
Bayesian treed Gaussian process models:

A guide to the tgp package, v1.0

Robert B. Gramacy

Department of Applied Math & Statistics

University of California, Santa Cruz

rbgramacy@ams.ucsc.edu

January 9, 2006

The tgp package for R [17] is a tool for fully Bayesian, nonparametric,
semiparametric, and nonstationary regression by treed Gaussian processes with
jumps to the limiting linear model. Special cases also implemented include
Bayesian linear models, linear CART, stationary separable and isotropic Gaus-
sian processes. In addition to inference and posterior prediction, 1-d and 2-d
plotting, with higher dimension projection and slice capabilities, and tree draw-
ing functions are also provided for visualization of tgp-class output. (2-d plot-
ting requires the akima library; tree plotting requires the maptree and combinat

libraries.)
This document is intended to familiarize a (potential) user of tgp with the

models and analyses available in the package. After a brief overview, the brunt of
this document consists of examples, on mainly synthetic and randomly generated
data, which illustrate the various functions and methodologies implemented by
the package. This document has been authored in Sweave (try help(Sweave)).
This means that (1) the code quoted throughout is certified by R, and the
Stangle command can be used to extract it; and (2) that this is a dynamic
document, i.e., each time the document is compiled, the figures and analyses
are rerun and updated based on random data and initialization [I suggest you
try this nifty feature].

The outline of this tutorial is as follows. Section 1 introduces the functions,
and associated regression models, implemented by the tgp package, including
plotting and visualization methods. The Bayesian mathematical specification of
these models is contained in Section 2. In Section 3, the functions and methods
implemented in the package are illustrated by example. The appendix covers
miscellaneous topics such as how to link with the ATLAS libraries for fast linear
algebra routines, and some of the details of implementation.

This document is intended as a tutorial, or initial guide, to the tgp pack-
age, covering key points, concepts, and methods. It was not meant to serve
as an instruction manual. For more detailed documentation of the functions

1

R function Ingredients Description
blm LLM Linear Model
btlm T Linear CART
bgp GP GP Regression
bgpllm GP, LLM GP with jumps to the LLM
btgp T, GP treed GP Regression
btgpllm T, GP, LLM treed GP with jumps to the LLM
tgp Master interface for the above methods

Table 1: Bayesian regression models implemented by the tgp package

contained in the package, see the package help-manuals. At an R prompt, type
help(package=tgp).

1 What is implemented?

The tgp package contains implementations of six Bayesian multivariate regres-
sion models, and functions for visualizing posterior predictive surfaces. These
models, and the functions which implement them, are outlined in Section 1.1.
Details pertaining to the mathematics of model specification, including prior and
posterior distributions, is deferred to Section 2. Also implemented in the pack-
age are functions which aid in the sequential design of experiments for tgp-class
models, which is what I call adaptive sampling. These functions are introduced
at the end of this section.

1.1 Bayesian regression models

The six regression models implemented in this package are summarized in Table
1. They include combinations of treed partition models, (limiting) linear models,
and Gaussian process models as indicated by T, LLM, & GP in the center—
mixture of ingredients—column of the table. The model specification of each of
these ingredients is contained in Section 2. Each is a fully Bayesian regression
model, and in the table they are ordered by some notion of “flexibility”. These
b* functions, as I call them, are wrappers around the master tgp function which
is an interface to C code implementing Bayesian treed Gaussian process models,
with jumps to the limiting linear model (LLM). Each b* function implements a
special case of the treed GP (tgp) model.

It is possible to invoke any of the b* methods directly via first calling the
the tgp.default.params function and then the tgp function after some minor
adjustments to the default parameterization. The help file for tgp shows how
to do this for many of the examples in this document. The b* functions are
intended as the sole interface to the Bayesian regression, so no further attention
to the tgp master function will be included here. That is, with the exception
of one example in Section 3.4 where a more custom model is needed in order to
capture input dependent noise, and a remark that the easiest way to see how the

2

master tgp function implements one of the b* functions is to simply type the
name of the function of interest into R. For example, to see the implementation
of bgp, type:

> bgp

function (X, Z, XX = NULL, bprior = "bflat", corr = "expsep",

BTE = c(1000, 4000, 3), R = 1, m0r1 = FALSE, pred.n = TRUE,

ds2x = FALSE, ego = FALSE)

{

n <- dim(X)[1]

if (is.null(n)) {

n <- length(X)

X <- matrix(X, nrow = n)

d <- 1

}

else {

d <- dim(X)[2]

}

params <- tgp.default.params(d + 1)

params$bprior <- bprior

params$corr <- corr

params$tree <- c(0, 0, 10)

params$gamma <- c(0, 0.2, 0.7)

return(tgp(X, Z, XX, BTE, R, m0r1, FALSE, params, pred.n,

ds2x, ego))

}

The output (return-value) of tgp and the b* functions is a list-object of class
“tgp”. This is what is meant by a “tgp-class” object. This object retains all of
the relevant information necessary to summarize posterior predictive inference,
maximum a’ posteriori (MAP) trees, and statistics for adaptive sampling. Infor-
mation about its actual contents is contained in the help files for the tgp and b*

functions. Generic print and plot methods are defined for tgp-class objects.
The plot function is discussed below. The print function simply provides a
list of the names of the fields comprising a tgp-class object.

This is as good a place as any to remark on the computational burdens
of some of the modeling functions in this package. Fully Bayesian analyses
with MCMC are not the “super-speediest” of all statistical models. Neither is
inference for GP models, classical or Bayesian. Great care has been taken to
make implementation of Bayesian inference of GP models as efficient as possible
[See Appendix B]. However, inference for non-treed GPs for non-linear data is
likely to be slow for data of more than a few hundred inputs. Two things are
implemented by the package which can help speed things up a bit. The first is
support for ATLAS for fast linear algebra. Details on linking this package with
ATLAS is contained in Appendix A. The second is an argument called linburn

to the tree class (T) functions in Table 1. When linburn = TRUE, the Markov

3

chain is initialized with a run of the Bayesian linear CART algorithm [4] prior
to burn-in in order to pre-partition up the input space with linear models.

1.1.1 Plotting and visualization

The two main functions provided by the tgp package for visualization are
plot.tgp, inheriting from the generic plot method, and a function called
tgp.trees for graphical visualization of MAP trees as a function of the tree
heights encountered while sampling from the Markov chain. I consider these
functions to be visualization-“helper” functions. They provide useful, but not
very custom, visualizations.

The plot.tgp function can make plots in 1-d or 2-d. Of course, if the data
are 1-d, the plot is in 1-d. If the data are 2-d, or higher, they are 2-d surface
or perspective plots. Data which is 3-d, or higher, requires projection down to
2-d, or specification of a 2-d slice. The plot.tgp default is to make a projection
onto the first two input variables. Alternate projections are specified as an
argument (proj) to the function. Likewise, there is also an argument (slice)
which allows one to specify which slice of the posterior predictive data is desired.
For functions implementing models that use treed partitioning (those with a T
in the center column of Table 1), the plot.tgp function will overlay the region
boundaries of the MAP tree (T̂) found during MCMC.

A few of notes on 2-d plotting of tgp predictive output:

� 2-d plotting requires the akima package, available from CRAN. There is,
in my opinion, a bug in the akima package, which produces NA’s when
plotting data from a grid. For beautiful 2-d plots I suggest exporting
the tgp predictive output to a text file and using gnuplot’s 2-d plotting
features. See Chapter 4 of my thesis for examples [10]. Note that gnuplot
expects gridded 2-d inputs to be encoded in a special “grid” format.

� Unfortunately, the current version of this package contains no examples—
nor does this document—which demonstrate plotting of data with dimen-
sion larger than two. The example provided in Section 3.5 uses 10-d data,
however no plottin is required. More examples will be included in future
versions.

� The plot.tgp function, though limited many respects, has many more
options than are illustrated [in Section 3] of this document. Please refer
to the help files for more details.

The tgp.trees function provides a graphical representation of the MAP
trees of each height encountered by the Markov chain during sampling. The
function will not plot trees of height one, i.e., trees with no branching or parti-
tioning. Plotting of trees requires the maptree package, which in turn requires
the combinat package, both available from CRAN.

4

1.2 Sequential design of experiments

Sequential design of experiments, a.k.a. adaptive sampling, is not implemented
by any single function in the tgp package. However, functions, and arguments to
functions (and outputs from functions), have been included in order to facilitate
the automation of adaptive sampling with tgp-class models. A detailed example
is included in Section 3.6.

Arguments to b* functions, and tgp, which aid in adaptive sampling are Ds2x
and ego. Both are booleans, i.e., should be set to TRUE or FALSE (the default is
FALSE). TRUE booleans cause the tgp-class output list to contain vectors of the
same name which contain statistics that can be used toward adaptive sampling.
When Ds2x = TRUE then the ∆σ2(x̃) statistic is computed at each x̃ ∈ XX, in
accordance the ALC (Active Learning–Cohn) algorithm [5]. Likewise, when
ego = TRUE, statistics for Expected Global Optimization (EGO) are computed
in order to asses the expected information gain for each x̃ ∈ XX about the global
minimum. The ALM (Active Learning–Mackay) algorithm is implemented by
default in terms of difference in predictive quantiles for the inputs XX, which
can be accessed via the ZZ.q output field. Details and references on the ALM,
ALC, and EGO algorithms are provided in Section 2.

Calculation of EGO statistics is considered to be“alpha”functionality in this
version of the tgp package. It has not been adequately tested, and its imple-
mentation is likely to change substationally in future versions of the package.
There are also currently no examples which illustrate EGO adaptive sampling
in Section 3.

The functions included in the package which explicitly aid in the sequential
design of experiments are tgp.design and dopt.gp. They are both intended
to produce sequential D-optimal candidate designs XX at which one or more of
the adaptive sampling methods (ALM, ALC, EGO) can gather statistics. The
dopt.gp function generates D-optimal candidates for a stationary Gaussian
process. The tgp.design function extracts the MAP tree from a tgp-class
object and uses dopt.gp on each region of the MAP partition in order to get
treed sequential D-optimal candidates.

2 Methods and Models

This section provides a quick overview of the statistical models and methods im-
plemented by the tgp package. Stationary Gaussian processes (GPs), GPs with
jumps to the limiting linear model (LLM; a.k.a. GP LLM), treed partitioning
for nonstationary models, and sequential design of experiments (a.k.a. adaptive
sampling) concepts for these models are all briefly discussed. Appropriate ref-
erences are provided for the details. Of course, the best reference is probably
my thesis [10].

As a first pass on this document, it might make sense to skip this section
and go straight on to the examples in Section 3.

5

2.1 Stationary Gaussian processes

Below is a hierarchical generative model for a stationary GP with linear tend
for data D = {X,Z}.

Z|β, σ2,K ∼ Nn(Fβ, σ2K),

β|σ2, τ2,W, β
0
∼ NmX

(β
0
, σ2τ2W)

β0 ∼ NmX
(µ,B), (1)

σ2 ∼ IG(ασ/2, qσ/2),

τ2 ∼ IG(ατ/2, qτ/2),

W−1 ∼ W ((ρV)−1, ρ),

where F = (1,X), and W is a (mX + 1) × (mX + 1) matrix. N , IG, and
W are the (Multivariate) Normal, Inverse-Gamma, and Wishart distributions,
respectively. Constants µ,B,V, ρ, ασ, qσ, ατ , qτ . are treated as known.

The GP correlation structure K is chosen either from the isotropic power
family, or separable power family, with a fixed power p0 (see below), but un-
known (random) range and nugget parameters. Correlation functions used in
the tgp package take the form K(xj ,xk) = K∗(xj ,xk) + gδj,k, where δ·,· is the
Kronecker delta function, and K∗ is a true correlation representative from a
parametric family.

All parameters in (1) can be sampled using Gibbs steps, except for the
covariance structure and nugget parameters, and their hyperparameters, which
can be sampled via Metropolis-Hastings [11, 10].

2.1.1 The nugget

The g term in the correlation function K(·, ·) is referred to as the nugget in the
geostatistics literature [15, 6] and sometimes as jitter in the Machine Learning
literature [16]. It must always be positive (g > 0), and serves two purposes.
Primarily, it provides a mechanism for introducing measurement error into the
stochastic process. It arises when considering a model of the form:

Z(X) = m(X, β) + ε(X) + η(X), (2)

where m(·, ·) is underlying (usually linear) mean process, ε(·) is a process co-
variance whose underlying correlation is governed by K∗, and η(·) is simply
Gaussian noise. Secondarily, though perhaps of equal practical importance, the
nugget (or jitter) prevents K from becoming numerically singular. Notational
convenience and conceptual congruence motivates referral to K as a correlation
matrix, even though the nugget term (g) forces K(xi,xi) > 1.

2.1.2 Exponential Power family

Correlation functions in the isotropic power family are stationary which means
that correlations are measured identically throughout the input domain, and

6

isotropic in that correlations K∗(xj ,xk) depend only on a function of the Eu-
clidean distance between xj and xk: ||xj − xk||.

K∗
ν (xj ,xk|dν) = exp

{

−||xj − xk||p0

d

}

, (3)

where d > 0 is referred to as the width or range parameter. The power 0 < p0 ≤ 2
determines the smoothness of the underlying process. A typical default choice
is the Gaussian p0 = 2 which gives an infinitely differentiable process.

A straightforward enhancement to the isotropic power family is to employ
a unique range parameter di in each dimension (i = 1, . . . , mX). The resulting
correlation function is still stationary, but no longer isotropic.

K∗(xj ,xk|d) = exp

{

−
mX
∑

i=1

|xij − xik|p0

di

}

(4)

The (non-separable) isotropic power family is a special case (when di = d, for
i = 1, . . . , mX). With the separable power family, one can model correlations
in some input variables as stronger than others. However, with added flexibility
comes added costs. When the true underlying correlation structure is isotropic,
estimating the extra parameters of the separable model represents a sort of
overkill.

2.1.3 Prediction and Adaptive Sampling

The predicted value of z(x) is normally distributed with mean and variance

ẑ(x) = f>(x)β̃ + k(x)>K−1(Z − Fβ̃), (5)

σ̂2(x) = σ2[κ(x,x) − q>(x)C−1q(x)], (6)

where β̃ is the posterior mean estimate of β, and

C−1 = (K + FWF>/τ2)−1

q(x) = k(x) + τ2FWf(x)

κ(x,y) = K(x,y) + τ2f>(x)Wf(y)

with f>(x) = (1,x>), and k(x) a n−vector with kν,j(x) = K(x,xj), for all
xj ∈ X. Notice that σ̂(x)2 does not directly depend on the observed responses
Z. These equations often called kriging equations [15].

The ALM algorithm is implemented with MCMC inference by computing the
norm (or width) of predictive quantiles obtained by samples from the Normal
distribution given above. The ALC algorithm computes the reduction in vari-
ance given that the candidate location x̃ ∈ X̃ is added into the data (averaged

7

over a reference set Ỹ):

∆σ̂2(x̃) =
1

|Ỹ|
∑

y∈Ỹ

∆σ̂2

y(x̃) =
1

|Ỹ|
∑

y∈Ỹ

σ̂2

y − σ̂2

y(x̃) (7)

=
1

|Ỹ|
∑

y∈Ỹ

σ2
[

q>
N (y)C−1

N qN (x̃) − κ(x̃,y)
]2

κ(x̃, x̃) − q>
N (x̃)C−1

N qN (x̃)
,

which is easily computed using MCMC methods. In the tgp package, the refer-
ence set is taken to be the same as the candidate set, i.e., Ỹ = X̃.

The Expected Global Optimization (EGO) algorithm is centered around a
statistic which captures the expected improvement in the model about its ability
to predict the spatial location of its global minimum. If fmin is the model’s
current best guess about the minimum, e.g., fmin = min{z1, . . . , zN}, then the
expected improvement at the point x̃ can reasonably be encoded as

E[I(x̃)] = E[max(fmin − Z(x̃), 0)],

which, after a tedious integration by parts, can be shown to work out to be

E[I(x̃)] = (fmin − ẑ(x̃))Φ

(

fmin − ẑ(x̃)

σ̂2(x̃)

)

+ σ̂2(x̃)φ

(

fmin − ẑ(x̃)

σ̂2(x̃)

)

(8)

where ẑ and σ̂2 are taken from the equations for the posterior predictive dis-
tribution (5). Φ and φ are the standard Normal cumulative distribution and
probability density functions, respectively. MCMC samples from (8) can be
gathered in order to determine which x̃ of a candidate set of locations x̃ ∈ X̃

give the highest reduction in uncertainty about the global minimum.

2.2 GPs and Limiting linear models

A special limiting case of the Gaussian process model is the standard linear
model. Replacing the top (likelihood) line in the hierarchical model (1)

Z|β, σ2,K ∼ N(Fβ, σ2K) with Z|β, σ2 ∼ N(Fβ, σ2I),

where I is the n×n identity matrix, gives a parameterization of a linear model.
From a phenomenological perspective, GP regression is more flexible than stan-
dard linear regression in that it can capture nonlinearities in the interaction
between covariates (x) and responses (z). From a modeling perspective, the
GP can be more than just overkill for linear data. Parsimony and over-fitting
considerations are just the tip of the iceberg. It is also unnecessarily compu-
tationally expensive, as well as numerically unstable. Specifically, it requires
the inversion of a large covariance matrix— an operation whose computing cost
grows with the cube of the sample size. Moreover, large finite d parameters can
be problematic from a numerical perspective because, unless g is also large, the
resulting covariance matrix can be numerically singular when the off-diagonal
elements of K are nearly one.

8

Bayesians can take advantage of the limiting linear model (LLM) by con-
structing prior for the “mixture” of the GP with its LLM [12, 10]. The key
idea is an augmentation of the parameter space by mX indicators b = {b}mX

i=1
∈

{0, 1}mX . The boolean bi is intended to select either the GP (bi = 1) or its LLM
for the ith dimension. The actual range parameter used by the correlation func-
tion is multiplied by b: e.g. K∗(·, ·|b>d). To encode the preference that GPs
with larger range parameters be more likely to “jump” to the LLM, the prior on
bi is specified as a function of the range parameter di: p(bi, di) = p(bi|di)p(di).

p(d) = G(1,20) + G(10,10)

d

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

p(b) = 1
p(b|d)

Figure 1: Prior distribution for the boolean (b) superimposed on p(d).

Probability mass functions which increase as a function of di, e.g.,

pγ,θ1,θ2
(bi = 0|di) = θ1 + (θ2 − θ1)/(1 + exp{−γ(di − 0.5)}) (9)

with 0 < γ and 0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling for
the exclusion of dimensions i with with large di when constructing K. Thus
bi determines whether the GP or the LLM is in charge of the marginal process
in the ith dimension. Accordingly, θ1 and θ2 represent minimum and maximum
probabilities of jumping to the LLM, while γ governs the rate at which p(bi =
0|di) grows to θ2 as di increases. Figure 1 plots p(bi = 0|di) for (γ, θ1, θ2) =
(10, 0.2, 0.95) superimposed on a convenient p(di) which is taken to be a mixture
of Gamma distributions,

p(d) = [G(d|α = 1, β = 20) + G(d|α = 10, β = 10)]/2, (10)

representing a population of GP parameterizations for wavy surfaces (small
d) and a separate population of those which are quite smooth or approximately

9

linear. The θ2 parameter is taken to be strictly less than one so as not to preclude
a GP which models a genuinely nonlinear surface using an uncommonly large
range setting.

The implied prior probability of the full mX -dimensional LLM is

p(linear model) =

mX
∏

i=1

p(bi = 0|di) =

mX
∏

i=1

[

θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)}

]

. (11)

Notice that the resulting process is still a GP if any of the booleans bi are
one. The primary computational advantage associated with the LLM is fore-
gone unless all of the bi’s are zero. However, the intermediate result offers
increased numerical stability and represents a unique transitionary model lying
somewhere between the GP and the LLM. It allows for the implementation of
semiparametric stochastic processes like Z(x) = βf(x) + ε(x̃) representing a
piecemeal spatial extension of a simple linear model. The first part (βf(x))
of the process is linear in some known function of the full set of covariates
x = {xi}mX

i=1
, and ε(·) is a spatial random process (e.g. a GP) which acts on a

subset of the covariates x̃. Such models are commonplace in the statistics com-
munity [7]. Traditionally, x̃ is determined and fixed a’ priori. The separable
boolean prior (9) implements an adaptively semiparametric process where the
subset x̃ = {xi : bi = 1, i = 1, . . . , mX} is given a prior distribution, instead of
being fixed.

2.2.1 Prediction and Adaptive Sampling under LLM

Prediction under the limiting GP model is a simplification of (5) when it is
known that K = (1 + g)I. It can be shown [12, 10] that the predicted value of
z at x is normally distributed with mean ẑ(x) = f>(x)β̃ and variance σ̂(x)2 =
σ2[1+ f>(x)Vβ̃f(x)], where Vβ̃ = (τ−2 +F>F(1+g))−1. This is preferred over
(5) with K = I(1+ g) because an mX ×mX inversion is preferred over an n×n
one.

Applying the ALC algorithm under the LLM is computationally less intense
compared to ALC under a full GP. Starting with the predictive variance given
in (5), the expected reduction in variance under the LM is [10]

∆σ̂2

y(x) =
σ2[f>(y)Vβ̃N

f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

. (12)

Since only an mX × mX inverse is required, Eq. (12) is preferred over simply
replacing K with I(1 + g) in (7), which requires an n × n inverse.

The statistic for the EGO algorithm is the same under the LLM as (8) for
the GP. Of course, it helps to use the linear predictive equations instead of the
kriging ones for ẑ(x) and σ̂2(x).

2.3 Treed partitioning

Nonstationary models are obtained by treed partitioning and inferring a separate
model within each region of the partition. Treed partitioning is accomplished

10

X[:, u2] < s2

D1 = {X1, Z1} D2 = {X2, Z2}

D3 = {X3, Z3}

X[:, u2] ≥ s2

X[:, u1] ≥ s1

{u1, s1}

{u2, s2}

T : diagram

X[:, u1] < s1

u2

D1

D3

u1

D2

s1

s2

T : graphically

Figure 2: An example tree T with two splits, resulting in three regions, shown in a diagram
(left) and pictorially (left).

by making (recursive) binary splits on the value of a single variable so that
region boundaries are parallel to coordinate axes. Partitioning is recursive, so
each new partition is a sub-partition of a previous one. Since variables may be
revisited, there is no loss of generality by using binary splits as multiple splits
on the same variable are equivalent to a non-binary split.

Figure 2 shows an example tree. In this example, region D1 contains x’s
whose u1 coordinate is less than s1 and whose u2 coordinate is less than s2.
Like D1, D2 has x’s whose coordinate u1 is less than s1, but differs from D1 in
that the u2 coordinate must be bigger than or equal to s2. Finally, D3 contains
the rest of the x’s differing from those in D1 and D2 because the u1 coordinate
of its x’s is greater than or equal to s1. The corresponding response values (z)
accompany the x’s of each region.

These sorts of models are often referred to as Classification and Regression
Trees (CART) [1]. CART has become popular because of its ease of use, clear
interpretation, and ability to provide a good fit in many cases. The Bayesian
approach is straightforward to apply to tree models, provided that one can
specify a meaningful prior for the size of the tree. The tree process implemented
in the tgp package follows Chipman et al. [3] who specify the prior through a
tree-generating process. Starting with a null tree (all data in a single partition),
the tree, T , is probabilistically split recursively with each partition, η, being
split with probability psplit(η, T) = a(1 + qη)−b where qη is the depth of η in
T and a and b are parameters chosen to give an appropriate size and spread to
the distribution of trees.

Extending the work of Chipman et al. [4], the tgp package implements a
stationary GP with linear trend, or GP LLM, independently within each of
the regions depicted by a tree T . Integrating out dependence on T is accom-
plished by reversible-jump MCMC (RJ-MCMC) via tree operations grow, prune,
change, and swap [3]. To keep things simple, proposals for new parameters—via

11

an increase in the number of partitions—are drawn from their priors, thus elim-
inating the Jacobian term usually present in RJ-MCMC. New splits are chosen
uniformly from the set of marginalized input locations X. The swap operation
has been augmented with a rotate option to improve mixing of the Markov chain
[10].

There are many advantages to partitioning the input space into regions, and
fitting separate GPs (or GP LLMs) within each region. Partitioning allows for
the modeling of non-stationary behavior, and can ameliorate some of the com-
putational demands by fitting models to less data. Finally, a fully Bayesian
approach yields a uniquely efficient nonstationary, nonparametric, or semipara-
metric (in the case of the GP LLM) regression tool.

2.4 (Treed) sequential D-optimal design

In the statistics community, the traditional approach to sequential data solic-
itation goes under the general heading of (Sequential) Design of Experiments
[19]. Depending on a choice of utility, different algorithms for obtaining opti-
mal designs can be derived. For example, one can choose the Kullback-Leibler
distance between the posterior and prior distributions as a utility. For Gaus-
sian process models with correlation matrix K, this is equivalent to maximizing
det(K). Subsequently chosen input configurations are called D−optimal de-
signs. Choosing quadratic loss leads to what are called A−optimal designs. An
excellent review of Bayesian approaches to the design of experiments is provided
by Chaloner & Verdinelli [2].

Other approaches used by the statistics community include space-filling de-
signs: e.g. max-min distance and Latin Hypercube (LH) designs [19]. The
FIELDS package [8], available from CRAN, implements code for space-filling de-
signs in addition to kriging and thin plate spline models for spatial interpolation.

A hybrid approach to designing experiments employs active learning tech-
niques. The idea is to choose a set of candidate input configurations X̃ (say, a
D−optimal or LH design) and an active learning rule for determining the order
in which they are be added into the design. The ALM algorithm has been shown
to approximate maximum expected information designs by selecting the candi-
date location x̃ ∈ X̃ which has the greatest standard deviation in predicted
output [14]. An alternative algorithm is to select x̃ minimizing the resulting
expected squared error averaged over the input space [5], called ALC for Active
Learning–Cohn. Seo et al. [20] provide a comparison between ALC and ALM
using standard GPs. The EGO algorithm can be used to find global minima.

Choosing candidate configurations X̃ (XX in the tgp package), at which to
gather ALM, ALC, or EGO statistics, is half of the challenge in the hybrid
approach to experimental design. Arranging candidates so that they are well-
spaced out relative to themselves, and relative to already sampled configura-
tions, is clearly desirable. Towards this end, a sequential D-optimal design is
a good first choice. However, traditional D-optimal designs fall short of the
task for a number of reasons. They are based on a known parameterization of
a single GP model, and are thus not well-suited to MCMC inference. A D-

12

optimal design may not choose candidates in the “interesting” part of the input
space, because sampling is high there already. Classic optimal design criteria, in
general, are ill-suited partition models, wherein “closeness” may not measured
homogeneously across the input space. Another disadvantage is computational,
namely decomposing and finding the determinant of a large covariance matrix.

One possible solution to both computational and nonstationary modeling is-
sues is to use treed sequential D-optimal design. Separate sequential D-optimal
designs can be computed in each of the partitions depicted by the maximum a
posteriori (MAP) tree T̂ . The number of candidates selected from each region
can be proportional to the volume of—or proportional to the number of grid
locations in—the region. MAP parameters θ̂ν |T̂ , or “neutral” or “exploration
encouraging” ones, can be used to create the candidate design. Separating de-
sign from inference by using custom parameterizations in design steps, rather
than inferred ones, is a common practice [19]. Small range parameters, for learn-
ing about the wiggliness of the response, and a modest nugget parameter, for
numerical stability, tend to work well together.

Finding a local maxima is generally sufficient to get well-spaced candidates.
The dopt.gp function uses a stochastic ascent algorithm which can find local
maxima without calculating too many determinants

3 Examples using tgp

The following subsections take the reader through a series of examples based,
mostly, on synthetic data. At least two different b* models are fit for each set of
data, offering comparisons, and contrasts. Duplicating these examples in your
own R session is highly recommended. The Stangle function can help extract
executable R code from this document. For example, extract the code for the
exponential data of Section 3.3 with one command.

> Stangle(vignette("exp", package="tgp")$file))

This will write a file called “exp.R”. Additionally, each of the subsections
that follow is available as an R demo. Try demo(package="tgp") for a listing of
available demos. To envoke the demo for the exponential data of Section 3.3 try
demo(exp, package="tgp"). This is equivalent to source("exp.R") because
the demos were created using Stangle on the source files of this document.

Other successful uses of the methods in this pacakge include applications to
the Boston housing data [13], and designing an experiment for a reusable NASA
launch vehicle [11, 10] called the Langely glide-back booster (LGBB). These are
not included as exmaples here. The Boston housing data is a large data set.
Repeating the experiment of Chipman et al. [4] is computationally intensive,
and impractical for this document [12, 10]. The LGBB experiment is also a
big one, involves propriatary data, and utilizes ab sophicistated adaptive sam-
pling interface to NASA supercomputers for the evaluations of computational
fluid dynamics codes for the online accumulation of adaptively sampled input
configurations [11, 10].

13

3.1 1-d Linear data

Consider data sampled from a linear model.

zi = 1 + 2xi + ε, where εi
iid∼ N(0, 0.252) (13)

The following R code takes a sample {X,Z} of size N = 50 from (13). It
also chooses N ′ = 99 evenly spaced predictive locations X̃ = XX.

> X <- seq(0, 1, length = 50)

> XX <- seq(0, 1, length = 99)

> Z <- 1 + 2 * X + rnorm(length(X), sd = 0.25)

Using tgp on this data with a Bayesian hierarchical linear model goes as
follows:

> lin.blm <- blm(X = X, XX = XX, Z = Z)

state = 357 144 97 ignored, using R RNG

n=50, d=1, nn=99, BTE=(1000,4000,3), R=1, linburn=0

predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0,0], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [-1,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

r=1000 corr=[0] : n = 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] : mh=1 n = 50

r=2000 corr=[0] : mh=1 n = 50

r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 0f 1

removed 0 leaves from the tree

The first group of text printed to stdout is a summary of the prior param-
eterization. Then, MCMC progress indicators are printed every 1,000 rounds.
The linear model is indicated by cor=[0].The GUI versions of R, on Windows or

14

> plot(lin.blm, main = "Linear Model,")

> abline(1, 2, lty = 3, col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

Linear Model, z mean and error

x1

z

Figure 3: Posterior predictive distribution using blm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

MacOS X, usually buffers stdout, rendering this feature essentially useless. In
terminal versions, e.g. Unix, the progress indicators can give a sense of when
the code will finish. Also note that a user cannot interact while the C code is
running. This will be changed in future versions.

The generic plot method can be used to visualize the fitted posterior pre-
dictive surface in terms of means and credible intervals. Figure 3 shows how to
do it, and what you get.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using btgpllm) and let a more flexible model speak as to
the linearity of the process.

> lin.gpllm <- bgpllm(X = X, XX = XX, Z = Z)

state = 474 363 977 ignored, using R RNG

n=50, d=1, nn=99, BTE=(2000,7000,2), R=1, linburn=0

predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0,0], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior

15

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

r=1000 corr=[0] : n = 50

r=2000 corr=[0] : n = 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0.788014] : mh=1 n = 50

r=2000 corr=[0] : mh=1 n = 50

r=3000 corr=[0] : mh=1 n = 50

r=4000 corr=[0.982654] : mh=1 n = 50

r=5000 corr=[0] : mh=1 n = 50

finished repetition 1 0f 1

removed 0 leaves from the tree

> plot(lin.gpllm, main = "GP LLM,")

> abline(1, 2, lty = 4, col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

GP LLM, z mean and error

x1

z

Figure 4: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

Whenever the progress indicators show corr[0] the process is under the LLM
in that round, and the GP otherwise. A plot of the resulting surface is shown in
Figure 4 for comparison. Since the data is linear, the resulting predictive surfaces
should look strikingly similar to one another. On occasion, the GP LLM may
find some bendy-ness in the surface. This happens rarely with samples as large
as N = 50, but is quite a bit more common for N < 20.

16

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx
5

)

+ 1

5
cos

(

4πx
5

)

x < 10
x/10 − 1 otherwise

(14)

The R code below obtains N = 100 evenly spaced samples from this data in the
domain [0, 20], with noise added to keep things interesting.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) * (X <=

+ 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

Some evenly spaced predictive locations XX are also created. By design, the data
is clearly nonstationary. Not knowing this, good first model choice for this data
might be a GP, since it is clearly nonlinear.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX)

> plot(sin.bgp, main = "GP,")

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

GP, z mean and error

x1

z

Figure 5: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% credible interval

Progress indicators have been suppressed. Figure 5 shows the resulting posterior
predictive surface under the GP. Notice how the (stationary) GP gets the wig-
gliness of the sinusoidal region, but fails to capture the smoothness of the linear
region. This is becuase the data comes from a process that is nonstationary.

17

So one might consider a Bayesian CART model instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

state = 888 23 373 ignored, using R RNG

n=100, d=1, nn=99, BTE=(2000,7000,2), R=1, linburn=0

predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [-1,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

GROW(0,0)<-0 @depth 0: [0,0.474747], n=(48,52)

GROW(0,0)<-0 @depth 1: [0,0.161616], n=(17,29)

GROW(0,0)<-0 @depth 2: [0,0.272727], n=(11,18)

r=1000 corr=[0] [0] [0] [0] : n = 15 15 16 54

r=2000 corr=[0] [0] [0] [0] : n = 13 17 16 54

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] [0] [0] [0] : mh=4 n = 10 20 16 54

r=2000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 16 54

r=3000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 16 54

r=4000 corr=[0] [0] [0] [0] : mh=4 n = 14 16 17 53

r=5000 corr=[0] [0] [0] [0] : mh=4 n = 13 17 16 54

Grow: 0.008174%, Prune: 0%, Change: 0.3092%, Swap: 0.7701%

finished repetition 1 0f 1

removed 4 leaves from the tree

MCMC progress indicators printed to stdout indicate successful grow and prune
operations as they happen, and region sizes n every 1,000 rounds.

Figure 6 shows the resulting posterior predictive surface (top) and trees (bot-
tom). The MAP partition (T̂) is also drawn onto the surface plot (top) in the
form of vertical lines. The CART model captures the smoothness of the linear
region just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP becuase it can be
both smooth and wiggly.

18

> plot(sin.btlm, main = "Linear CART,")

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Linear CART, z mean and error

x1

z

> tgp.trees(sin.btlm)

x1 <> 5.85859

x1 <> 2.62626

0.1237
14 obs

1

0.108
16 obs

2

x1 <> 9.09091

0.1316
16 obs

3

0.1129
54 obs

4

 height=3, log(p)=48.0813

x1 <> 9.09091

x1 <> 5.85859

x1 <> 2.62626

0.1319
14 obs

1

0.1584
16 obs

2

0.089
16 obs

3

0.1052
54 obs

4

 height=4, log(p)=48.6118

Figure 6: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂); Bottom MAP trees for each height
encountered in the Markov chain.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX)

Progress indicators have been suppressed. Figure 7 shows the resulting posterior
predictive surface (top) and trees (bottom).

19

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

treed GP, z mean and error

x1

z

> tgp.trees(sin.btgp)

x1 <> 9.49495

0.511
48 obs

1

0.367
52 obs

2

 height=2, log(p)=48.8029

Figure 7: Top: Posterior predictive distribution using btgp on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂); Bottom MAP trees for each height
encountered in the Markov chain.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[10], since half of the response surface is very smooth, or linear.

> sin.btgpllm <- btgpllm(X = X, Z = Z, XX = XX)

state = 477 854 556 ignored, using R RNG

n=100, d=1, nn=99, BTE=(2000,7000,2), R=1, linburn=0

20

predicting at data locations

correlation: separable power exponential

linear prior: flat

starting d=0.5, nug=0.1, s2=1, tau2=1

starting beta = 0 0

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

GROW(1,1)<-1 @depth 0: [0,0.494949], n=(50,50)

GROW(0,1)<-1 @depth 1: [0,0.242424], n=(25,24)

PRUNE(1,0)->1 @depth 1: [0,0.292929]

r=1000 corr=[0.00380686] [0] : n = 48 52

r=2000 corr=[0.00433483] [0] : n = 50 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0.00240425] [0.0652247] : mh=2 n = 48 52

r=2000 corr=[0.00723703] [0.0488049] : mh=2 n = 49 51

r=3000 corr=[0.00604759] [1.76362] : mh=2 n = 49 51

r=4000 corr=[0.00425486] [0] : mh=2 n = 51 49

r=5000 corr=[0.00351977] [1.00793] : mh=2 n = 48 52

Grow: 0.006006%, Prune: 0.00303%, Change: 0.5336%, Swap: 1%

finished repetition 1 0f 1

removed 2 leaves from the tree

The progress indicators show successful grow and prune operations, and every
1,000 rounds the partitions under the LLM show corr=[0]. Figure 8 shows the
resulting posterior predictive surface and MAP partition (T̂).

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (15)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data

21

> plot(sin.btgpllm, main = "treed GP LLM,")

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

treed GP LLM, z mean and error

x1

z

Figure 8: Posterior predictive distribution using btgpllm on synthetic sinusoidal data: mean

and 90% credible interval, and MAP partition T̂ .

subsampled from a grid of inputs and outputs described by (15) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$XX

CART is clearly just as inappropriate for this data as it was for the sinusoidal
data in the previous section. However, a stationary GP fits this data just fine.
After all, the process is quite well behaved. In two dimensions one has a choice
between the isotropic and separable correlation functions. Separable is the de-
fault in the tgp package. For illustrative purposes here, I shall use the isotropic
power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp")

Progress indicators are suppressed. Figure 9 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right). The
sampled locations (X) are shown as dots on the right image plot. Predictive
locations (XX) are circles. Predictive uncertainty for the stationary GP model is
highest where sampling is lowest, despite that the process is very uninteresting
there. If any of the surface or perspective plots in the figure have white spaces,
or holes, this is becuase of the akima bug mentioned in Section 1.1.1. This is
not a bug in tgp.

22

> plot(exp.bgp, main = "GP,")

x1

x2

z

GP, z mean

−2 0 2 4 6

−
2

0
2

4
6

GP, z error

x1
x2

Figure 9: Left: posterior predictive mean using bgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

A treed GP seems more appropriate for this data. It can separate out the
large uninteresting, essentially zero-response, part of the input space from the
interesting part. The result is speedier inference, and region-specific estimates of
predictive uncertainty. Chipman et al. recommend restarting the Markov chain
a few times in order to better explore the marginal posterior for T [4]. This
becomes more important for higher dimensional inputs, requiring deeper trees.
The tgp default is R = 1, i.e., one chain with no restarts. Here two chains, with
one restarts, are obtained using R=2.

> exp.btgp <- btgp(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

Figure 6 shows the resulting posterior predictive surface (top) and trees (bottom).
Typical runs of the treed GP on this data find two, and if lucky three, partitions.
As might be expected, jumping to the LLM for the uninteresting, zero-response,
part of the input space can yield even further speedups [10].

> exp.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

state = 201 588 370 ignored, using R RNG

n=80, d=2, nn=361, BTE=(2000,7000,2), R=2, linburn=0

predicting at data locations

correlation: isotropic power exponential

linear prior: flat

starting d = 0.5 0.5

starting nug=0.1, s2=1, tau2=1

starting beta = 0 0 0

23

> plot(exp.btgp, main = "treed GP,")

x1

x2

z

treed GP, z mean

−2 0 2 4 6

−
2

0
2

4
6

treed GP, z error

x1
x2

> tgp.trees(exp.btgp)

x2 <> 1.6

0.1279
54 obs

1

0.021
26 obs

2

 height=2, log(p)=169.341

x1 <> 2

x2 <> 1.6

0.1556
43 obs

1

0.0034
21 obs

2

0.0033
16 obs

3

 height=3, log(p)=195.29

Figure 10: Left: posterior predictive mean using btgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

tree[alpha,beta]=[0.25,2], minpart=10

s2[a0,g0]=[5,10]

d[a,b][0,1]=[1,20],[10,10]

nug[a,b][0,1]=[1,1],[1,1]

gamlin = [10,0.2,0.7]

fixing d prior

24

fixing nug prior

s2 lambda[a0,g0]=[0.2,10]

burn in:

GROW(0,1)<-0 @depth 0: [1,0.4], n=(50,30)

PRUNE(0,1)->1 @depth 0: [1,0.35]

r=1000 corr=0.019141 : n = 80

r=2000 corr=0.0208016 : n = 80

Obtaining samples (nn=361 predictive locations):

GROW(1,1)<-1 @depth 0: [1,0.5], n=(62,18)

r=1000 corr=0.0178545 0.904364 : mh=2 n = 62 18

GROW(1,0)<-1 @depth 1: [0,0.5], n=(43,11)

r=2000 corr=0.0224447 1.1124 0.0198283 : mh=3 n = 43 11 26

r=3000 corr=0.0270723 0(1.66816) 0.061071 : mh=3 n = 50 14 16

r=4000 corr=0.0236126 0.199734 0(1.13711) : mh=3 n = 50 12 18

r=5000 corr=0.0194921 0(1.39435) 0(0.0761597) : mh=3 n = 50 15 15

Grow: 0.008264%, Prune: 0.004292%, Change: 0.2199%, Swap: 0.2895%

finished repetition 1 0f 2

removed 3 leaves from the tree

burn in:

GROW(0,0)<-0 @depth 0: [0,0.5], n=(64,16)

GROW(0,0)<-0 @depth 1: [1,0.5], n=(50,14)

GROW(1,0)<-0 @depth 2: [0,0.1], n=(16,34)

PRUNE(1,0)->1 @depth 2: [0,0.1]

r=1000 corr=0.0219221 0(0.791974) 0(0.764177) : mh=3 n = 50 12 18

r=2000 corr=0.0226169 0(1.60567) 0(0.656538) : mh=3 n = 50 12 18

Obtaining samples (nn=361 predictive locations):

r=1000 corr=0.0253895 0.0437966 1.78918 : mh=3 n = 43 21 16

r=2000 corr=0.0176578 0.0134262 0.714019 : mh=3 n = 43 21 16

r=3000 corr=0.021045 0.0128268 0.769922 : mh=3 n = 43 21 16

r=4000 corr=0.0215844 0.02203 0(1.34104) : mh=3 n = 43 21 16

r=5000 corr=0.0196245 0.00991285 0.0674148 : mh=3 n = 43 22 15

Grow: 0.008511%, Prune: 0.003431%, Change: 0.2139%, Swap: 0.2624%

finished repetition 2 0f 2

removed 3 leaves from the tree

Progress indicators show where the LLM (corr=0(d)) or the GP is active. Fig-
ure 11 show how similar the resulting posterior predictive surfaces are.

25

> plot(exp.btgpllm, main = "treed GP, LLM")

x1

x2

z

treed GP, LLM z mean

−2 0 2 4 6

−
2

0
2

4
6

treed GP, LLM z error

x1
x2

Figure 11: Left: posterior predictive mean using btgpllm on synthetic exponential data;
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles).

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [21] is a classic nonstationary data set used in
recent literature [18] to demonstrate the success of nonstationary models. The
data consists of measurements of acceleration of the head of a motorcycle rider
as a function of time in the first moments after an impact. In addition to being
nonstationary, the data has input-dependent noise, which makes it useful for
illustrating how the treed GP model handles this nuance. There are at least
two, and perhaps three regions where the response exhibits different behavior
both in terms of the correlation structure and noise level.

The data is included as part of the MASS library in R.

> library(MASS)

Figure 12 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise, and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero, and a range of one. The m0r1

argument to b* and tgp functions automates this procedure. All progress indi-
cators are surpressed for this example.

A Bayesian Linear CART model is able to capture the input dependent noise
but fails to capture the waviness of the “whiplash”—center— segment of th the
response.

> moto.btlm <- btlm(X = mcycle[, 1], Z = mcycle[, 2], m0r1 = TRUE)

26

> plot(moto.bgp, main = "GP,")

10 20 30 40 50

−
10

0
−

50
0

50

GP, z mean and error

x1

z

Figure 12: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

> plot(moto.btlm, main = "Bayesian CART,")

10 20 30 40 50

−
10

0
−

50
0

50

Bayesian CART, z mean and error

x1

z

Figure 13: Posterior predictive distribution using btlm on the motorcycle accident data:
mean and 90% credible interval

predictive surface and MAP partition (T̂).
A treed GP model seems appropriate because it can model input dependent

smoothness and noise. A treed GP LLM is probably most appropriate since the
left-hand part of the input space is likely linear. One might further hypothesize

27

that the right-hand region is also linear, perhaps with the same mean as the
left-hand region, only with higher noise. The b* and tgp functions can force
an i.i.d. hierarchical linear model by setting bprior=b0. Moreover, instead of
rescaling the responses with m0r1, one might try encoding a mixture prior for
the nugget in order to explicitly model region-specific noise. This requires direct
usage of tgp.

> p <- tgp.default.params(2)

> p$bprior <- "b0"

> p$nug.p <- c(1, 0.1, 10, 0.1)

> moto.tgp <- tgp(X = mcycle[, 1], Z = mcycle[, 2], params = p,

+ BTE = c(2000, 22000, 2))

The resulting posterior predictive surface is shown in top half of Figure 14. The
bottom half of the figure shows the norm (difference) in predictive quantiles,
clearly illustrating the treed GP’s ability to capture input-specific noise in the
posterior predictive distribution.

Other permutations of possible models, functions and arguments, for this
data is contained in the b* and tgp examples sections of the respective R help
files.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [9]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (16)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [4] used this data to compare
their linear CART algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE =
∑n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model-predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

28

> plot(moto.tgp, main = "custom treed GP LLM,")

10 20 30 40 50

−
10

0
−

50
0

50

custom treed GP LLM, z mean and error

x1

z

> main <- "quantile difference,"

> plot(moto.tgp$X[, 1], moto.tgp$Zp.q, type = "l", main = main)

10 20 30 40 50

20
40

60
80

quantile difference,

moto.tgp$X[, 1]

m
ot

o.
tg

p$
Z

p.
q

Figure 14: top Posterior predictive distribution using a custom parameterized tgp call on the
motorcycle accident data: mean and 90% credible interval; bottom Quantile-norm (90%-5%)
showing input-dependent noise.

This example compares Bayesian linear CART with Bayesian GP LLM (not
treed), following the RMSE experiments of Chipman et al. It helps to scale the
responses so that they have a mean of zero and a range of one. First, fit the
Bayesian linear CART model, and obtain the RMSE.

29

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2, 10), m0r1 = TRUE)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2))

> fr.btlm.mse

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgpllm(X = X, Z = Z, XX = XX, m0r1 = TRUE)

> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2))

> fr.bgpllm.mse

So, the GP LLM is 4.834 times better than Bayesian linear CART on this
data, in terms of RMSE (in terms of MSE the GP LLM is 2.199 times better).
Watching the evolution of the Markov chain for the GP LLM (via the progress
statements written to stdout, not shown because the would fit on the page), it is
easy to see how the GP LLM quickly learns that b = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0), and
that β4 ≈ 4 and β5 ≈ 10—basically that only the first three inputs contribute
nonlinearly, the fourth and fifth contribute linearly, and the remaining five not
at all [10].

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- exp2d.data$XX

Start by fitting a treed GP LLM model to the data, without prediction, in order
to infer the MAP tree T̂ .

> exp1 <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",

+ R = 2)

The trees are shown in Figure 15. Then, use the tgp.design function to create
D-optimal candidate designs in each region of T̂ .

> XX <- tgp.design(10, Xcand, exp1)

sequential treed D-Optimal design in 3 partitions

dopt.gp (1) choosing 2 new inputs from 63 candidates

dopt.gp (2) choosing 3 new inputs from 107 candidates

dopt.gp (3) choosing 6 new inputs from 191 candidates

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (T̂). Notice how the candidates XX are spaced

30

> tgp.trees(exp1)

x1 <> 2

0.1167
61 obs

1

0.0216
19 obs

2

 height=2, log(p)=155.522

x1 <> 2

x2 <> 1.6

0.1163
47 obs

1

0.0027
14 obs

2

0.0021
19 obs

3

 height=3, log(p)=191.274

Figure 15: MAP trees of each height encountered in the Markov chain for the exponential

data. T̂ is the one with the maximum log(p) above.

out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D-optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [2].

Figure 16 uses the tgp.plot.parts.2d function. Unfortunately, this func-
tion is not well documented in the current version of the tgp package. This
should change in future versions.

Now, the idea is to fit the treed GP LLM model, again, in order to assess
uncertainty in the predictive surface at those new candidate design points.

> exp1.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

Figure 17 shows the posterior predictive surface. The error surface, on the right,
summarizes posterior predictive uncertainty by a norm of quantiles. In accor-
dance with the ALM algorithm, candidate locations XX with largest predictive
error would be sampled (added into the design) next. These are most likely to
be in the interesting region, i.e., the first quadrant. however, due to the random
nature of this Sweave document, this is not always the case. Results depend
heavily on the clumping of the original design in the un-interesting areas, and
on the estimate of T̂ .

Adaptive sampling via the ALC, or ego (or both) algorithms could proceed
by setting any/all of the Ds2x or ego parameters to the b* and tgp to TRUE.

31

> plot(exp1$X, pch = 19, cex = 0.5)

> points(XX)

> tgp.plot.parts.2d(exp1$parts)

−2 0 2 4 6

−
2

0
2

4

x1

x2

Figure 16: Treed D-optimal candidate locations XX (circles), input locations X (dots), and

MAP tree T̂

> plot(exp1.btgpllm, main = "ALM for treed GP LLM,")

x1

x2

z

ALM for treed GP LLM, z mean

−2 0 2 4 6

−
2

0
2

4

ALM for treed GP LLM, z error

x1

x2

Figure 17: Treed D-optimal candidate locations XX (circles), input locations X (dots), and

MAP tree T̂

A Linking to ATLAS

ATLAS is supported as an alternative to standard BLAS and LAPACK for fast,
automatically tuned, linear algebra routines. There are three easy steps to

32

enable ATLAS support (assuming, of course, you have already installed it –
http://math-atlas.sourceforge.net) which need to be done before you in-
stall the package from source. (Reverse the above instructions to disable AT-
LAS. Don’t forget to re-install when you’re done.)

1. Edit src/Makevars. Comment out the existing PKG_LIBS line, and replace
it with:

PGK_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas

You may need replace "-llapack -lcblas -latlas" with whatever AT-
LAS recommends for your OS. (see ATLAS README.) For example, if
your ATLAS compilation included F77 support, you would might need to
add "-lF77blas", of if you compiled with pthreads, you would might use
"-llapack -lptcblas -lptf77blas -latlas".

2. Continue editing src/Makevars. Add:

PKF_CFLAGS = -I/path/to/ATLAS/include

3. Edit src/linalg.h and commend out lines 40 & 41:

/*#define FORTPACK

#define FORTBLAS*/

In most cases, the ATLAS implementation is significantly faster than standard
BLAS/Lapack. This is especially the case when compared to the BLAS/LAPACK

that comes standard with R which is used in compiling R and R shared libraries
(packages) as a last resort. Following the steps to install ATLAS for the tgp

package in this case is highly recommended.

B Implementation

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (T) and C for the GP at each leaf of T . The code has been tested on
Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies
in an <mX dimensional unit cube. Doing this makes it easier to construct
prior distributions for the width parameters to the correlation function K(·, ·)
in particular. Proposals for all parameters which require MH sampling are
taken from a uniform “sliding window” centered around the location of the last
accepted setting. For example, a proposed a new nugget parameter gν to the
correlation function K(·, ·) in region rν would go as

g∗ν ∼ Unif

(

3

4
gν ,

4

3
gν

)

.

33

Calculating the forward and backwards proposal probabilities for the MH ac-
ceptance ratio is straightforward.

After conditioning on the tree and parameters ({T , θ}), prediction can be
parallelized by using a producer/consumer model. This allows the use of the
PThreads libraries in order to take advantage of multiple processors, and get
speed-ups of at least a factor of two. The current tgp package is has contains a
parallelized implementation, but it is not enabled by default. And unfortunately,
no documentation yet exists to explain how to unleash this feature. This should
be included in future versions (and help is available by personal correspondence).
Parallel sampling of the posterior of θ|T for each of the {θν}R

ν=1 is also possible.
However, the speed-up in this second case is less impressive, and so is not
supported by the current version available as an R package.

References

[1] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

[2] K. Chaloner and I. Verdinelli. Bayesian experimental design, a review.
Statistical Science, 10 No. 3:273–1304, 1995.

[3] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model
search (with discussion). Journal of the American Statistical Association,
93:935–960, 1998.

[4] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian treed models.
Machine Learning, 48:303–324, 2002.

[5] D. A. Cohn. Neural network exploration using optimal experimental design.
In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances
in Neural Information Processing Systems, volume 6(9), pages 679–686.
Morgan Kaufmann Publishers, 1996.

[6] N.A. Cressie. Statistics for Spatial Data. John Wiley and Sons, Inc., 1991.

[7] Dipak Dey, Peter Müeller, and Debajyoti Sinha. Practical nonparametric
and semiparametric Bayesian statistics. Springer-Verlag New York, Inc.,
New York, NY, USA, 1998.

[8] Fields Development Team. fields: Tools for spatial data. Na-
tional Center for Atmospheric Research, Boulder CO, 2004. URL:
http://www.cgd.ucar.edu/Software/Fields.

[9] J. H. Friedman. Multivariate adaptive regression splines. Annals of Statis-
tics, 19, No. 1:1–67, March 1991.

[10] R. B. Gramacy. Bayesian Treed Gaussian Process Models. PhD thesis, Uni-
versity of California, Santa Cruz, CA 95060, December 2005. Department
of Applied Math & Statistics.

34

[11] R. B. Gramacy, Herbert K. H. Lee, and William Macready. Parameter
space exploration with Gaussian process trees. In ICML, pages 353–360.
Omnipress & ACM Digital Library, 2004.

[12] Robert B. Gramacy and Herbert K H. Lee. Gaussian processes and lim-
iting linear models. Technical report, Dept. of Applied math & Statistics,
University of California, Santa Cruz, 2005.

[13] D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand
for clean air. Journal of Environmental Economics and Management, 5:81–
102, 1978.

[14] D. J. C. MacKay. Information-based objective functions for active data
selection. Neural Computation, 4(4):589–603, 1992.

[15] G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266,
1963.

[16] R. Neal. Monte carlo implementation of Gaussian process models for
Bayesian regression and classification”. Technical Report CRG–TR–97–2,
Dept. of Computer Science, University of Toronto., 1997.

[17] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2004.
ISBN 3-900051-00-3.

[18] C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process
experts. In Advances in Neural Information Processing Systems, volume 14,
pages 881–888. MIT Press, 2002.

[19] T. J. Santner, B. J. Williams, and William I. Notz. The Design and Analysis
of Computer Experiments. Springer-Verlag, New York, NY, 2003.

[20] S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process re-
gression: Active data selection and test point rejection. In Proceedings of
the International Joint Conference on Neural Networks, volume III, pages
241–246. IEEE, July 2000.

[21] B. W. Silverman. Some aspects of the spline smoothing approach to non-
parametric curve fitting. Journal of the Royal Statistical Society Series B,
47:1–52, 1985.

35

