
> plot(exp.btgpllm, main = "treed GP, LLM")
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Figure 11: Left: posterior predictive mean using btgpllm on synthetic exponential data;
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles).

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [21] is a classic nonstationary data set used in
recent literature [18] to demonstrate the success of nonstationary models. The
data consists of measurements of acceleration of the head of a motorcycle rider
as a function of time in the first moments after an impact. In addition to being
nonstationary, the data has input-dependent noise, which makes it useful for
illustrating how the treed GP model handles this nuance. There are at least
two, and perhaps three regions where the response exhibits different behavior
both in terms of the correlation structure and noise level.

The data is included as part of the MASS library in R.

> library(MASS)

Figure 12 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise, and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero, and a range of one. The m0r1

argument to b* and tgp functions automates this procedure. All progress indi-
cators are surpressed for this example.

A Bayesian Linear CART model is able to capture the input dependent noise
but fails to capture the waviness of the “whiplash”—center— segment of th the
response.

> moto.btlm <- btlm(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)
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> plot(moto.bgp, main = "GP,")
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Figure 12: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

> plot(moto.btlm, main = "Bayesian CART,")
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Figure 13: Posterior predictive distribution using btlm on the motorcycle accident data:
mean and 90% credible interval

predictive surface and MAP partition (T̂ ).
A treed GP model seems appropriate because it can model input dependent

smoothness and noise. A treed GP LLM is probably most appropriate since the
left-hand part of the input space is likely linear. One might further hypothesize
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that the right-hand region is also linear, perhaps with the same mean as the
left-hand region, only with higher noise. The b* and tgp functions can force
an i.i.d. hierarchical linear model by setting bprior=b0. Moreover, instead of
rescaling the responses with m0r1, one might try encoding a mixture prior for
the nugget in order to explicitly model region-specific noise. This requires direct
usage of tgp.

> p <- tgp.default.params(2)

> p$bprior <- "b0"

> p$nug.p <- c(1, 0.1, 10, 0.1)

> moto.tgp <- tgp(X = mcycle[, 1], Z = mcycle[, 2], params = p,

+ BTE = c(2000, 22000, 2))

The resulting posterior predictive surface is shown in top half of Figure 14. The
bottom half of the figure shows the norm (difference) in predictive quantiles,
clearly illustrating the treed GP’s ability to capture input-specific noise in the
posterior predictive distribution.

Other permutations of possible models, functions and arguments, for this
data is contained in the b* and tgp examples sections of the respective R help
files.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [9]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (16)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [4] used this data to compare
their linear CART algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE =
∑

n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model-predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]
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> plot(moto.tgp, main = "custom treed GP LLM,")
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> main <- "quantile difference,"

> plot(moto.tgp$X[, 1], moto.tgp$Zp.q, type = "l", main = main)

10 20 30 40 50

20
40

60
80

quantile difference,

moto.tgp$X[, 1]

m
ot

o.
tg

p$
Z

p.
q

Figure 14: top Posterior predictive distribution using a custom parameterized tgp call on the
motorcycle accident data: mean and 90% credible interval; bottom Quantile-norm (90%-5%)
showing input-dependent noise.

This example compares Bayesian linear CART with Bayesian GP LLM (not
treed), following the RMSE experiments of Chipman et al. It helps to scale the
responses so that they have a mean of zero and a range of one. First, fit the
Bayesian linear CART model, and obtain the RMSE.
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