> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2, 10), mOrl = TRUE)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue) "2))
> fr.btlm.mse

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgplim(X = X, Z = Z, XX = XX, mOrl = TRUE)
> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue) "2))
> fr.bgplim.mse

So, the GP LLM is 4.834 times better than Bayesian linear CART on this
data, in terms of RMSE (in terms of MSE the GP LLM is 2.199 times better).
Watching the evolution of the Markov chain for the GP LLM (via the progress
statements written to stdout, not shown because the would fit on the page), it is
easy to see how the GP LLM quickly learns that b = (1,1,1,0,0,0,0,0,0,0), and
that 04 ~ 4 and (5 ~ 10—basically that only the first three inputs contribute
nonlinearly, the fourth and fifth contribute linearly, and the remaining five not
at all [10].

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand()
> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- exp2d.data$XX

Start by fitting a treed GP LLM model to the data, without prediction, in order
to infer the MAP tree 7.

> expl <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",
+ R=2)

The trees are shown in Figure 15. Then, use the tgp.design function to create
D-optimal candidate designs in each region of 7.

> XX <- tgp.design(10, Xcand, expl)

sequential treed D-Optimal design in 3 partitiomns

dopt.gp (1) choosing 2 new inputs from 63 candidates
dopt.gp (2) choosing 3 new inputs from 107 candidates
dopt.gp (3) choosing 6 new inputs from 191 candidates

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (7). Notice how the candidates XX are spaced
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> tgp.trees(expl)

height=2, log(p)=155.522 height=3, log(p)=191.274
x1<>2 x1<>2
x2<>1.6 ®
0.002
19 ok
@ 2 @ 2
1167 0.021 1163 0.0027
1 obs 19 ob 70bs 14 obs

Figure 15: MAP trees of each height encountered in the Markov chain for the exponential
data. 7 is the one with the maximum log(p) above.

out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D-optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [2].

Figure 16 uses the tgp.plot.parts.2d function. Unfortunately, this func-
tion is not well documented in the current version of the tgp package. This
should change in future versions.

Now, the idea is to fit the treed GP LLM model, again, in order to assess
uncertainty in the predictive surface at those new candidate design points.

> expl.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",
+ R=2)

Figure 17 shows the posterior predictive surface. The error surface, on the right,
summarizes posterior predictive uncertainty by a norm of quantiles. In accor-
dance with the ALM algorithm, candidate locations XX with largest predictive
error would be sampled (added into the design) next. These are most likely to
be in the interesting region, i.e., the first quadrant. however, due to the random
nature of this Sweave document, this is not always the case. Results depend
heavily on the clumping of the original design in the un-interesting areas, and
on the estimate of 7.

Adaptive sampling via the ALC, or ego (or both) algorithms could proceed
by setting any/all of the Ds2x or ego parameters to the bx and tgp to TRUE.
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> plot(exp1$X, pch = 19, cex = 0.5)
> points (XX)
> tgp.plot.parts.2d(expl$parts)
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Figure 16: Treed D-optimal candidate locations XX (circles), input locations X (dots), and
MAP tree 7

> plot(expl.btgpllm, main = "ALM for treed GP LLM,")

ALM for treed GP LLM, z mean ALM for treed GP LLM, z error

-2 0 2 a 6

Figure 17: Treed D-optimal candidate locations XX (circles), input locations X (dots), and
MAP tree 7

A Linking to ATLAS

ATLAS is supported as an alternative to standard BLAS and LAPACK for fast,
automatically tuned, linear algebra routines. There are three easy steps to
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