos-
itive real line, and in each case a value of κ = 1 results in a distribution identical
to the GPD. This property suggests a new diagnostic plot to aid threshold se-
lection: plot the estimated value of κ with a confidence interval over a range
of thresholds and select the lowest threshold which contains the value κ̂ = 1.
GPD modelling can then be performed on values above this threshold. This
diagnostic plot provides a useful addition to the standard methods of examin-
ing the values of σ̂∗ and ξ̂ over a range of thresholds, and examining the mean
residual life plot as described by Coles [1].

2.1 River Nidd example

Following Papastathopoulos and Tawn, we work with the River Nidd data,
producing the standard threshold selection plots and the new plot based on
EGP3.
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Figure 1: Threshold selection plots for the River Nidd data. The bottom right
panel displays the κ̂ with an approximate 95% confidence interval. The lowest
value of κ̂ for which the confidence interval contains 1 is approximately 75,
suggesting this as a threshold above which GPD modelling can be performed.

library(texmex)

library(gridExtra)

g1 <- ggplot(gpdRangeFit(nidd, cov="numeric", umax=90, umin=65, nint=20))

g2 <- ggplot(mrl(nidd))

g3 <- ggplot(egp3RangeFit(nidd, umax=90, umin=65, nint=20),)

grid.arrange(g1[[1]],g1[[2]],g2,g3,ncol=2)

Figure 1 displays the results. The lowest threshold for which κ̂ is similar to
1 is at about 75, suggesting that GPD models can be used above this level.
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2.2 Pharmaceutical example

The introduction of κ into the distribution suggests that lower thresholds might
be usable for extreme value modelling. We now follow Southworth and Hef-
fernan [5] in analyzing some clinical trial safety data. Southworth and Heffernan
model all the values of various safety related laboratory variables above the 70th

percentile using GPD models allowing ξ̂ to vary linearly with dose. In each
case, they find a linear relationship with dose, except for bilirubin. Following
Papastathopoulos and Tawn, we revisit the issue of threshold selection, hoping
to find a lower threshold above which EGP3 models can be fit, thus including
more of the available data in the model, increasing the chance of identifying a
dose effect if one exists.

library(MASS)

rmod <- rlm(log(TBL.M) ~ log(TBL.B) + as.numeric(dose),

data=liver, method="MM", c=3.44)

liver$r <- resid(rmod)

p <- lapply(LETTERS[1:4],function(dose){
ggplot(egp3RangeFit(liver$r[liver$dose == dose],

umin=-.5, umax=.135)) +

ggtitle(paste("\nDose",dose))})

grid.arrange(p[[1]],p[[2]],p[[3]],p[[4]],ncol=2)

The plots of κ̂ over the range of thresholds in Figure 2 suggests that GPD
models ought to fit above a threshold of about 0, the 57th percentile, for each
dose.

We now pool the residual bilirubin data from all doses and present the
standard threshold selection plots as well as the EGP3 plot. The results appear
in Figure 3 and also suggest a threshold of 0 to be appropriate, gaining us an
additional 79 observations compared to the 70th percentile used by Southworth
and Heffernan.

p1 <- ggplot(gpdRangeFit(liver$r, nint=20))

p2 <- ggplot(mrl(liver$r))

p3 <- ggplot(egp3RangeFit(liver$r, nint=20))

grid.arrange(p1[[1]],p1[[2]],p2,p3,ncol=2)
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Figure 2: The EGP3 threshold selection plot for each dose group in the liver
data.
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Figure 3: Threshold selection plots for the liver data. The bottom right panel
displays our new plot based on the EGP3 distribution.
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Figure 4: Diagnostic plots for the GPD model with threshold at 1.3.

We now fit the GPD model and produce diagnostic plots (Figure 4) and a
summary of the model.

gmod <- evm(r, data=liver, th=0, xi=~as.numeric(dose))

ggplot(gmod,span=1)

summary(gmod)

## Call: evm(y = r, data = liver, th = 0, xi = ~as.numeric(dose))

##

## Family: GPD

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: 0

## Rate of excess: 0.502
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##

## Log lik. Penalized log lik. AIC DIC

## 208.5003 208.5003 -411.0005 NA

##

##

## Coefficients:

## Value SE t

## phi: (Intercept) -1.3992 0.0753 -18.5931

## xi: (Intercept) -0.3418 0.0762 -4.4836

## xi: as.numeric(dose) 0.0216 0.0230 0.9386

##

## 1000 simulated data sets compared against observed data QQ-plot.

## Quantile of the observed MSE: 0.476

## 34 observations (11.184%) outside the 95% simulated envelope.

The GPD model fit to all values above 0 seems to fit reasonably well, with
the diagnostic plots revealing no great cause for concern. A few points on
the QQ-plot fall outside the simulated envelope, but because these points are
correlated, it makes no sense to choose thresholds such as 5% or 10% as hard
cut-offs, so the model fit is not seriously called into question. The summary
table reveals there to be still no evidence of a dose effect, at least according to
the approximate test implied by the t-value.
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Figure 5: Diagnostic plots from fitting the EGP3 distribution to all of the
residual bilirubin data.

We next attempt to model all the data using the EGP3 distribution.

emod <- evm(r, data=liver, family=egp3, th=min(liver$r - .0001),

xi=~as.numeric(dose))

ggplot(emod,span=0.8)

summary(emod)

## Call: evm(y = r, data = liver, family = egp3, th = min(liver$r - 1e-04),

## xi = ~as.numeric(dose))

##

## Family: EGP3

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE
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##

## Log lik. Penalized log lik. AIC DIC

## -92.35099 -92.35099 192.702 NA

##

##

## Coefficients:

## Value SE t

## lambda: (Intercept) 2.05e+00 7.65e-02 2.68e+01

## phi: (Intercept) -2.24e-01 3.57e-02 -6.27e+00

## xi: (Intercept) -4.31e-01 1.61e-02 -2.67e+01

## xi: as.numeric(dose) 7.16e-03 2.00e-09 3.58e+06

##

## 1000 simulated data sets compared against observed data QQ-plot.

## Quantile of the observed MSE: 0.997

## 407 observations (67.162%) outside the 95% simulated envelope.

In Figure 5 there is some noticeable structure in the diagnostic plots. The
simulation test reveals there to be about 65% of the observations outside of the
simulated envelope, so that the model is a terrible fit to the data.
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Figure 6: Diagnostic plots for the EGP3 model when using a threshold of -0.25

We now try a somewhat higher threshold of -0.25.

emod <- evm(r, data=liver, family=egp3, th=-.25,

xi=~as.numeric(dose))

ggplot(emod)

summary(emod)

## Call: evm(y = r, data = liver, family = egp3, th = -0.25, xi = ~as.numeric(dose))

##

## Family: EGP3

##

## Model fit by maximum likelihood.

##

## Convergence: TRUE

## Threshold: -0.25

## Rate of excess: 0.855
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##

## Log lik. Penalized log lik. AIC DIC

## 155.4143 155.4143 -302.8286 NA

##

##

## Coefficients:

## Value SE t

## lambda: (Intercept) 0.4306 0.0715 6.0259

## phi: (Intercept) -1.1222 0.0730 -15.3761

## xi: (Intercept) -0.3407 0.0500 -6.8132

## xi: as.numeric(dose) 0.0144 0.0123 1.1770

##

## 1000 simulated data sets compared against observed data QQ-plot.

## Quantile of the observed MSE: 0.644

## 2 observations (0.386%) outside the 95% simulated envelope.

We see from the output that the model appears to fit the data, and still
there is no evidence of a dose effect.

2.3 Discussion

In the pharmaceutical example, we were able to claw back some additional data
into the model by using the EGP3 distribution, at the expense of an additional
parameter. However, when all of the data were used, the fit was awful. It
appears that the EGP3 distribution’s most useful function might be to provide
an extra threshold selection plot, or even a test to decide on a lower threshold.
For modelling extreme values it will, at least in some examples, allow inclusion
of a larger proportion of observations, but some care will need to be taken in
selection of the threshold, and no obvious threshold selection methods for EPG3
are currently available.
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3 The EGP3 distribution: some technical de-

tails

The EGP3 family introduces a new parameter, κ, to the familiar parameters σ
and ξ in the GPD family. The threshold u remains. The EPG3 distribution
function is then obtained by raising the GPD distribution function to κ > 0.

3.1 Distribution function, probability density function and

random number generation

The cumulative distribution function for the EGP3 family is

F (x) =







[

1−
[

1 + ξ x−u
σ

]

−1/ξ
]κ

ξ 6= 0
[

1− exp
(

− (x−u)
σ

)]κ

ξ = 0
(1)

which yields probability density function

f(x) =

{

κ
σ

{

1− (1 + ξ(x− u)/σ)−1/ξ
}κ−1

(1 + ξ(x− u)/σ)−1/ξ−1 ξ 6= 0
κ
σ e

−(x−u)/σ
(

1− e−(x−u)/σ
)κ−1

ξ = 0.

(2)
Equations (1) and (2) are implemented in texmex in the functions pegp3

and degp3.
Inversion of (1) yields

z =















u+ σ
ξ

[

(

1− x1/κ
)

−ξ
− 1
]

ξ 6= 0

u− σ log
(

1− x1/κ
)

ξ = 0

(3)

enabling random number generation as implemented in regp3.

3.2 Return levels

Following Coles ([1] Section 4.3.3) computation of return levels proceeds as
follows. We note that

P (X > x|X > u) = 1− F (X)X>u

so that

P (X > x) = θu{1− F (X)}

where θu = P (X > u) for threshold u. Therefore, the level xM that is
exceeded on average once every M observations is the solution to

1

M
= θu{1− F (X)}. (4)
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For the EGP3 distribution, we solve (4) to yield

xM =



















u+ σ
ξ

[

{

1−
(

1− 1
Mθu

)1/κ
}

−ξ

− 1

]

ξ 6= 0

u− σ log

[

1−
(

1− 1
Mθu

)1/κ
]

ξ = 0

(5)

correcting Papastathopoulos and Tawn.

3.2.1 Derivatives

In order to compute approximate standard errors for return levels, we need
derivatives of (5) with respect to each of κ, σ and ξ. These are found to be

dxM

dκ
= −

(

1− 1
Mθu

)1/κ

σ

(

1−
(

1− 1
Mθu

)1/κ
)

−ξ−1

log
(

1− 1
Mθu

)

κ2

dxM

dσ
=

(

1−
(

1− 1
Mθu

)1/κ
)

−ξ

− 1

ξ

dxM

dξ
= −

σ

(

1−
(

1− 1
Mθu

)1/κ
)

−ξ

log

(

1−
(

1− 1
Mθu

)1/κ
)

ξ
−

σ

(

(

1−
(

1− 1
Mθu

)1/κ
)

−ξ

− 1

)

ξ2

3.3 Upper endpoint

When ξ < 0, the GPD has upper endpoint u − σ
ξ . This value is obtained by

setting the distribution function to 1 and solving. Working with (1), setting it
to 1 and solving reveals the EGP3 distribution to have the same upper endpoint
as the GPD.
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4 Appendix

4.1 Information on the R session

Information on the R session, in the interests of reproducibility.

## R version 3.4.2 (2017-09-28)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.3 LTS

##

## Matrix products: default

## BLAS: /usr/lib/libblas/libblas.so.3.6.0

## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

##

## locale:

## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8

## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8

## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] MASS_7.3-47 texmex_2.4 ggplot2_2.2.1 mvtnorm_1.0-6 gridExtra_2.3

## [6] knitr_1.17

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.13 reshape_0.8.7 grid_3.4.2

## [4] plyr_1.8.4 GGally_1.3.1 gtable_0.2.0

## [7] magrittr_1.5 evaluate_0.10.1 scales_0.5.0

## [10] highr_0.6 rlang_0.1.2 stringi_1.1.5

## [13] reshape2_1.4.2 lazyeval_0.2.0 labeling_0.3

## [16] RColorBrewer_1.1-2 tools_3.4.2 stringr_1.2.0

## [19] munsell_0.4.3 parallel_3.4.2 compiler_3.4.2

## [22] colorspace_1.3-2 tibble_1.3.4
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