
3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx

5

)
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5
cos

(

4πx

5

)

x < 10
x/10 − 1 otherwise

(14)

The R code below obtains N = 100 evenly spaced samples from this data in the
domain [0, 20], with noise added to keep things interesting.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) * (X <=

+ 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

Some evenly spaced predictive locations XX are also created. By design, the data
is clearly nonstationary. Not knowing this, good first model choice for this data
might be a GP, since it is clearly nonlinear.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX)

> plot(sin.bgp, main = "GP,")
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Figure 5: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% credible interval

Progress indicators have been suppressed. Figure 5 shows the resulting posterior
predictive surface under the GP. Notice how the (stationary) GP gets the wig-
gliness of the sinusoidal region, but fails to capture the smoothness of the linear
region. This is becuase the data comes from a process that is nonstationary.
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So one might consider a Bayesian CART model instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

state = 888 23 373 ignored, using R RNG

n=100, d=1, nn=99, BTE=(2000,7000,2), R=1, linburn=0

predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [-1,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

**GROW(0,0)<-0** @depth 0: [0,0.474747], n=(48,52)

**GROW(0,0)<-0** @depth 1: [0,0.161616], n=(17,29)

**GROW(0,0)<-0** @depth 2: [0,0.272727], n=(11,18)

r=1000 corr=[0] [0] [0] [0] : n = 15 15 16 54

r=2000 corr=[0] [0] [0] [0] : n = 13 17 16 54

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] [0] [0] [0] : mh=4 n = 10 20 16 54

r=2000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 16 54

r=3000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 16 54

r=4000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 17 53

r=5000 corr=[0] [0] [0] [0] : mh=4 n = 13 17 16 54

Grow: 0.008174%, Prune: 0%, Change: 0.3092%, Swap: 0.7701%

finished repetition 1 0f 1

removed 4 leaves from the tree

MCMC progress indicators printed to stdout indicate successful grow and prune

operations as they happen, and region sizes n every 1,000 rounds.
Figure 6 shows the resulting posterior predictive surface (top) and trees (bot-

tom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in the
form of vertical lines. The CART model captures the smoothness of the linear
region just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP becuase it can be
both smooth and wiggly.
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> plot(sin.btlm, main = "Linear CART,")
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> tgp.trees(sin.btlm)

x1 <> 5.85859

x1 <> 2.62626

0.1237 
14 obs

1

0.108 
16 obs

2

x1 <> 9.09091

0.1316 
16 obs

3

0.1129 
54 obs

4

 height=3, log(p)=48.0813

x1 <> 9.09091

x1 <> 5.85859

x1 <> 2.62626

0.1319 
14 obs

1

0.1584 
16 obs

2

0.089 
16 obs

3

0.1052 
54 obs

4

 height=4, log(p)=48.6118

Figure 6: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX)

Progress indicators have been suppressed. Figure 7 shows the resulting posterior
predictive surface (top) and trees (bottom).
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> tgp.trees(sin.btgp)

x1 <> 9.49495

0.511 
48 obs

1

0.367 
52 obs

2

 height=2, log(p)=48.8029

Figure 7: Top: Posterior predictive distribution using btgp on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[10], since half of the response surface is very smooth, or linear.

> sin.btgpllm <- btgpllm(X = X, Z = Z, XX = XX)

state = 477 854 556 ignored, using R RNG

n=100, d=1, nn=99, BTE=(2000,7000,2), R=1, linburn=0
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predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

**GROW(1,1)<-1** @depth 0: [0,0.494949], n=(50,50)

**GROW(0,1)<-1** @depth 1: [0,0.242424], n=(25,24)

**PRUNE(1,0)->1** @depth 1: [0,0.292929]

r=1000 corr=[0.00380686] [0] : n = 48 52

r=2000 corr=[0.00433483] [0] : n = 50 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0.00240425] [0.0652247] : mh=2 n = 48 52

r=2000 corr=[0.00723703] [0.0488049] : mh=2 n = 49 51

r=3000 corr=[0.00604759] [1.76362] : mh=2 n = 49 51

r=4000 corr=[0.00425486] [0] : mh=2 n = 51 49

r=5000 corr=[0.00351977] [1.00793] : mh=2 n = 48 52

Grow: 0.006006%, Prune: 0.00303%, Change: 0.5336%, Swap: 1%

finished repetition 1 0f 1

removed 2 leaves from the tree

The progress indicators show successful grow and prune operations, and every
1,000 rounds the partitions under the LLM show corr=[0]. Figure 8 shows the
resulting posterior predictive surface and MAP partition (T̂ ).

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (15)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data

21


