
predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

**GROW(1,1)<-1** @depth 0: [0,0.494949], n=(50,50)

**GROW(0,1)<-1** @depth 1: [0,0.242424], n=(25,24)

**PRUNE(1,0)->1** @depth 1: [0,0.292929]

r=1000 corr=[0.00380686] [0] : n = 48 52

r=2000 corr=[0.00433483] [0] : n = 50 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0.00240425] [0.0652247] : mh=2 n = 48 52

r=2000 corr=[0.00723703] [0.0488049] : mh=2 n = 49 51

r=3000 corr=[0.00604759] [1.76362] : mh=2 n = 49 51

r=4000 corr=[0.00425486] [0] : mh=2 n = 51 49

r=5000 corr=[0.00351977] [1.00793] : mh=2 n = 48 52

Grow: 0.006006%, Prune: 0.00303%, Change: 0.5336%, Swap: 1%

finished repetition 1 0f 1

removed 2 leaves from the tree

The progress indicators show successful grow and prune operations, and every
1,000 rounds the partitions under the LLM show corr=[0]. Figure 8 shows the
resulting posterior predictive surface and MAP partition (T̂ ).

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (15)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data
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> plot(sin.btgpllm, main = "treed GP LLM,")
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Figure 8: Posterior predictive distribution using btgpllm on synthetic sinusoidal data: mean

and 90% credible interval, and MAP partition T̂ .

subsampled from a grid of inputs and outputs described by (15) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$XX

CART is clearly just as inappropriate for this data as it was for the sinusoidal
data in the previous section. However, a stationary GP fits this data just fine.
After all, the process is quite well behaved. In two dimensions one has a choice
between the isotropic and separable correlation functions. Separable is the de-
fault in the tgp package. For illustrative purposes here, I shall use the isotropic
power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp")

Progress indicators are suppressed. Figure 9 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right). The
sampled locations (X) are shown as dots on the right image plot. Predictive
locations (XX) are circles. Predictive uncertainty for the stationary GP model is
highest where sampling is lowest, despite that the process is very uninteresting
there. If any of the surface or perspective plots in the figure have white spaces,
or holes, this is becuase of the akima bug mentioned in Section 1.1.1. This is
not a bug in tgp.
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> plot(exp.bgp, main = "GP,")
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Figure 9: Left: posterior predictive mean using bgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

A treed GP seems more appropriate for this data. It can separate out the
large uninteresting, essentially zero-response, part of the input space from the
interesting part. The result is speedier inference, and region-specific estimates of
predictive uncertainty. Chipman et al. recommend restarting the Markov chain
a few times in order to better explore the marginal posterior for T [4]. This
becomes more important for higher dimensional inputs, requiring deeper trees.
The tgp default is R = 1, i.e., one chain with no restarts. Here two chains, with
one restarts, are obtained using R=2.

> exp.btgp <- btgp(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

Figure 6 shows the resulting posterior predictive surface (top) and trees (bottom).
Typical runs of the treed GP on this data find two, and if lucky three, partitions.
As might be expected, jumping to the LLM for the uninteresting, zero-response,
part of the input space can yield even further speedups [10].

> exp.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

state = 201 588 370 ignored, using R RNG

n=80, d=2, nn=361, BTE=(2000,7000,2), R=2, linburn=0

predicting at data locations

correlation: isotropic power exponential

linear prior: flat

starting d = 0.5 0.5

starting nug=0.1, s2=1, tau2=1

starting beta = 0 0 0
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> plot(exp.btgp, main = "treed GP,")
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> tgp.trees(exp.btgp)

x2 <> 1.6  

0.1279 
54 obs

1

0.021 
26 obs

2

 height=2, log(p)=169.341

x1 <> 2    

x2 <> 1.6  

0.1556 
43 obs

1

0.0034 
21 obs

2

0.0033 
16 obs

3

 height=3, log(p)=195.29

Figure 10: Left: posterior predictive mean using btgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior
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fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

**GROW(0,1)<-0** @depth 0: [1,0.4], n=(50,30)

**PRUNE(0,1)->1** @depth 0: [1,0.35]

r=1000 corr=0.019141 : n = 80

r=2000 corr=0.0208016 : n = 80

Obtaining samples (nn=361 predictive locations):

**GROW(1,1)<-1** @depth 0: [1,0.5], n=(62,18)

r=1000 corr=0.0178545 0.904364 : mh=2 n = 62 18

**GROW(1,0)<-1** @depth 1: [0,0.5], n=(43,11)

r=2000 corr=0.0224447 1.1124 0.0198283 : mh=3 n = 43 11 26

r=3000 corr=0.0270723 0(1.66816) 0.061071 : mh=3 n = 50 14 16

r=4000 corr=0.0236126 0.199734 0(1.13711) : mh=3 n = 50 12 18

r=5000 corr=0.0194921 0(1.39435) 0(0.0761597) : mh=3 n = 50 15 15

Grow: 0.008264%, Prune: 0.004292%, Change: 0.2199%, Swap: 0.2895%

finished repetition 1 0f 2

removed 3 leaves from the tree

burn in:

**GROW(0,0)<-0** @depth 0: [0,0.5], n=(64,16)

**GROW(0,0)<-0** @depth 1: [1,0.5], n=(50,14)

**GROW(1,0)<-0** @depth 2: [0,0.1], n=(16,34)

**PRUNE(1,0)->1** @depth 2: [0,0.1]

r=1000 corr=0.0219221 0(0.791974) 0(0.764177) : mh=3 n = 50 12 18

r=2000 corr=0.0226169 0(1.60567) 0(0.656538) : mh=3 n = 50 12 18

Obtaining samples (nn=361 predictive locations):

r=1000 corr=0.0253895 0.0437966 1.78918 : mh=3 n = 43 21 16

r=2000 corr=0.0176578 0.0134262 0.714019 : mh=3 n = 43 21 16

r=3000 corr=0.021045 0.0128268 0.769922 : mh=3 n = 43 21 16

r=4000 corr=0.0215844 0.02203 0(1.34104) : mh=3 n = 43 21 16

r=5000 corr=0.0196245 0.00991285 0.0674148 : mh=3 n = 43 22 15

Grow: 0.008511%, Prune: 0.003431%, Change: 0.2139%, Swap: 0.2624%

finished repetition 2 0f 2

removed 3 leaves from the tree

Progress indicators show where the LLM (corr=0(d)) or the GP is active. Fig-
ure 11 show how similar the resulting posterior predictive surfaces are.
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> plot(exp.btgpllm, main = "treed GP, LLM")
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Figure 11: Left: posterior predictive mean using btgpllm on synthetic exponential data;
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles).

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [21] is a classic nonstationary data set used in
recent literature [18] to demonstrate the success of nonstationary models. The
data consists of measurements of acceleration of the head of a motorcycle rider
as a function of time in the first moments after an impact. In addition to being
nonstationary, the data has input-dependent noise, which makes it useful for
illustrating how the treed GP model handles this nuance. There are at least
two, and perhaps three regions where the response exhibits different behavior
both in terms of the correlation structure and noise level.

The data is included as part of the MASS library in R.

> library(MASS)

Figure 12 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise, and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero, and a range of one. The m0r1

argument to b* and tgp functions automates this procedure. All progress indi-
cators are surpressed for this example.

A Bayesian Linear CART model is able to capture the input dependent noise
but fails to capture the waviness of the “whiplash”—center— segment of th the
response.

> moto.btlm <- btlm(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)
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