that the right-hand region is also linear, perhaps with the same mean as the
left-hand region, only with higher noise. The b* and tgp functions can force
an i.i.d. hierarchical linear model by setting bprior=b0. Moreover, instead of
rescaling the responses with mOr1, one might try encoding a mixture prior for
the nugget in order to explicitly model region-specific noise. This requires direct
usage of tgp.

> p <- tgp.default.params(2)

> p$bprior <- "bO"

> p$nug.p <- c(1, 0.1, 10, 0.1)

> moto.tgp <- tgp(X = mcyclel, 1], Z = mcycle[, 2], params = p,
+ BTE = ¢(2000, 22000, 2))

The resulting posterior predictive surface is shown in top half of Figure 14. The
bottom half of the figure shows the norm (difference) in predictive quantiles,
clearly illustrating the treed GP’s ability to capture input-specific noise in the
posterior predictive distribution.

Other permutations of possible models, functions and arguments, for this
data is contained in the b* and tgp examples sections of the respective R help
files.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [9]. There are 10 covariates
in the data (x = {x1,22,...,210}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = p = 10sin(rz122) + 20(2z3 — 0.5)2 + 1024 + 5as, (16)

but depends only on {x1,...,25}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [4] used this data to compare
their linear CART algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE = Y77 (i — 2:)*/n RMSE = vVMSE

where Z; is the model-predicted response for input x;. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N’ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)
> ff <- friedman.1.data(1000)
> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

28

> plot(moto.tgp, main = "custom treed GP LLM,")

custom treed GP LLM, z mean and error

50
|

-50

-100
L

> main <- "quantile difference,"
> plot(moto.tgp$X[, 1], moto.tgp$Zp.q, type = "1", main = main)

quantile difference,

40 60 80
| | |

moto.tgp$Zp.q

20
|

T T T T T
10 20 30 40 50

moto.tgp$X[, 1]

Figure 14: top Posterior predictive distribution using a custom parameterized tgp call on the
motorcycle accident data: mean and 90% credible interval; bottom Quantile-norm (90%-5%)
showing input-dependent noise.

This example compares Bayesian linear CART with Bayesian GP LLM (not
treed), following the RMSE experiments of Chipman et al. It helps to scale the
responses so that they have a mean of zero and a range of one. First, fit the
Bayesian linear CART model, and obtain the RMSE.

29

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2, 10), mOrl = TRUE)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue) "2))
> fr.btlm.mse

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgplim(X = X, Z = Z, XX = XX, mOrl = TRUE)
> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue) "2))
> fr.bgplim.mse

So, the GP LLM is 4.834 times better than Bayesian linear CART on this
data, in terms of RMSE (in terms of MSE the GP LLM is 2.199 times better).
Watching the evolution of the Markov chain for the GP LLM (via the progress
statements written to stdout, not shown because the would fit on the page), it is
easy to see how the GP LLM quickly learns that b = (1,1,1,0,0,0,0,0,0,0), and
that 04 ~ 4 and (5 ~ 10—basically that only the first three inputs contribute
nonlinearly, the fourth and fifth contribute linearly, and the remaining five not
at all [10].

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand()
> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- exp2d.data$XX

Start by fitting a treed GP LLM model to the data, without prediction, in order
to infer the MAP tree 7.

> expl <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",
+ R=2)

The trees are shown in Figure 15. Then, use the tgp.design function to create
D-optimal candidate designs in each region of 7.

> XX <- tgp.design(10, Xcand, expl)

sequential treed D-Optimal design in 3 partitiomns

dopt.gp (1) choosing 2 new inputs from 63 candidates
dopt.gp (2) choosing 3 new inputs from 107 candidates
dopt.gp (3) choosing 6 new inputs from 191 candidates

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (7). Notice how the candidates XX are spaced

30

